Optimal Automated Demand Responsive Feeder Transit Operation and Its Impact

Project Abstract

Although demand responsive feeder bus operation is possible with human-driven vehicles, it has not been very popular and mostly available as a special service because of the high operating costs due to the intensive labor costs as well as advanced real-time information technology and complicated operation. However, once automated vehicles become available, small-sized flexible door-to-door feeder bus operation will become more realistic, thanks to recent technological advances and business innovations by the transportation network companies (TNCs). So, preparing for the automated flexible feeder service is necessary to catch the rapid improvement of automated vehicle technology.

Therefore, this research developed an algorithm for the optimal flexible feeder bus routing, which considers relocation of buses for multi-stations and multi-trains, using a simulated annealing (SA) algorithm for future automated vehicle operation. An example was developed and tested to demonstrate the developed algorithm. The algorithm successfully handled relocating the buses when the optimal bus routings were not feasible with the available buses at certain stations. Furthermore, the developed algorithm limited the maximum Degree of Circuity for each passenger while minimizing total cost, including total vehicle operating costs and total passenger in-vehicle travel time costs. Unlike fixed route mass transit, small vehicle demand responsive service uses flexible routing, which means lower unit operating costs not only decrease total operating costs and total costs but also can affect routing and impact network characteristics. In the second part of this research, optimal flexible demand responsive feeder transit networks were generated with various unit transit operating costs using the developed routing optimization algorithm. Then network characteristics of those feeder networks were examined and compared.

The results showed that when unit operating costs decline, total operating costs and total costs obviously decline. Furthermore, when unit operating costs decline, the average passenger travel distance and total passenger travel costs decline while the ratio of total operating costs per unit operating costs increases. That means if unit operating costs decrease, the portion of passenger travel costs in total costs increases, and the optimization process tends to reduce passenger costs more while reducing total costs. Assuming that automation of the vehicles reduces the operating costs, it will reduce total operating costs, total costs and total passenger travel costs as well.

Click or tap for full report

Outputs and Outcomes

This project developed an algorithm for optimal feeder bus routing which considers relocation of such buses for multi-stations and multi-trains. This algorithm can also be applied to hypothetical networks to compare travel times and costs by different travel options.

Universities and Sponsoring Organizations Involved

Morgan State University

Principal Investigator(s)

Young-Jae Lee, Ph.D. (Morgan State University), Amirreza Nickkar (Morgan State University)

Funding Sources and Amounts

UMEC: $59,979, In-Kind: $35,540

Start Date

May 25, 2017

Completion Date

September 2018

Keywords

Automated Transit, Demand Responsive Transit, Feeder Bus, Vehicle Routing Problem, Optimization

Original Title of Research

Optimizing Small-Sized Automated Transit Operations and Its Applications (Core Project)