Economic Impacts of Oyster Reef Restoration

MAYA OLIVER
PEARL SUMMER INTERNSHIP
DR. IHDE & DR. KNOCHE
Introduction

Why are oysters important?

❖ Keystone species
❖ Improve water quality
 ▪ Remove nitrogen from water column
 ▪ Filter feeders that remove suspended sediment
 ▪ Support growth of Submerged Aquatic Vegetation
❖ Habitat to other species
 ▪ Increase biodiversity
 ▪ Provide fish for commercial and recreational fishing
Background

Oyster Decline

- ~0.1% of oysters left in the bay

Disease

- “Dermo” - warm-season parasite
- “MSX” - high salinity parasite

Harvesting

- Hand Tonging and Dredging
 - Habitat Loss
 - Decline in commercial harvest
Background

Restoration Site: Choptank River Complex

- Maryland tributaries- Harris creek River, Tred Avon River, and Little Choptank River
- About 564 acres designated for the reef restoration sites
- $47.61 million investment in restoration
The Project

Project Design

- Creating factsheets for the public that convey the economic impacts of reef restoration.
 - Based on topics: project overview, communities affected and more
 - Goal: To simplify complex data, population measures, and forecasts for the public
The Project

Socio-economic Benefits of restoration

Biophysical Structure
- Oyster reef with spat on old shells

Ecological Processes
- Ecopath w/ Ecosim
 - Biomass Production

Ecosystem Services
- Clearer water
- More habitat
- More food
- Increased biodiversity

Benefits
- Enhanced commercial & recreational fishing
- More nutrients removed

Economic Impacts
- Commercial catch revenue
- Increase in jobs
- More recreational fishing
The Project

References

Organized references from the 38 species about life history and diets to be modeled.

<table>
<thead>
<tr>
<th>No.</th>
<th>Group Name</th>
<th>Biomass</th>
<th>Total Mortality</th>
<th>Production/biomass</th>
<th>Consumption/biomass</th>
<th>Ecotrophic Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>StripedBass UV</td>
<td>ORES data, see spreadsheet "Species_mean_len_by_string_new.xlsx" (0.289 g/m2)</td>
<td>CBFEM 1950 model</td>
<td>CBFEM 1950's model</td>
<td>CBFEM 1950's model</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>StripedBass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Weakfish</td>
<td>CBFEM 1950's model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>bioparams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DivingDucks</td>
<td>VIMS report (2009) by Paige Ross and Mark Luckenbach</td>
<td>CBFEM 1950 model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Doug Forsell's document</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>"Forsell_F+W_2004.xls"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>CBFEM 1950's model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>EwE 2008 model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Catfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ReefFish (incl)</td>
<td>Madeo Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 14 | OysterToadfish | Lisa Kellogg's Final Report (2016) see spreadsheet "Macrofauna Data for Tom -
see spreadsheet "Macrofauna Data for Tom" | Madeo model | | | |
| 15 | | | | | | |
The Project

Models Used

Ecopath w/ Ecosim Modeling Software

- Mass-balanced software that examines species interactions, and group functions represented by biomass.
 - Trying to balance enough prey for the predators
 - Shows the harvesting rate in different trophic levels in ecosystem
 - Forecasts the change in fish biomass over time in the reef scenarios
EwE

Model tracks each species biomass per area, mortality, consumption/biomass and how these change.
The Project

Models Used

IMPLAN

- Input-output model that links the change in landings values to economic outcomes.
 - Multiplier-rate of economic change in: outcome, income, employment, and revenue.
 - Shows the dollar flow in the fishing industry and the local economy.
 - Shows the positive or negative impact on the state economy.
Healthy Oysters, Healthy Economy

Reef Restoration creates more jobs & income for the Choptank River

<table>
<thead>
<tr>
<th>Facts & background</th>
<th>Why is it important?</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Gallons of water that a healthy oyster can filter in 1 day.</td>
<td>Oysters keep the water clean which makes a healthier environment.</td>
</tr>
<tr>
<td><1 Percent of the historic oyster population remains in Chesapeake Bay.</td>
<td>Decrease in oyster population because of disease & harvest means less fish and less jobs.</td>
</tr>
<tr>
<td>564 Acres will be restored in the Choptank River Watershed.</td>
<td>Reefs attract fish and crabs that people catch. More fish also means more tourism.</td>
</tr>
<tr>
<td>100 Percent successful to date reef restorations. 10 Tributaries are planned to be restored by 2025.</td>
<td>The reefs slow down the waves to protect coastal properties.</td>
</tr>
</tbody>
</table>
Importance of Harvested Fish in Choptank River

607+ Watermen in the Choptank Watershed in 2015

Maryland Dockside Value of Blue Crabs, Oysters, & Striped Bass

Oyster catches decreased, while blue crab catches increased. Oysters, Blue Crabs, and Striped Bass are popular for both commercial and recreational fishing.

Choptank River Facts

Economic Output
- Blue crab catch makes up 20% of the Chesapeake Bay’s Blue Crab catch
- $807,000 value of Finfish caught
- $8.7 million value of Blue Crab caught

Commercial Fishing
- 2,322 Finfish trips
- 21,517 Blue Crab fishing trips

Factsheet Design 2
Acknowledgements

Funders

- NOAA
- PEARL
- NFWF

Data contributions

- Maryland Department of Natural Resources
- Chesapeake Bay Program
- Oyster Recovery Partnership
- Chesapeake Bay Foundation

Literature

- http://www.chesapeakebay.net/discover/bayecosystem/dissolvedoxygen
- http://www.vims.edu/_docs/oysters/oyster-diseases-CB.pdf
Questions