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(57) ABSTRACT
A scale-based, convolutional, long-short term memory 
(LSTM) network is developed for image deblurring. Multi­
scale information is obtained using dilated convolutions 
shared between scales using recurrent connections resulting 
in low-parameter count and to deblur an image without the 
use of prior information. Effectiveness is evaluated with 
industry standard datasets. Results show that a comparable 
sharp image can be recovered more efficiently even with a 
significant reduction in the total number of network param­
eters.
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Figure 2: Scale Inception Block
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Figure 5: Network configuration training loss comparison.
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Blurry Input Image
Tao et al. (S-RN- 
DeblurNet) [3]

Proposed 6-Layer. 
LSTM-Inceptiort 
Block network

Figure 7; Deblurring results of Tao et al and our 
method.
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IMAGE DEBLURRING USING A 
MULTI-LAYER LSTM NETWORK

BACKGROUND OF THE INVENTION 

Field of the Invention

[0001] The present invention relates to the development of 
a compact neural network for the blind deconvolution and 
restoration of a blurred image.

Description of the Background

[0002] Blind image restoration methods aim to recover a 
‘sharp’ image from a degraded or blurred image where the 
degradation process is unknown, and statistical information 
about the original image is unavailable. The degraded image 
is, in fact obtained from a nonlinear and shift-variant pro­
cess, but most techniques that solve this problem assume 
that the degradation occurs via linear convolution with a 
shift-invariant point spread function (PSF). By solving this 
problem, one can improve the overall image quality without 
knowing the exact image acquisition mechanism or sensor 
calibration technique.
[0003] Traditional techniques for blind deconvolution 
approach the problem in two different ways. The first 
approach aims to identify the PSF, which has produced the 
blurred image, and then a standard image restoration method 
is can be used to deblur that image. The second approach 
simultaneously addresses both identification of the PSF 
while estimating the true image. This tends to lead to more 
complex algorithms with higher computational requirements 
[1].

[0004] Computer memory and computational power 
advancements in recent years have increased the availability 
and prevalence of neural network-based solutions to solve 
problems in computer vision. Neural networks can be 
trained for the end-to-end process of deblurring an image. 
Nah et. al [2] developed a multi-scale method for deblurring 
an image using a convolutional neural network (CNN). In 
this network, the image is processed at three different scales 
from coarse to fine, in a sequential manner. Each scale of the 
image is passed as the input to an identical network struc­
ture. The result at a coarse scale of the network goes through 
an up-convolution process and is concatenated with the next 
finer scale of the image. This new feature tensor is then used 
as input at the next level of the network. Note that up- 
convolution is a method of upsampling using a convolu­
tional kernel. Concepts from [2] are applied by Tao et al. [3] 
to create a network that shares information between scales 
using a recurrent neural network (RNN), while bilinear 
interpolation is used to transition between scales. The same 
set of network parameters is used at each scale, so this 
reduces the number of parameters when compared to [2]. 
[0005] Another type of multi-scale approach is taken by 
Shi et. al. in [4] where the convolution kernel is dilated to 
mimic scaling of the image, instead of modifying the image 
to obtain different scales.
[0006] Neural network approaches often require GPU 
hardware acceleration due to the large number of computa­
tions required for training and speed. The number of param­
eters in modem image processing networks can be on the 
order of millions, which can limit its use to devices with high 
computational power and large memory.

[0007] Multi-Scale Image Context
[0008] One successful approach to image deblurring that 
has been used in recent work ([2], [3], [4]) is to use image 
information at multiple scales of the input image. In [2] and 
[3], an input image is first down-sampled twice by a factor 
of two to obtain two smaller scales of the image (one half 
and a quarter size of the original image). In [2], the deblur­
ring result at the coarser scale goes through a trained 
up-convolution process before being concatenated to the 
input image of the next finer scale. In [3], the deblurring 
result at the coarser scale is upsampled using bilinear 
interpolation before being concatenated to the input image at 
the next finer scale. In [4] and [5], a dilated convolution 
method is used, which saves the additional work of having 
to resize the image multiple times. A dilated convolution is 
a linear process where convolution is performed using an 
1-dilated filter, shown in FIG. 1 to produce a coarser scaled 
image for 1>1.
[0009] A dilated filter has the coefficients of the kernel 
spread apart by a distance determined by the dilation factor,
1. In an 1-dilated convolution, a dilated filter is not con­
structed but each kernel coefficient is applied with a sepa­
ration of 1 points between each coefficient. This means that 
the number of coefficients in the kernel is not increased and 
the coefficients are applied with a spatial separation. This is 
achieved by using the discrete 2D convolution operation 
between an image F(t,s) and the kernel k(t,s) as described in 
(1)·

(F't)[r,s]=V»XUff-V-8]i[t,8] (1)

[0010] A dilated convolution can then be written with a 
dilated convolution operator *t as in (2).

