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(57) ABSTRACT

The present invention provides a quantitative method to 
assess cyber risk. A quantitative risk assessment model 
simulates attacks with a Poisson random arrival process. The 
Viterbi algorithm and Baum Welch Algorithm, the underly­
ing foundations of the Hidden Markov Model (ΗΜΜ), are 
used to provide a Network Risk Assessment model that infer 
an attack’s intention. Combined, the two methods are effec­
tive in assessing cyber risk in real-time.
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METHOD FOR QUANTITATIVE CYBER 
RISK MEASUREMENT

BACKGROUND OF THE INVENTION 

Field of the Invention

[0001] The present invention relates to cyber threats and 
methods for assessing their risk.

SUMMARY OF THE INVENTION

[0002] Risk assessments are used to identify, estimate, and 
prioritize risk organizational operations, organizational 
assets, personnel, other organizations, and the nation as a 
whole that depend on the operation and use of information 
systems. The basis of risk assessments is to notify executive 
functions and risk responders by pointing to threats, vulner­
abilities (inside and outside), and impacts that might be 
posed by these threats and vulnerabilities. Furthermore, it 
can compute the likelihood of that impact might occur. 
However, risk assessment metrics are either assigned as 
qualitative (low, medium, high severity levels that are 
assigned for the likelihood) or semi-quantitative (probability 
values). The present invention provides a quantitative 
method to assess cyber risk. The Quantitative Risk assess­
ment uses a classical Bayesian estimate. An apriori estimate 
is based on a Poisson Random arrival probability, and an 
Exponential Probability Distributions for Detection, Con­
trol, and Exploitation, all based on prior history. An apos- 
teriori estimate provides an assessment of risk based on 
current events in the network and uses the Viterbi algorithm 
and Baum Welch Algorithm, the underlying foundations of 
the Hidden Markov Model (ΗΜΜ), to provide a Network 
Risk Assessment model that infer an attack’s probability. 
The apriori and aposteriori are then combined to provide an 
effective quantitative measure of cyber risk in real-time. 
[0003] Accordingly, there is provided according to the 
invention a method for quantitatively assessing risk of a 
computer network to loss from cyber-attack, comprising the 
steps of: developing apriori estimates of risk based on 
historical network data; developing aposteriori estimates of 
risk based on current network data; combining apriori esti­
mates and aposteriori estimates of risk into a real time 
estimate for the network; wherein said developing apriori 
estimates and developing aposteriori estimates and combin­
ing apriori estimates and aposteriori estimates are executed 
on one or more computer processors according to computer 
readable instructions stored on non-transient computer stor­
age media.
[0004] There is further provided according to the inven­
tion a method for quantitatively assessing risk of a computer 
network to loss from cyber-attack, comprising the steps of: 
developing an apriori probability model to attack arrival, 
success, control, and exploitation using Bayesian methods 
and historical data; monitoring network packet data on said 
computer network; generating a current (aposteriori) net­
work risk assessment using a Hidden Markov Model based 
on said network packet data; populating and updating apriori 
and aposteriori risk probability matrices with 
[0005] A, the probability of attack present in time Τ^ 
[0006] W, the probability of attack success in time Tw 
[0007] C, the probability of attack not being controlled in 
time.
[0008] Ε, the probability exploitation in time TE. 
based on data from said Hidden Markov Model; and esti­
mating a risk of loss from said apriori and aposteriori risk 
probability matrices using the formula: Estimated Risk=Eips

