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network packet data and apply a decomposition algorithm to 
lower levels of data to construct lower level HMMs (repre­
senting partial solutions), which lower level HMMs are then 
combined to form a final, global solution. The multi-layer 
approach can be expanded beyond the exemplary case of 2 
layers in order to capture multi-phase attacks over longer 
spans of time. A pyramid of HMMs can resolve disparate 
digital events and signatures across protocols and platforms 
to actionable information where lower layers identify dis­
crete events (such as network scan) and higher layers 
identify new states which are the result of multi-phase 
events of the lower layers.
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METHOD AND SYSTEM FOR INTRUSION 
DETECTION

CROSS REFERENCE TO RELATED 
APPLICATIONS

This application is based upon and claims the benefit of 
U.S. Provisional Application No. 62/854,512 titled “Multi- 
Layer Hidden Markov Model Based Intrusion Detection 
System,” filed with the United States Patent & Trademark 
Office on May 30, 2019, the specification of which is 
incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

This invention relates generally to computer network 
security, and more particularly to methods and systems for 
monitoring data network traffic to detect and respond to 
unauthorized intrusions into a data network.

BACKGROUND OF THE INVENTION

Intrusion Detection Systems have been the subject of 
significant research both in academia and industry in the past 
few decades as the interest in information security has been 
growing rapidly. The National Institute of Standards and 
Technology (NIST) defines intrusion detection as “the pro­
cess of monitoring the events occurring in a computer 
system or network and analyzing them for signs of intru­
sions, defined as attempts to compromise the confidentiality, 
integrity, availability, or to bypass the security mechanisms 
of a computer or network.” A system which addresses or 
automates intrusion detection is referred as an “Intrusion 
Detection System” (“IDS”).

Intrusion detection systems come in different forms. 
Based on their points of placement, they can be categorized 
into network-based intrusion detection system (NIDS) and 
host-based intrusion detection system (HIDS). A network 
intrusion detection system (NIDS) is placed at a strategic 
point in the network such that packets traversing a particular 
network link can be monitored. NIDSs monitor a given 
network interface by placing it in promiscuous mode. This 
will help the IDS in hiding its existence from network 
attackers while performing the task of network traffic moni­
toring. On the other hand, Host-based IDSs monitor and 
reside in individual host machines. HIDSs operate by moni­
toring and analyzing the host system internals such as 
operating system calls and file systems. In the same way as 
NIDS, it can also monitor the network interface of the host.

The techniques employed by modem day IDSs to gather 
and analyze data are extremely diverse. However, those 
techniques have common basic features in their structures: a 
detection module which collects data that possibly contain 
evidence of intmsion and an analysis engine that processes 
this data to identify intmsive activity. Those analysis engines 
mainly use two techniques of analysis: anomaly detection 
and misuse detection.

The intrinsic nature of misuse detection revolves around 
the use of expert systems that are capable of identifying 
intmsions mainly based on a preordained knowledge base. 
Consequently, misuse structures are able to reach very high 
levels of accuracy in identifying even very subtle intmsions 
which might be represented in their knowledge base; simi­
larly, if this expert knowledge base is developed carefully, 
misuse systems produce a minimum number of false posi­
tives. Unfortunately, however, carry a disadvantage due to 
the fact that a misuse detection system is incapable of
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detecting intmsions that are not represented in its knowledge 
base. Subtle versions of known attacks may additionally 
affect the evaluation if a misuse system is not well-con­
structed. Therefore, the efficiency of the system is highly 
dependent on the thorough and accurate creation of this 
information base, an undertaking that calls for human exper­
tise involvement and, thus, the need to develop anomaly 
detection methods.

A wide variety of strategies have also been explored to 
detect anomalous events from normal ones, including neural 
networks, statistical modeling and Hidden Markov Models 
(“HMMs”) to name a few. Those approaches rely on the 
same principle. At first, a baseline model that is a represen­
tative of normal system behavior against which anomalous 
events can be distinguished is established. When an event 
indicates anomalous activity, as compared with the baseline, 
it is considered as malicious. This system characterization 
can be used to identify anomalous traffic from normal traffic.

One of the very attractive features of anomaly-based 
intrusion detection systems is their capability to identify 
previously unseen attacks. The baseline model in this case is 
usually automated and it does not require both human 
interference and the knowledge base. The aftermath of this 
approach is that the detection system may fail to detect even 
well-known attacks if they are crafted not to be substantially 
different from the normal behavior established by the sys­
tem.