(F*,i)[ti]=2^_0=coXT._0=coFp-ZT,i-Z6]i[T,6] (2)

[0011] Context Sharing Between Scales 
[0012] Multi-scale image deblurring methods use infor­
mation learned at coarse scales to add context to an image 
at finer scales. To accomplish this, [2] and [4] share scale 
context through a convolutional layer. In [2], this is done by 
concatenating the result from a coarser scale to the input 
image of the next finer scale. In [4], this is done by 
concatenating the results from the full multi-scale process. 
Both approaches then apply a trainable single-layer convo­
lution to share contextual information between scales. 
[0013] The method implemented in [2] shares coarse-to- 
fine information once from each coarse scale to the next finer 
scale, sharing context information two times in total (i.e., 
from scale 3 to 2, and from scale 2 to 1, original size). FIG. 
2 outlines the method implemented by Shi et. al. [4], which 
shares information at each convolutional layer within an 
inception style module/block. The modified inception block 
of [4] uses dilated convolutions for the simultaneous pro­
cessing steps of the inception block shown in FIG. 2. 
[0014] Tao et al. [3] use an approach similar to that of [2], 
by concatenating the result from the coarse deblurring to the 
next finer-scale input. Additional sharing of contextual infor­
mation between scales is introduced in the form of a 
recurrent connection. The overall architecture used has an 
hourglass shape (autoencoder style network) and the recur­
rent connections are included in the center layer of the 
autoencoder. The recurrent connection used in [3] is a 
convolutional long-short term memory (LSTM) cell, as 
developed in [6]. In an LSTM cell, the flow of information 
(i.e., what is saved and passed along) is controlled by a series 
of gates (convolutional layers and activation functions).



US 2023/0298147 Α1
2

Sep. 21, 2023

SUMMARY OF THE INVENTION

[0015] In this paper, we have created a neural network 
with a low number of parameters, that is capable of deblur­
ring an image with no prior information given. In our 
proposed method, we will employ a dilated convolution 
approach to obtain information at different scales as it does 
not involve any upsampling or downsampling steps. Our 
aim is to design a compact neural network (with a low 
number of parameters) that is capable of deblurring an 
image for which no prior statistical or blurring information 
is available. Our proposed network will employ a convolu­
tional LSTM cell to share information between layers within 
an inception style block. With the implementation of the 
LSTM-Inception block, we created a network that used 96% 
fewer trainable parameters than that of the SRN-DeblurNet 
[3] network, while achieving similar deblurring perfor­
mance. This network was able to deblur images at a com­
parable level to other image deblurring methods [2], [3] with 
lower computational efficiency.
[0016] Accordingly, there is provided according to the 
invention a computer-implemented method for deblurring 
an image, comprising, in a neural network:

[0017] a. using a processor to pass an input image hie 
through at least three dilated image filters in parallel to 
produce an output hie for each at least three dilated 
image hlters, each of said at least three dilated image 
hlters having a different resolution from most coarse 
resolution to most hne resolution, and including one or 
more intermediate resolutions;

[0018] b. using said processor to supply a most coarse 
resolution output hie from said at least three dilated 
image hlters as a first input to an LSTM cell, followed 
by supplying an intermediate resolution output hie 
from said at least three dilated image hlters as a second 
input to the LSTM cell, followed by supplying a most 
hne resolution output hie from said at least three dilated 
image hlters as a third input to the LSTM cell;

[0019] c. adding an output of the LSTM cell to said 
input image hie via a residual connection to produce an 
LSTM inception block output hie;

[0020] d. using said LSTM inception block output hie 
as a new input image hie and repeating steps a. through 
c. at least three times.