(i)Loss(T),, wherein said developing, monitoring, generat­
ing, populating and updating, and estimating steps are 
executed on one or more computer processors according to 
computer readable instructions stored on non-transient com­
puter storage media.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The foregoing summary, as well as the following 
detailed description of the preferred invention, will be better 
understood when read in conjunction with the appended 
drawings. For the purpose of illustrating the invention, they 
are shown in the drawings embodiments which are presently 
preferred. It should be understood, however, that the inven­
tion is not limited to the precise arrangements and instru­
mentalities shown. In the drawings:
[0010] FIG. 1 is a representation of the quantitative risk 
model according to an embodiment of the invention.
[0011] FIG. 2 is a representation of how the aposteriori 
and apriori risk probabilities are used to determine the 
estimated risk of an organization.
[0012] FIG. 3 is a representation of the Monte Carlo Risk 
Model using information from the Hidden Markov Model, 
according to an embodiment of the invention.
[0013] FIG. 4 is a representation of attack-detection event 
probability thresholds in a Monte Carlo Risk simulation 
using data from the Hidden Markov Model, according to an 
embodiment of the invention.
[0014] FIG. 5 is a representation of successful penetration 
events and cost in a Monte Carlo Risk simulation using data 
from the Hidden Markov Model, according to an embodi­
ment of the invention.

DETAILED DESCRIPTION OF THE 
INVENTION

[0015] Poisson Random Arrival Process.
[0016] The quantitative risk model of the invention is 
shown in FIG. 1 and provides the context for an estimate of 
risk using Poisson probability density function (“pdf’). The 
model consists of two layers of an information system 
infrastructure (weakness and control) that an attack must 
bypass to have a technical impact on the resources of the 
system and harm the business of an organization. This work 
involves several layers to assess Risk: the Attack Model, the 
Vulnerability Model, the Control Model, and the Impact 
Model.
[0017] Attack Model. In a network, cyber-attacks are 
considered random processes with a Poisson probability 
density function (“pdf’). For a specified time-interval (τ), 
the probability of k occurrences of attack i is given by:

where λ, is the average arrival rate of k occurrences of attack 
i over τ.
[0018] Vulnerability Model. The success of an attack 
depends on the vulnerability in the system and its ability to 
avoid detection. An exponential probability distribution 
function is a good representative of detection over a period
τ.

where X2 represents the average time for detection, and τ is 
the time it takes (attack or detection).
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[0019] Control Model. This models how much time it 
takes to put network security control in place after detection 
of a successful attack. The probability of penetration detec­
tion is used to model the network security control and 
exponential probability distribution function and is a good 
representative.

Pd=X3e^

where λ3 represents the average time to control attack. 
[0020] Impact Model. Successful penetrations cause dam­
age to the organization’s data and loss of service. Here the 
impact of the penetration is a tangible loss limited by the net 
worth ($NW) of the enterprise. The magnitude of the loss 
due to attack i is assumed to be proportional to the total 
penetration time (τ ) which exponentially approaches the net 
worth.

Loss.(T)=( 1 -℮-^ρ) $W

where λ4 represents the time constant for dissipation of 
assets from the enterprise network.
[0021] Risk. Based on the foregoing layers, the risk to a 
network of cyber-attacks is computed as an accumulation of 
costs and their associated probabilities.

Risk=E£pJ(i)Loss(l)I-

where ps is the probability of success of an attack ps=l—pd. 
[0022] Hidden Markov Model.
[0023] Turning to the ΗΜΜ aspect of the invention, the 
ΗΜΜ consists of a set of Ν distinct “hidden” states of the 
Markov process Q={q,, q2, . . . , qw,} and a set of Μ 
observable symbols per State={v,, v2,..., vM,}. The overall 
ΗΜΜ model is defined as follows with qt and ot denoting the 
state and observation symbol at time t, respectively.
[0024] The ΗΜΜ is specified by a set of parameters (A, 
Β, Π):

[0025] i. The prior probability distribution Π=Π, where 
n—Pfq^s,) are the probabilities of st being the state st 
at the beginning of the state sequence.

[0026] ii. The transition probability matrix A={a-} 
where a—P(qH.1=s-lqI=si), are the probabilities of going 
from state st to state s -.

[0027] iii. The emission (observation) probability 
matrix B={bi/t} where b^Pfo^v^lq^s,) are the prob­
abilities to observe sk if the current state is qt=s,. 