Currently, more than fifty percent of web traffic is 
encrypted—both normal and malicious. The volume of 
encrypted traffic is expanding even more, which creates 
confusion and challenges for security teams trying to moni­
tor and identify malicious network traffic. The main goal of 
encryption is to enhance network security, but at the same 
time it provides intruders the power to hide command-and- 
control (C2) activity, giving them enough time to launch 
attacks and to cause damage. To keep up with the intruders, 
security teams need to include additional automation and 
modern tools that are developed using machine learning and 
artificial intelligence to supplement threat detection, preven­
tion and remediation.

More enterprises are now exploring the fields of machine 
learning and artificial intelligence to prevail over the effect 
of encryption and to decrease adversaries’ time. These 
advanced concepts have the capability to keep up their 
performance without humans having to clarify precisely the 
way to accomplish the tasks that they are provided. Unusual 
patterns of web traffic that can indicate malicious activity 
can be automatically detected as these advanced systems, 
which can, overtime, “learn” by themselves.

To automatically detect “known-known” threats, the types 
of attacks that have been known previously, machine learn­
ing plays a significant role. But its main advantage in 
monitoring encrypted web traffic is due to the fact that it is 
capable of detecting “known-unknown” threats (previously 
unknown distinct form of known threats, malware subdivi­
sion, or similar new threats) and “unknown-unknown” (net- 
new malware) threats. Those technologies automatically 
alert potential attacks to network administrators as they can 
learn to identify unusual patterns in massive volumes of 
encrypted web traffic. Those automatic alerts are very 
important in organizations where there is a lack of knowl­
edgeable personnel in the enhancement of security defenses. 
Intelligent and automated tools using machine learning and 
artificial intelligence can help security teams fill the gaps in 
skills and resources, making them more capable in recog­
nizing and responding to both well-known and prominent 
threats.

2

5

10

15

20

25

30

35

40

45

50

55

60

65



US 11,595,434 Β2

Several techniques of artificial intelligence (AI) have been 
explored in the path towards developing IDSs, such as fuzzy 
logic, artificial neural networks (ANNs), and genetic algo­
rithms (GA). In addition, hybrid intelligent IDSs, such as 
evolutionary neural networks (ΕΝΝ) and evolutionary fuzzy 
neural networks (EFuNN)—based IDSs, are also used.

The current implementations of HMMs for IDS are 
mainly based on a single ΗΜΜ, which will be trained for 
any incoming network traffic to identify anomalous and 
normal traffic during testing.

Other ΗΜΜ based IDS implementations rely on multi 
ΗΜΜ profiles where each of the HMMs are trained for a 
specific application type traffic and posterior probabilities 
are used to select network applications using only packet- 
level information that remain unchanged and observable 
after encryption, such as packet size and packet arrival time. 
This approach, even if it includes factors based on applica­
tion layer traffic, considers only a limited number of features 
and is unable to detect multistage attacks, which can be 
crafted to look like normal traffic. Further, other prior 
methods have applied several pre-processing techniques on 
the dataset considered to implement a multi-class system 
(MCS) HMM-based IDS.

HMMs use statistical learning algorithms that suffer in 
cost exponentially as the volume of data grows. This aspect 
is commonly referred as the curse of dimensionality. The 
HMMs tend to fail, more often than not, on a laige dimen­
sion state space. Considering a single FIMM-based IDS, as 
the incoming network traffic will have a large hidden state 
space, it will fall victim to this curse of dimensionality.

Thus, there remains a need in the art for methods and 
systems for implementing IDSs, and in particular FIMM- 
based IDSs, that avoid foregoing disadvantages of such 
systems but that ensure the capability of detecting a wide 
variety of intrusion types over extended periods of time.

SUMMARY OF THE INVENTION

Disclosed herein are methods and system that apply the 
Hidden Markov Model (ΗΜΜ) for intrusion detection, 
which are capable of providing finer-grained characteriza­
tion of network traffic using a multi-layer approach. In 
addition to providing a multi-layer ΗΜΜ design capable of 
detecting multi-stage attacks, an IDS data analysis method 
and system as disclosed herein uses several features in 
which a dimension reduction technique is applied to extract 
only important features. Methods and systems configured in 
accordance with at least certain aspects of the invention 
address the complexities of prior known systems through 
application of the principle of decomposition, and more 
particularly applying a decomposition algorithm to lower 
levels of data to construct lower level HMMs (representing 
partial solutions), which lower level HMMs are then com­
bined to form a final, global solution.