[0021] There is further provided according to the inven­
tion a computer-implemented method for deblurring an 
image, wherein no additional information concerning the 
image is provided to said processor.
[0022] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image wherein steps a. through c. are repeated four to ten 
times.
[0023] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image, wherein steps a. through c. are repeated more than 
ten times.
[0024] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image wherein said input image hie is passed through four 
to ten dilated image hlters in parallel to produce an output 
hie for each dilated image hlter, each said dilated image 
hlters having a different resolution from most coarse reso­
lution to most hne resolution, and including one or more 
intermediate resolutions; and wherein said processor sup­
plies a most coarse resolution output hie from said dilated

image hlters as a first input to an LSTM cell, followed by 
supplying intermediate resolution output hies from said 
dilated image hlters in order of more coarse resolution to 
more coarse resolution as sequential inputs to the LSTM 
cell, followed by supplying a most hne resolution output hie 
from said dilated image hlters as a further input to the LSTM 
cell.
[0025] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image which requires at least 50% fewer trainable param­
eters than an SRN-DeblurNet network.
[0026] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image which requires at least 75% fewer trainable param­
eters than an SRN-DeblurNet network.
[0027] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image which requires at least 85% fewer trainable param­
eters than an SRN-DeblurNet network.
[0028] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image which requires 96% fewer trainable parameters than 
an SRN-DeblurNet network.
[0029] There is further provided according to the inven­
tion a computer implemented method for deblurring an 
image wherein said neural network is trained using a stan­
dard mean squared error loss (MSE):

MsE=-„hx’-x<f

where η is a number of pixels in a training image, X is a 
target output, and X~ is a recovered output from the network, 
where a learning rate (or step-size for the weight updates) for 
training the network is 1℮-5 and an optimization algorithm 
used to train the network is adaptive moment estimation 
algorithm (Adam).

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] The foregoing summary, as well as the following 
detailed description of the preferred invention, will be better 
understood when read in conjunction with the appended 
drawings. For the purpose of illustrating the invention, there 
are shown in the drawings embodiments which are presently 
preferred. It should be understood, however, that the inven­
tion is not limited to the precise arrangements and instru­
mentalities shown. In the drawings:
[0031] FIG. 1Α shows a 1-dilated convolution kernel. 
[0032] FIG. IB shows a 2-dilated convolution kernel. 
[0033] FIG. 1C shows a 3-dilated convolution kernel. 
[0034] FIG. 2 shows a scale inception block.
[0035] FIG. 3Α shows a proposed Network Structure for 
an LSTM-inception block.
[0036] FIG. 3Β shows a proposed network structure for 
stacked LSTM-inception blocks.
[0037] FIG. 4Α shows a pristine checkerboard image. 
[0038] FIG. 4Β shows a blurred checkerboard image. 
[0039] FIG. 5 shows a network configuration training loss 
comparison.
[0040] FIG. 6Α shows training loss with a custom 2-kemel 
dataset.
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[0041] FIG. 6Β shows training loss with a custom 6-kemel 
dataset.
[0042] FIG. 7 shows deblurring results of Tao et al. and the 
present method.

DETAILED DESCRIPTION OF THE 
INVENTION

[0043] We propose an LSTM inception block structure 
that makes use of several of the previously discussed fea­
tures, as well as residual skip connections, which are 
detailed in [7]. The inception block diagram is shown in 
FIG. 3(a).
[0044] The proposed inception block structure is com­
posed of a self-contained, scale-recurrent system with a 
residual connection that adds the input of the block to the 
output of the recurrent cells. In our experiments, the 2D 
dilated convolution and LSTM gate convolutions all use a 
5x5 kernel. The input to each block is convolved with the 
3-dilated filters, 2-dilated filters, and 1-dilated filters (pro­
ducing progressively coarse to fine images). Thus, the 
dilated convolutional filters have an effective kernel size of 
13x13, 9x9, and 5x5 respectively, while only using 25 
weights each (not including bias). The results are then 
supplied as inputs to the LSTM cell in order of coarse-to-fine 
(3-dilated, 2-dilated, then 1-dilated). The output of the 
LSTM cells is then added to the input of the inception block 
via a residual connection, before being passed to the next 
layer of the network. The residual connection allows infor­
mation to be directly conveyed from the input to the output 
of the inception block and does not prevent end-to-end 
training of a network using backpropagation.
[0045] The LSTM-Inception blocks of FIG. 3(a) can be 
stacked to form a network that can be trained to deblur 
images. Since the blocks are identical, the number of hidden 
layers in the network can be varied as indicated in FIG. 3(b). 
The loss function used to train the network is the standard 
mean squared error loss (MSE) given in (3), although any 
loss function may be used to train the network:

network and (ii) to determine whether a global skip con­
nection should be included. Four different network configu­
rations are evaluated in this work. These consist of two 
3-layer stacked LSTM-Inception blocks and two 6-layer 
stacked LSTM-Inception blocks, each with or without a 
global skip connection. We trained each network to deblur 
the checkerboard image shown in FIG. 4(b)\ i.e., a single test 
image. This blurred checkerboard image was created as test 
data from the pristine image of FIG. 4(α), by using the 
square Gaussian kernel, k(t,s) given in (4) below with
σ,=σ,=5.

kit, 5) =-------exp!
2πσ1 |

(t ~ to)2 

2<rf

(β ~ so)2 Yi

JJ
(4)

[0049] Each network was initialized using Xavier initial­
ization [9] and trained for 15,000 iterations. Xavier initial­
ization randomly sets the starting network weights in the 
range [—1,1] and then scales them by (1/m), where m is the 
number of weights in the filter. The loss function used was 
MSE, and the Adam optimizer [8] was used to determine the 
parameter updates. After training, each network was evalu­
ated using the following three loss metrics: MSE, peak 
signal-to-noise ratio (PSNR), and structural similarity 
(SSIM).
[0050] FIG. 5 shows the progression of the MSE loss 
function for each of the four network configurations over 
15,000 iterations of the training, starting with the blurred 
image of FIG. 4(b). Table 1 shows the final values of the 
three metrics, which were used to evaluate the deblurring 
performance of these four network configurations. From 
Table 1, it is observed that the best performing network after 
training was the 6-layer LSTM-Inception block network 
w/global skip connection as it produced the lowest MSE, 
highest PSNR, and highest SSIM. Also, we note from FIG. 
5, that the loss is lowest at the end of the training for the 
6-layer LSTM-Inception block network with a global skip 
connection.

MSE=-nz:jx’-n2 (3)

[0046] where η is the number of pixels in the image, X is 
the target output, and X~ is the recovered output from the 
deblurring network. The chosen learning rate (or step-size 
for the weight updates) for training this network is 1℮-5. The 
optimization algorithm chosen to train the network is the 
well-known adaptive moment estimation algorithm (Adam), 
as this has been shown to be successful in other deblurring 
and CNN architectures. Adam optimization was designed to 
be an efficient optimization algorithm for large datasets, with 
high dimensional-parameter spaces. The algorithm uses 
exponential moving averages of the gradient and squared 
gradient of the loss function with respect to weights of the 
network. Hyper-parameters β, and P2 control the rate of 
exponential decay and € is a small number used to prevent 
division by zero. We use the recommended parameters from
[8], i.e. β,=0.9, P2=0.999, and ℮=1(Τ8.
[0047] Network Architecture
[0048] We first set out to determine an optimal structure 
for a network composed of the proposed LSTM-Inception 
blocks. The goals of this process are (i) to determine the 
number of stacked LSTM-Inception blocks to use in this

TABLE 1

Evaluation of network configurations.

Blurry
Τ- Input 
Image

LSTM-
Inception

blocks

LSTM-
Inception

blocks
w/global

6-layer
LSTM-

Inception
blocks

6-layer
LSTM-

Inception
blocks

w/global

MSE: 0.0375 0.0245 0.0288 0.0261 0.0239
PSNR: 14.2581 16.1050 15.4044 15.8265 16.2160
SSIM: 0.9958 0.9975 0.9969 0.9972 0.9976