[0028] A new feature vector is constructed from the Layer 
1 HMMs probable sequence of states. This statistical feature 
can be considered as a new data matrix VQ that can be 
applied and a new sequence of observations will be created 
from the Layer 2 ΗΜΜ.
[0029] The feature vector is constructed as follows:

q τ
ν/= 1, 2, ... ,ρ

Ρ = (Λ,/ΐ, fj),Vj= 1,2,... ,ρ

[0030] The Viterbi algorithm finds the best probable path 
(Ρ) via the model that has the maximal probability given an 
observed sequence. In other words, the estimated states 
sequence presents a “most likely” explanation for the obser­
vation sequence, given the ΗΜΜ model parameters. The 
states in the ΗΜΜ represent the presence of attacks in the 
network based on current network traffic, and associated 
probabilities. This represents useful estimates of the imme­

diate status of the network but does not have the context to 
estimate the actual risk of the network.
[0031] Poisson and ΗΜΜ, Combined.
[0032] The combination of the above-described method­
ologies considers four stages of an attack: Attack (A), 
Weakness (W), Control (C) and Exploit (Ε). The following 
random variables are assigned:
[0033] A is probability of attack present in time Τ^ 
[0034] W is the probability of attack success in time Tw 
[0035] C is the probability of attack not being controlled 
in time.
[0036] Ε is the probability exploitation in time TE.
[0037] Bayes theorem (also “Bayes rule”) is applied to the 
joint pdf Ρ(Α, W, C, Ε) as follows:
[0038] Ρ(Ε)=Ρ(Ε I AWC)P( AWC)
[0039] Ρ( AWC)=P(C I AW)P( AW)
[0040] P(AW)=P(WIA)P(A)
[0041] Combining the above equations provides an overall 
probability of exploitation as:

P(E)=P(E\AWC)P(C\AW)P(W\A)P(A)

[0042] An expression for each one of these probabilities 
for each of Ν possible attacks P(At), the probability of one 
or more attacks present. Assuming a Poisson pdf of the 
attacks, the probability of k events in time τ, with λ, being 
the average events in τ, is chosen as a constant one or more 
events is equal to 1-P(k=0)

P(A„)=ℓ-℮-^1

P(W„IA„) is the probability that a weakness W„ will be 
compromised given the presence of A„ in an interval T2. 
Assume this random variable has an exponential pdf:

P%2(Wn\An)=\o%2X2^X2'dt

where T2 is a convenient interval, for example, 1 day. Ρ 
(W„IA„) is the probability of a successful attack.

P%2(Wn\A)=\

[0043] P„ (Cl AraWra) is the probability that an attack is not 
controlled given a successful attack A„ and weakness W„. 
Assume that the time to control an attack has an exponential 
pdf, then

P^(C\AW)=\-\0^Xie ’̂dt=e^m

[0044] Finally,
p„ ,M(E)=p(E\An w„c„)=J0TWe_>4y;= 1 -℮-^

[0045] Combining a set of equations:
Ρη^(Ε)=0-℮-^)(℮-^)0-℮-^)0-℮-^1 )

[0046] Next, a Risk Probability matrix based on probabili­
ties 0 with attacks η=1, 2, . . . , Ν possible known attacks of 
interest shown below.

A2

an

Ρ(Α) P(w) P(C) Ρ(Ε)

Ρ(Αΐ) P(W1) Ρ(ϋΐ) P(£i) 
Ρ(Α2) P(W2) P(C2) P(E2)

P(An) P(WN) P(CN) P(fiN)