Such a multi-layer approach as is employed in the meth­
ods and systems disclosed herein has been developed and 
verified to resolve the common flaws in the application of 
ΗΜΜ to IDS commonly referred to as the “curse of dimen­
sionality.” It factors a huge problem of immense dimension­
ality to a discrete set of manageable and reliable elements. 
The multi-layer approach can be expanded beyond the 
exemplary case of 2 layers discussed below in order to 
capture multi-phase attacks over longer spans of time. A 
pyramid of HMMs can resolve disparate digital events and 
signatures across protocols and platforms into actionable 
information where lower layers identify discrete events
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(such as network scan) and higher layers identify new states 
which are the result of multi-phase events of the lower 
layers.

In accordance with certain aspects of an embodiment, a 
method is provided for protecting a computer network 
against unauthorized intrusion, comprising the steps of: 
receiving network packet data at a processor of a computer- 
implemented network traffic monitor module; generating at 
the processor meaningful Hidden Markov Model (“HMM”) 
observations formatted as data input for one or more first 
HMMs, the one or more first HMMs forming a first pro­
cessing layer of HMMs; generating from the first processing 
layer of HMMs a first probable sequence of network traffic 
states; processing at the processor the first probable 
sequence of network traffic states to form a feature vector; 
processing at the processor the feature vector to generate 
meaningful HMM observations formatted as data input for 
a second HMM, the second HMM forming a second pro­
cessing layer; generating from the second processing layer a 
second probable sequence of network traffic states; and upon 
determining that the second probable sequence of network 
traffic states exhibits a designated probability of a non­
normal data traffic state, generating an alert of a likely 
non-normal data traffic state and transmitting the alert to an 
administrator.

In accordance with further aspects of an embodiment, a 
system is provided for protecting a computer network 
against unauthorized intrusion, comprising: one or more 
processors; and one or more memories coupled to said one 
or more processors, wherein the one or more memories are 
configured to provide the one or more processors with 
instructions which when executed cause the one or more 
processors to: receive network packet data; generate mean­
ingful Hidden Markov Model (“HMM”) observations for­
matted as data input for one or more first HMMs, the one or 
more first HMMs forming a first processing layer of HMMs; 
generate from the first processing layer of HMMs a first 
probable sequence of network traffic states; process the first 
probable sequence of network traffic states to form a feature 
vector; process the feature vector to generate meaningful 
HMM observations formatted as data input for a second 
HMM, the second HMM forming a second processing layer; 
generate from the second processing layer a second probable 
sequence of network traffic states; and upon determining that 
the second probable sequence of network traffic states exhib­
its a designated probability of a non-normal data traffic state, 
generate an alert of a likely non-normal data traffic state and 
transmit the alert to an administrator.

BRIEF DESCRIPTION OF THE DRAWINGS

The numerous advantages of the present invention may be 
better understood by those skilled in the art by reference to 
the accompanying drawings in which:

FIG. 1 is a schematic flow chart showing an intrusion 
detection method configured in accordance with certain 
aspects of an embodiment of the invention.

FIG. 2 is a schematic flow chart showing processing 
carried out by a multi-layer HMM intrusion detection sys­
tem in accordance with certain aspects of an embodiment of 
the invention.

FIG. 3 is a schematic view of an intrusion detection 
system in accordance with certain aspects of an embodiment 
of the invention.

FIG. 4(a) is a scree plot of the percentage of explained 
variance during PCA analysis of HTTP network traffic
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according to certain aspects of the invention, and FIG. 4(b) 
is a scree plot of eigenvalues from such PCA analysis.

FIG. 5(a) is a scree plot of the percentage of explained 
variance during PCA analysis of SSH network traffic accord­
ing to certain aspects of the invention, and FIG. 5(b) is a 
scree plot of eigenvalues from such PCA analysis.

FIG. 6 is a plot showing the within cluster sum of squares 
versus number of clusters for HTTP traffic.

FIG. 7 is a plot showing the within cluster sum of squares 
versus number of clusters for SSH traffic.

FIG. 8 is a graph of state symbols against time series for 
exemplary HTTP training data.

FIG. 9 is a graph of state symbols against time series for 
exemplary SSH training data.

FIG. 10 is a graph of state symbols against time series for 
exemplary upper level training data.

FIG. 11 is a graph of state symbols against time series for 
exemplary HTTP test data.

FIG. 12 is a graph of state symbols against time series for 
exemplary SSH test data.

FIG. 13 is a graph of state symbols against time series for 
exemplary upper level test data.