[0051] Network Training
[0052] To further evaluate the capabilities of the network, 
training and testing was done using more complex natural 
images.
[0053] Two test datasets were created from the pristine 
images of the GOPRO dataset [2]. (A) For the first dataset 
blurry images were created using two different blur kernels, 
the 29x29 symmetric Gaussian blur kernel with at=a= 5 as 
in given (4), and a 30x30 bi-directional blur kernel. (Β) 
Blurry images for the second dataset were created from the 
GOPRO dataset using six blur kernels (of average size of
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30x30), which had been obtained and approximated from 
the Kohler dataset [10]. For each of these test datasets, the 
blur kernels were applied evenly over the 2103 sharp 
training images and 1111 sharp test images of the GOPRO 
dataset [2].
[0054] For training with each dataset, the network param­
eters were initialized using Xavier initialization [9], the 
parameters were optimized using Adam [8], and the learning 
rate was set to le-5. The input images were scaled by one 
half, to a size of 360x640, and randomly selected in mini­
batches of five (i.e., 5 images per each pass through the 
network). Gradient accumulation was done after every sec­
ond iteration to reduce the effects of a small minibatch size. 
In both cases, the network was able to improve the image 
quality and therefore deblur the input image. Plots of the 
training loss are shown in FIG. 6. We observe that the chosen 
network configuration is able to improve the blurry image 
and recover an image that appears to be close to the pristine 
image.
[0055] Network Evaluations and Comparisons 
[0056] To compare the performance of our proposed 
6-layer LSTM-Inception blocks w/global skip network 
against others that perform blind image deblurring using 
neural networks, we trained our network using the unaltered 
GOPRO dataset [2] (2103 blurry and sharp image pairs). 
The dataset uses captured frames from recorded real-world 
scenes to create images that simulate natural blur. This is the 
same dataset used for training in both [2] and [3]. We trained 
our network as described above using Xavier initialization
[9], Adam optimization [8], learning rate of le-5, randomly 
selecting 5 images scaled to half size (360x640) for a 
minibatch and using a 2-iteration gradient accumulation.

TABLE 2

______________ GOPRO dataset [21 performance comparison_____________

Tao et al.
Chen et al. Nah et (SRN-

GOPRO (InceptionResDensenet) al. DeblurNet) Proposed
Dataset[2] [11] [2] [3] network

PSNR: 27.79 29.08 30.26 28.54
SSIM: 0.8472 0.9135 0.9342 0.9090

TABLE 3

______________ Kohler dataset Π01 performance comparison____________

Tao et al. (SRN-
Kohler Dataset Nah et al. DeblurNet)
[10] [2] [3] Proposed network

PSNR: 26.48 26.75 25.20
Mean SSIM: 0.8079 0.8370 0.7897

TABLE 4

_______________________Network parameter counts.__________________

Tao et al. (SRN-
Number of Trainable DeblurNet)
Parameters [3] Proposed network

8,056,609 336,690

[0057] Our optimization method and parameters are iden­
tical to that of [3] except that we use a lower learning rate 
throughout the entire training process, while in [3] the 
learning rate is reduced from le-4 to le-6 after 2000 epochs. 
We also trained with the images scaled to half-size while [2] 
and [3] trained using 256x256 image patches. As in [3] we 
used MSE as our loss function, while in [2] a combination 
of MSE and generative adversarial loss was used. The 
authors of [2] introduce random geometric transformations, 
random color permutations, and randomly added Gaussian 
noise to the blurry images during training. This was not done 
in [3] and this was not included in our training either. We 
trained for 1,120 epochs and then evaluated the status of the 
deblurring capabilities of the network. Table 2 shows results 
from testing networks from [2], [3], [11] and our proposed 
network with the GOPRO test dataset [2]. Table 3 shows 
results of testing networks from [2], [3] and our proposed 
network with the 48 blurry images of the Kohler dataset
[10]. We note that our proposed network is able to deblur the 
images in both test datasets comparably to Nah et al. [2] and 
Tao et al. [3], and the PSNR and SSIM values obtained by 
our network on the GOPRO dataset [2] were higher than that 
of Chen et al. [11] indicating better performance. Table 4 
shows that our proposed network uses 4% of the total 
number of parameters used by Tao et al. [3] in their 
SRN-DeblurNet. Tao et al. [3] used the same set of deblur­
ring parameters at each scale to, therefore using fewer 
parameters than Nah et al. [2]. Therefore, our proposed 
network also uses much fewer parameters than used in [2]. 
[0058] FIG. 7 shows a visual comparison of the deblurring 
performance of our network and that of Tao et al. [3] for six 
natural images. In each case, the original blurry is shown in 
column 1, while the final deblurred image produced by the 
method of Tao et. al. [3] is shown in column 2, and the final 
result of using our proposed network can be found in column 
3 of FIG. 7. This shows that our network is able to deblur 
these natural images with acceptable performance, espe­
cially considering the fact that it used a much smaller 
number of parameters (4% of the current state-of-the-art 
networks).
[0059] In summary, the invention described herein is a 
novel and unobvious neural network with a low number of 
parameters capable of deblurring an image with no prior 
information given. With the implementation of the LSTM- 
Inception block, the invention presents a network that used 
96% fewer trainable parameters than that of the SRN- 
DeblurNet [3] network, while achieving similar deblurring 
performance. This network was able to deblur images at a 
comparable level to other image deblurring methods [2], [3] 
but with improved computational efficiency.
[0060] It will be appreciated by those skilled in the art that 
changes could be made to the preferred embodiments 
described above without departing from the inventive con­
cept thereof. It is understood, therefore, that this invention is 
not limited to the particular embodiments disclosed, but it is 
intended to cover modifications within the spirit and scope 
of the present invention as outlined in the present disclosure 
and defined according to the broadest reasonable reading of 
the claims that follow, read in light of the present specifi­
cation.
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1. A computer-implemented method for deblurring an