[0047] Apriori Risk. In the absence of specific events, this 
represents an apriori state of the network where the X’s and 
T’s in previous equations are set to some ambient condition 
from which a risk measure might be computed. This risk
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measure might follow from prior data, evaluations, prac­
tices, and certifications the network may have been awarded. 
[0048] Aposteriori Risk. Now imagine that events dictate 
a change in the risk of the network. Say that some new 
vulnerability, N+l, is discovered. Perhaps a zero-day vul­
nerability. This particular vulnerability will have its own set 
of X’s and T’s which reflect the increased vulnerabilities of 
the network. Weaknesses are present at 100% for some time 
interval and detection and control are absent. This new 
vulnerability might then significantly increase the risk of the 
network for some interval of time. This risk measure is the 
aposteriori risk given the presence of the new event.
[0049] The addition of an Intrusion Detection System 
(IDS) with an ΗΜΜ engine can detect an attack and 
provides a confidence level (probability). Depending on the 
attack and the location of the IDS in the network, the Ρ(Ε) 
for each attack is modified by modification of the Risk/ 
Attack matrix. The next step is to map the assortment of 
attacks and locations in the network into a revised Risk/ 
Attack matrix.
[0050] Consider, for example, the detection of a reverse 
(outbound) channel (A*) to a non-approved IP address. Ak is 
one of the known Ν attacks. This would change the risk 
matrix by replacing the apriori risk values with updated 
values as

Pk(A)=HhPk(W)=HhPk(C)=Hk

[0051] This specific event would say that the attack was 
both present and successful, but not yet controlled. If the 
IDS was internal the router firewall could block this with 
some probability. Where H„ corresponds to the confidence 
level of the HMI detection and forces P(Wi,)=Hn. An attack 
detected matrix is shown below.

Ρ(Α) P(w) P(C) Ρ(Ε)

Ai Ρ(Λ ΐ) Ρ(ΐνο P(Ci) Ρ(βΐ)

a2 P(A2) P(W2) P(c2) Ρ(Εΐ)

Ak P(.Ak) P(trk) Ptck) P(fik)

An Ρ(Απ) P(W„) P(Cn) Ρ(Εη)

At this point, the residual risk will shoot up where only the 
exploit time constant affects the risk.
[0052] Combining Multiple Attacks. In the case of (Ν) 
multiple attack elements and associated P(E„), η=1, 2, . . . , 
Ν, the overall risk depends on all of the attacks being 
managed. The probability of all Ν attacks being managed is 
the probability P(E,)nP(E2)n . . . nP(E„). The probability 
they are managed for any E„ is 1—P(E„). Thus, the joint 
probability they are all managed is given by

P](l-P(£„))

And the probability they are not managed is

P(£) = l-"f](l-P(£„))