DETAILED DESCRIPTION

The invention summarized above may be better under­
stood by referring to the following description, claims, and 
accompanying drawings. This description of an embodi­
ment, set out below to enable one to practice an implemen­
tation of the invention, is not intended to limit the preferred 
embodiment, but to serve as a particular example thereof. 
Those skilled in the art should appreciate that they may 
readily use the conception and specific embodiments dis­
closed as a basis for modifying or designing other methods 
and systems for carrying out the same purposes of the 
present invention. Those skilled in the art should also realize 
that such equivalent assemblies do not depart from the spirit 
and scope of the invention in its broadest form.

Descriptions of well-known functions and structures are 
omitted to enhance clarity and conciseness. The terminology 
used herein is for the purpose of describing particular 
embodiments only and is not intended to be limiting of the 
present disclosure. As used herein, the singular forms “a”, 
“an” and “the” are intended to include the plural forms as 
well, unless the context clearly indicates otherwise. Further­
more, the use of the terms a, an, etc. does not denote a 
limitation of quantity, but rather denotes the presence of at 
least one of the referenced items.

The use of the terms “first”, “second”, and the like does 
not imply any particular order, but they are included to 
identify individual elements. Moreover, the use of the terms 
first, second, etc. does not denote any order of importance, 
but rather the terms first, second, etc. are used to distinguish 
one element from another. It will be further understood that 
the terms “comprises” and/or “comprising”, or “includes” 
and/or “including” when used in this specification, specify 
the presence of stated features, regions, integers, steps, 
operations, elements, and/or components, but do not pre­
clude the presence or addition of one or more other features, 
regions, integers, steps, operations, elements, components, 
and/or groups thereof.

Although some features may be described with respect to 
individual exemplary embodiments, aspects need not be 
limited thereto such that features from one or more exem­
plary embodiments may be combinable with other features 
from one or more exemplary embodiments.
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In accordance with certain aspects of an embodiment of 

the invention, an intrusion detection method and system is 
provided that employs a layered analysis of data network 
traffic to identify multiple forms of attacks over longer 
durations than previously known intrusion detection sys­
tems. Many data network vulnerabilities might be impos­
sible to detect with simple networking traffic monitoring 
tools. Intrusion detection systems and methods configured in 
accordance with at least certain aspects of the invention, 
which rely on machine learning and artificial intelligence, 
can significantly improve network defense against intruders. 
Such systems and methods can be trained to learn and 
identify uncommon patterns in massive volumes of traffic, 
and notify, using by way of non-limiting example alert flags, 
a system administrator for additional investigation.

Intrusion detection systems and methods configured in 
accordance with at least certain aspects of the invention 
make use of machine learning algorithms, such as Hidden 
Markov Models (“HMMs”), using a multi-layer approach 
that is configured to resolve common flaws in the application 
of ΗΜΜ to IDS, commonly referred to as the “curse of 
dimensionality.” It factors a huge problem of immense 
dimensionality to a discrete set of manageable and reliable 
elements. Such multi-layer approach can be expanded 
beyond two layers to capture multi-phase attacks over longer 
periods of time than previously implemented intrusion 
detection systems. A pyramid of HMMs can resolve dispa­
rate digital events and signatures across protocols and plat­
forms to actionable information where lower layers identify 
discrete events (such as network scan) and higher layers 
identify new states that are the result of multi-phase events 
of the lower layers.

A challenge in applying the Markov model to intrusion 
detection systems is the lack of a standard method for the 
translation of the observed network packet data into a 
meaningful Markov model. The first step towards building 
an IDS based on multiple layers of Hidden Markov Models 
therefore involves processing network traffic into meaning­
ful observations.

An intrusion detection system and method configured in 
accordance with certain aspects of the invention is shown in 
the schematic flow chart of FIG. 1. At step 100, network 
packet data is captured, such as through use of a network 
packet analyzer such as WIRESHARK. The captured data is 
then subjected to a series of data processing steps that serve 
to create meaningful observations formatted as data input for 
one or more training data-generating HMMs (i.e., a first 
layer of HMMs in the multi-layer model set forth herein), 
which data processing steps include (i) feature generation at 
step 110, (ii) feature selection among those generated fea­
tures or creation of new features by combining the generated 
features at step 115, (iii) using machine learning algorithms 
for dimension reduction at step 120, and finally (iv) applying 
vector quantization technique to create meaningful obser­
vations for the HMMs at step 125.