image, comprising, in a neural network:
a. using a processor to pass an input image hie through at 

least three dilated image filters in parallel to produce an 
output hie for each at least three dilated image hlters, 
each of said at least three dilated image hlters having a 
different resolution from most coarse resolution to most 
hne resolution, and including one or more intermediate 
resolutions;

b. using said processor to supply a most coarse resolution 
output hie from said at least three dilated image hlters 
as a first input to an LSTM cell, followed by supplying 
an intermediate resolution output hie from said at least 
three dilated image hlters as a second input to the

LSTM cell, followed by supplying a most hne resolu­
tion output hie from said at least three dilated image 
hlters as a third input to the LSTM cell;

c. adding an output of the LSTM cell to said input image 
hie via a residual connection to produce an LSTM 
inception block output hie;

d. using said LSTM inception block output hie as a new 
input image hie and repeating steps la. through lc. at 
least three times.

2. A computer-implemented method according to claim 1, 
for deblurring an image, wherein no additional information 
concerning the image is provided to said processor.

3. A computer implemented method according to claim 1, 
wherein steps la. through lc. are repeated four to ten times.

4. A computer implemented method according to claim 1, 
wherein steps la. through lc. are repeated more than ten 
times.

5. A computer implemented method according to claim 1,
wherein said input image hie is passed through four to ten

dilated image hlters in parallel to produce an output hie 
for each dilated image hlter, each said dilated image 
hlters having a different resolution from most coarse 
resolution to most hne resolution, and including one or 
more intermediate resolutions; and

wherein said processor supplies a most coarse resolution 
output hie from said dilated image hlters as a hrst input 
to an LSTM cell, followed by supplying intermediate 
resolution output hies from said dilated image hlters in 
order of more coarse resolution to more coarse resolu­
tion as sequential inputs to the LSTM cell, followed by 
supplying a most hne resolution output hie from said 
dilated image hlters as a further input to the LSTM cell.

6. A computer implemented method according to claim 1, 
which requires at least 50% fewer trainable parameters than 
an SRN-DeblurNet network.

7. A computer implemented method according to claim 1, 
which requires at least 75% fewer trainable parameters than 
an SRN-DeblurNet network.

8. A computer implemented method according to claim 1, 
which requires at least 85% fewer trainable parameters than 
an SRN-DeblurNet network.

9. A computer implemented method according to claim 1, 
which requires 96% fewer trainable parameters than an 
SRN-DeblurNet network.

10. A computer implemented method according to claim 
1, wherein said neural network is trained using a standard 
mean squared error loss (MSE):

MsE=-„hx’-x<)2

where η is a number of pixels in a training image, X is a 
target output, and X~ is a recovered output from the 
network, where a learning rate (or step-size for the 
weight updates) for training the network is 1℮-5 and an 
optimization algorithm used to train the network is 
adaptive moment estimation algorithm (Adam).
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