where this is the probability that Ν attacks lead to a 
successful exploit. Note that any one P(E„) approaching 1 
then sets Ρ(Ε) going to 1. Likewise, note that as the number 
of attacks grows large, the Ρ(Ε) tends toward 1.
[0053] Risk Estimate. The risk estimate follows from the 
apriori and aposteriori risk probability matrices and the risk 
calculation above, Risk=E, ps(i)Loss(T)„ as shown in FIG. 2. 
These estimates will vary over time as the apriori (historical) 
measure of risk and aposteriori (sensed) measure of risk are 
updated. Each of these are updated based on historical data 
from this system, from outside risk update (zero-day attacks) 
or from local risk updates from the Intrusion Detection 
System.
[0054] Risk Measurement Monte-Carlo Simulation. The 
risk model that uses HIVIM-side information is based on the 
MATLAB code used for the risk model. FIG. 3 provides the 
overview of the system. On the left is a risk model, it has 
been reconfigured, but by and large, it is the same model. 
The progression of a cyber-attack starts off with randomly 
generating an attack of one and possible attacks.
[0055] HMM-Side Information-Monte Carlo Simulation. 
Using Monte Carlo simulation, attacks will have a Poisson 
probability distribution. These attacks then are filtered 
through a detection process. An exponential probability 
distribution characterizes the probability of detecting that 
attack. At the detection layer, some of these attacks will be 
detected, in which case they do not proceed. There is also an 
expectation that there is an exponential probability distri­
bution, that over time, an attack that is present will penetrate. 
Thus, this third stage models the penetration of an attack. 
[0056] The last stage is to see if there could be a control 
of that attack. Again, an exponential probability distribution 
characterizes the behavior of a control function, so the 
longer the time, the more likely it will be controlled. The 
output of this is some aggregate measure of risk, which we 
do not show here.
[0057] On the right side of FIG. 3, the HMM-side infor­
mation is presented and modeled, again as a Monte Carlo 
simulation. It does not actually implement the ΗΜΜ but 
characterizes the output, which we have seen in similar 
ΗΜΜ IDSs. When the ΗΜΜ event occurs, it creates side 
information, that is, that an attack is present. In this model, 
good background attack information is generated, what is 
deemed for purposes of the invention, a priori information. 
And now we have aposteriori information, which says we 
have just detected an attack. The information is integrated 
into the attack structure. For example, there is a much higher 
probability of attack because side information warns that an 
attack is actually present.
[0058] This is done in two places, one is to present to 
actually indicate the presence of an attack (FIG. 4), and the 
second is the presence of a penetration event (FIG. 5). 
Normally, the Hidden Markov Model in intrusion detection 
systems operates in two different planes. One is at the front 
end of the system, where it is looking for the presence of 
attacks in the system, and then there is intrusion detection on 
the back end, in short, the types of attacks that would 
indicate that a penetration has occurred. These two types of 
attacks basically drive this model. And for both ends, we 
take the Monte Carlo with exponential probability at the 
penetration layer, which is a flat probability, and then add 
into that the mixture of a new event which occurs when an 
intrusion detection event takes place.
[0059] When an event occurs, the event is smoothened 
out, so it is distributed over time. The revised threshold is the 
blending of the ΗΜΜ with the background level. The result
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is an exponential function that provides an exaggerated 
threshold over time showing the probability function, see 
FIG. 4.
[0060] The Hidden Markov Model penetration probabili­
ties generated for the penetration events are depicted in FIG. 
5 as the Posteriori probability of attack. In this scenario, two 
events occurred. The memory filter faded somewhat, and 
this basically changed the threshold. The HmmP function 
was filtered in and demonstrated a penetration value that was 
accelerated over the period of the events. It also starts to fade 
away back to some threshold value.
[0061] It will be appreciated by those skilled in the art that 
changes could be made to the preferred embodiments 
described above without departing from the inventive con­
cept thereof. It is understood, therefore, that this invention is 
not limited to the particular embodiments disclosed, but it is 
intended to cover modifications within the spirit and scope 
of the present invention as outlined in the present disclosure 
and defined according to the broadest reasonable reading of 
the claims that follow, read in light of the present specifi­
cation.

1. A method for quantitatively assessing risk of a com­
puter network to loss from cyber-attack, comprising the 
steps of:

developing apriori estimates of risk based on historical 
network data;

developing aposteriori estimates of risk based on current 
network data;

combining apriori estimates and aposteriori estimates of 
risk into a real time estimate for the network;

wherein said developing apriori estimates and developing 
aposteriori estimates and combining apriori estimates 
and aposteriori estimates are executed on one or more

computer processors according to computer readable 
instructions stored on non-transient computer storage 
media.

2. A method for quantitatively assessing risk of a com­
puter network to loss from cyber-attack, comprising the 
steps of:

developing an apriori probability model to attack arrival, 
success, control, and exploitation using Bayesian meth­
ods and historical data;

monitoring network packet data on said computer net­
work;

generating a current (aposteriori) network risk assessment 
using a Hidden Markov Model based on said network 
packet data;

populating and updating apriori and aposteriori risk prob­
ability matrices with
A, the probability of attack present in time TA 
W, the probability of attack success in time Tw 
C, the probability of attack not being controlled in time. 
Ε, the probability exploitation in time TE.

based on data from said Hidden Markov Model;
and estimating a risk of loss from said apriori and apos­

teriori risk probability matrices using the formula: 
Estimated ΚΗΕ=Σ,ρ^)Εθ88(τ),,

wherein said developing, monitoring, generating, popu­
lating and updating, and estimating steps are executed 
on one or more computer processors according to 
computer readable instructions stored on non-transient 
computer storage media.
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