In order to evaluate the effectiveness of an IDS configured 
in accordance with aspects of the invention, the Canadian 
Institute of Cybersecurify presented a state of the art dataset 
named CICIDS2017, consisting of the most recent threats 
and features. A dataset for the intrusion detection systems 
and methods set forth herein was prepared from this CIC- 
IDS2017 dataset, which covers eleven criteria that are 
necessary in building a reliable benchmark dataset. It con­
tains very common attacks such as XSS, Port scan, Infiltra­
tion, Brute Force, SQL Injection, Botnet DoS and DDoS. 
Those skilled in the art will readily recognize that any other 
dataset may be substituted without departing from the spirit
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and scope of the invention, as long as it simulates attacks 
that are multi-stage in nature.

From the network data packet embodied in the captured 
data at step 100, an original set of features is generated at 
step 110 that characterize the data. From that original set of 
features, feature selection and creation takes place at step 
115. Feature selection involves choosing a subset of features 
from the initial available features, whereas feature creation 
is a process of constructing new features and is usually 
performed after the feature selection process. Feature selec­
tion takes a subset of features (Μ) from the original set of 
features (Ν) where M<N.

To build a robust and high performance IDS, the features 
created or constructed at step 115 from the subset of selected 
features could follow a knowledge-based approach. Other 
approaches which can be applied to construct new features 
are data-driven, hypothesis-driven and hybrid.

Features that are discarded may include source port, as 
source port is part of the categorical encoding that is applied 
on the following features (Flow_ID, Source_IP, Destina- 
tion_IP), resulting in numerical values. In addition, a new 
feature (label) which identifies the traffic type such as 
BENIGN, SSFl-patator and web-attack-bruteforce is added. 
The values corresponding to this new feature are also 
categorically encoded.

Dimension reduction at step 120 is a form of transforma­
tion whereby a new set of features is extracted. This feature 
extraction process extracts a set of new features from the 
initial features through a functional mapping. Flowever, 
prior to carrying out such feature extraction, normalization 
is applied to the original data matrix in order to standardize 
the features of the dataset by giving them equal weights. In 
doing so, noisy or redundant objects will be removed, 
resulting in a dataset which is more reliable and viable, 
which in turn improves accuracy. Normalization can be 
performed using several methods well known to those 
skilled in the art, such as Min-Max, Z-Score and Decimal 
Scaling, to name a few. In a dataset, such as the one 
discussed herein, where among attributes there is a high 
degree of variation, the utilization of another type of nor­
malization known as log-normalization may be preferred. 
The notations and steps for applying this normalization are 
as follows:
Notation:

Xg—the initial value in row i and column j of the data 
matrix

by—the adjusted value which replaces χ^
The transformation below is a generalized procedure that 

(a) tends to preserve the original order of magnitudes in the 
data and (b) results in values of zero when the initial value 
was zero.
Given:

Min(x) is the smallest non-zero value in the data 
Int(x) is a function that truncates χ to an integer by 

dropping digits after decimal point
c=order of magnitude constant=Int(log(Min(x)) 
d=decimal constant=log_1(c)
Then the transformation is

b^ogixtj+dyc

A small number must be added to all data points if the 
dataset contains zeros before applying the log-transforma­
tion. For a data set where the smallest non-zero value is 1, 
the above transformation will be simplified to
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Following such normalization process, feature extraction, 

also known as dimension reduction, is applied at step 120. 
The goal of dimension reduction is to extract a set of new 
features through some functional mapping. If we initially 
have η features (or attributes), A1; A2, . . . , An, after feature 
selection and creation at step 115, feature extraction and 
dimension reduction at step 120 results in a new set of 
features, B1; B2, . . . , Bm (m<n) where Β,.=Ρ,.(Α^ A2, . . . , 
A„) and F, is a mapping function.

Principal Components Analysis (“PCA”) is a classic tech­
nique that is used to compute a linear transformation by 
mapping data from a high dimensional space to a lower 
dimension. The original η features are replaced by another 
set of m features that are computed from a linear combina­
tion of these initial features.

PCA is used to compute a linear transformation by 
mapping data from a high dimensional space to a lower 
dimension. The first principal component contributes the 
highest variance in the original dataset and so on. Therefore, 
in the dimension reduction process, the last few components 
can be discarded as it only results in minimal loss of the 
information value. The main goals of PCA are to (i) extract 
the maximum variation in the data; (ii) reduce the size of the 
data by keeping only the significant information; (iii) make 
the representation of the data simple; and (iv) analyze the 
structure of the variables (features) and observations. PCA 
provides a framework for minimizing data dimensionality 
by identifying principal components, linear combinations of 
variables, which represent the maximum variation in the 
data. Principal axes linearly fit the original data so the first 
principal axis minimizes the sum of squares for all obser­
vational values and maximally reduces residual variation. 
Each subsequent principal axis maximally accounts for 
variation in residual data and acts as the line of best fit 
directionally orthogonal to previously defined axes. Princi­
pal components represent the correlation between variables 
and the corresponding principal axes. Conceptually, the 
PCA algorithm fits each axis to the data while conditioning 
upon all previous axes definitions. Principal components 
project the original data onto these axes, where these axes 
are ordered such that Principal Component 1 (PCj) accounts 
for the most variation, followed by PC2, . . . , PC for ρ 
variables (dimensions).

In accordance with certain aspects of the invention, the 
PCA procedure that is applied by the method and system 
described herein preferably applies Singular Value Decom­
position (“SVD”), which is numerically more stable than 
Eigenvalue Decomposition (“EVD”) as it avoids the com­
putation of the covariance matrix, which is an expense 
operation. SVD for PCA may be carried out as follows.

Any matrix X of dimension Nxd can be uniquely written 
as X=Ux2xVr 
where:

r is the rank of matrix X (i.e., the number of linearly 
independent vectors in the matrix).

U is a column-orthonormal matrix of dimension Nxd.
Σ is a diagonal matrix of dimension Nxd where cr,a, ‘s (the 

singular values) are sorted in descending order across 
the diagonal.

V is a column-orthonormal matrix of dimension dxd. 
Given a data matrix X, the PCA computation using SVD is 
as follows:

For XrX, a rank r (N>d=>r<d), square, symmetric ΝχΝ 
matrix
{vl5 v2, · · · , V-} is the set of orthonormal dxl 

Eigenvectors with Eigenvalues {Xl5 X2, . . . , λ,.}
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The principal components of X are the eigenvectors of 
XrX

σ,=ν^ are positive real and termed singular values 
{ύ,, u2, . . . , ur} is the set of orthonormal Nxl vectors 

defined by

9

1 X'

Χν,=σ,ύ, (the “value” form of SVD) where 11Χν,ϋ=σ,
Σ is Nxd and diagonal

σ, are called singular values of X. It is assumed that 
o,>o2> . . . >o,>0 (rank ordered).

For N>(r=d), the bottom N-r rows of Σ are all zeros which 
will be removed and the first r rows of Σ and the first r 
columns of U will be kept, thus resulting in decomposition. 
PCA and SVD are related as follows:

Let Χ=υΣν7^ be the SVD of matrix X and

be its covariance matrix of dimension dxd. The Eigenvalues 
of C are the same as the right singular vectors of X.

This can be shown with the following proof:

XTX = VZUTUZVT = VEEVT = VE2VT 

Σ2

C=VN^XV

C is symmetric; thus, C=VAVr. As a result, the eigen­
vectors of the covariance matrix are the same as the matrix 
V (right singular vectors) and the eigenvalues of C can be 
determined from the singular values

aj

PCA using EVD and SVD may thus be summarized as 
follows:

Objective: project the original data matrix X using the 
largest m principal components, V=[v,, . . . , vm],
1. Zero mean the columns of X.
2. Apply PCA and SVD to find the principal components of
X.

PCA:
a. Determine the covariance matrix,

b. V corresponds to the Eigenvectors of C.
SVD:
a. Determine the SVD of Χ=ℓ1Σν^
b. V corresponds to the right singular vectors.

3. Project the data in an m dimensional space: Y=XV 
To perform dimension reduction and form a feature vector 

using PCA, order the eigenvalues from the highest to lowest 
by value. This ordering places the components in order of

significance to the variance of the original data matrix. Then 
we can discard components of less significance.

For example, we have data of d dimensions and we 
choose only the first r eigenvectors.

, _____λΐ + λΐ +... + xr
yy' χ λΐ +x2 +... +xr +... +xd

Feature Vector = (λ1λ2λ3 ... Xr)

Because each PC is orthogonal, each component inde­
pendently accounts for data variability and the Percent of 
Total Variation Explained (PTV) is cumulative. PCA offers 
as many principal components as variables in order to 
explain all variability in the data. However, only a subset of 
these principal components is notably informative. Because 
variability is shifted into leading PCs, many of the remaining 
PCs account for little variation and can be disregarded to 
retain maximal variability with reduced dimensionality.

For example, if 99% total variation should be retained in 
the model for d dimensional data, the first r principal 
components should be kept such that

PTV = > 0.99
1 τ

PTV acts as the signal to noise ratio, which flattens with 
additional components. Typically, the number of informative 
components r is chosen using one of three methods: (1) 
Kaiser’s eigenvalue^; (2) Cattell’s scree plot; or (3) Bar­
tlett test of sphericity.

The amount of variation in redundant data decreases from 
the first principal component onwards. There are several 
methods to compute the cut off value for retaining the 
sufficient number of principal components out of all ρ 
components. In an exemplary implementation, the Cattell’s 
scree plot may be used, which plots the eigenvalues in 
decreasing order. The number of principal components to be 
kept is determined by the elbow where the curve becomes 
asymptotic and additional components provide little infor­
mation. Another method is the Kaiser criterion Kaiser which 
retains only factors with eigenvalues>l.

With continued reference to FIG. 1, following dimension 
reduction at step 120 as set forth above, vector quantization 
is carried out at step 125 to create meaningful observations 
for the HMMs. Vector quantization (VQ) historically has 
been used in signal representation to produce feature vector 
sequences. One of the applications of K-Means is vector 
quantization, such that information theory terminologies 
used in VQ are commonly applied. For example, the “code 
book” represents the set of cluster centroids and “code 
words” represent the individual cluster centroids. The code­
book maps the cluster indexes, also known as “code,” to the 
centroids. A basic VQ can be achieved using K-Means 
clustering with a goal of finding encoding of vectors which 
minimizes the expected distortion.

Once the above-described PCA process has been applied 
to the initial data, it results in the mapping of the data to a 
new feature space using the principal components. In the 
newly constructed feature space, VQ (clustering) is achieved
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by applying a Κ-means algorithm. The K-means objective 
function is as follows:

Let μ,, . . . , μ^, be the Κ cluster centroid (means).
Let rra/t€{0, 1} denote whether point xn belongs to cluster

k.
It minimizes the total sum of distances of each of the 

points from their cluster centers (total distortion):

11

J(M, r) = -μ^2

π=1 i=l

The steps performed by the K-means algorithm are then as 
follows:

1. Input: Ν examples {χ,, x2, . . . , xn}\ (x„effD)
2. Initialization: Κ cluster centers μ,, . . . , μ^,. Κ can be 

initialized:
Randomly initialized anywhere in RD or 
Randomly take any Κ examples as the initial cluster 

centers.
3. Iteration:
Assign each of example xn to its closest cluster center:

Ct={n:k=arg ΠΛτΐ^-μ^}

(Ck corresponds to the set of examples closest to μ^,) 
Recalculate the new cluster centers μ^, (mean/centroid of 

the set Ck)

Repeat until convergence is achieved: A simple conver­
gence criteria can be considered where the cluster 
centers no longer move.

Thus, and by way of summary, K-Means Clustering is an 
algorithm which attempts to find groups in a given number 
of observations or data. Each element of the vector μ refers 
to the sample mean of its corresponding cluster, χ refers to 
each of the examples, and C contains the assigned class 
labels. The optimal number of clusters is determined using 
the Elbow method, which is among the many different 
heuristics for choosing a suitable Κ. In accordance with a 
particular implementation, the K-Means Clustering algo­
rithm is run using different values of Κ and the heterogeneity 
is plotted. It operates in such a way that, for different values 
of Κ, the heterogeneity is plotted. In general, this measure­
ment decreases when the value of Κ increases since the size 
of the clusters decreases. The point where this measurement 
starts to flatten out (elbow on the plot) corresponds to the 
optimal value of Κ.

As mentioned above, the foregoing data processing steps 
are carried out in order to provide meaningful observations 
formatted as data input for one or more training data- 
generating HMMs (as depicted at step 130 of FIG. 1), which 
forms the initial step of the multi-layer ΗΜΜ intrusion 
detection system and method in accordance with certain 
aspects of the invention. Such layered ΗΜΜ is configured 
to detect multi-stage attacks against a data network. The 
layering technique can be further extended beyond the 
specific structure discussed herein (which is summarily 
depicted in the schematic flow chart of FIG. 2 and discussed 
in detail below). The layered ΗΜΜ comprises at least two 
separate layers of HMMs. Each of those layers, in turn, 
constitutes two levels: the observation data is used to train

the HMMs and estimate the model’s parameters at the first 
level of each layer, and those parameters are used to find the 
most probable sequence of hidden states at the second level 
of the same layer. The probable observable state sequences 
from each of the HMMs are used to construct the training 
data at Layer 2. It will be used for training the upper layer 
ΗΜΜ, which will be able to use the information from the 
lower layer HMMs to learn new patterns which are not 
possibly recognized by the lower layer HMMs.

An ΗΜΜ is a double stochastic process. In other words, 
it represents two related stochastic processes, including an 
underlying stochastic process that is not necessarily observ­
able but that can be observed by another set of stochastic 
processes that produces the sequence of observations. A 
typical notation for a discrete observation ΗΜΜ is as 
follows:

T=observation sequence length
N=number of states in the model
M=number of distinct observation symbols per state
Q={q,, q2, . . . , qw}=distinct “hidden” states of the 

Markov process
V={v,, v2, . . . , vM}=set of observation symbols per state
S={sj, s2, . . . , sw}=the individual states
The ΗΜΜ is specified by a set of parameters (A, Β, Π), 

and each of the parameters is described below. At time t, ot 
and qt denote the observation and state symbols, respec­
tively.

1. The prior (initial state) distribution Π=Π, where Π,=Ρ 
(q^s,) are the probabilities of st being the first state in a state 
sequence.

2. The probability of state transition matrix A={a-} where 
a^Pfq^^Sylq^s,), is the probability of going from state s, 
to state s-.

3. The observation (emission) transition probability dis­
tribution B={bi/t} where b/k^Pfo^v^lq^s,) is the probabil­
ity of observing state s^, given qt=st.

Conventionally, the ΗΜΜ model is represented by λ=(Α, 
Β, Π). Given an ΗΜΜ model, there are three problems to 
solve. One of the problems, also known as model training, 
is adjusting the model parameters to maximize the probabil­
ity of the observation given a particular model, and this is 
achieved using Baum-Welch algorithm that is a type of 
Expectation Maximization (EM) (as depicted at step 130 of 
FIG. 1). This procedure computes the maximum-likelihood 
estimates, local maxima, of the ΗΜΜ model parameters (A, 
Β, Π) using the forward and backward algorithms. In other 
words, for ΗΜΜ models λ,, X2, . . . , Xn and a given 
sequence of observations 0=ο,, o2, ..., ot, we choose λ=(Α, 
Β, Π) such that Ρ(01λ,), i=l, 2, . . ., η is locally maximized.

The model structure of a two-layered ΗΜΜ configured in 
accordance with aspects of the invention has a number of 
hidden states. Given some time granularity of the HMMs, 
there is a corresponding observation sequence, and a prob­
able sequence of states is established. A new feature vector 
is constructed from the Layer 1 HMMs’ probable sequence 
of states. This statistical feature can be considered as a new 
data matrix where VQ can be applied and a new sequence of 
observations will be created from the Layer 2 ΗΜΜ:

1. At Layer 1, we have ΗΜΜ,, HMM2, . . ., ΗΜΜ^ with 
their corresponding number of hidden states S,, S2, . . . , Sp.

2. Considering the same time granularity (t=T) of each of 
the HMMs,

The observation sequence for each of the HMMs are 
given as:

ο,Μο,1. ο,2.... ο,Η, o2T=[02\ o22,.... 
o/},.... 0/={0p\ ο/,.... 0/}
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The probable sequence of states (generated at step 135 of 
FIG. 1) for each of the HMMs are given as:

GT={?,‘, ?,2 .... ?,Tl. {U, ?22, ■ ■ ■ ,

9¾7}. · · · . 1℅Λ ℅Λ ■ ■ ■ . ℅Λ

3. A new feature vector is constructed from the Layer 1 
HMMs’ probable sequence of states. This statistical feature 
can be considered as a new data matrix where VQ can be 
applied and a new sequence of observations will be created 
from the Layer 2 ΗΜΜ. The feature vector is constructed as 
follows:

13
probability that network traffic from network 310 will define 
a non-normal state, and more particularly either an anoma­
lous state or an attack state, alert generator 334 may auto­
matically generate and transmit an alert, using any well- 

5 known communication protocol as may be deemed suitable 
to a particular configuration, to a system administrator to 
enable the system administrator to investigate and, where 
appropriate, take intervening protective measures to guard 
the local network of user 320 against intrusion.

10

EXAMPLES

14

q τ
ν/= 1, 2, ... ,ρ

ρ = (Λ,/2, ... fj),Vj= 1,2,

The models at Layer 1 and Layer 2 are trained indepen­
dently to ΗΜΜ model at Layer 2. Every ΗΜΜ in each layer 
constitutes two levels, where the first level determines 
model parameters and the second level finds the most 
probable sequence of states. At the first level of Layer 1, 
given the discrete time sequence of observations, the Baum- 
Welch algorithm is used for training the outputs of probable 
sequences. The Baum-Welch algorithm is a type of Expec­
tation Maximization, which computes the maximum log- 
likelihood estimates, local maxima, of the ΗΜΜ model 
parameters using forward and backward algorithms. At the 
second level of Layer 1 and Layer 2, the Viterbi algorithm 
is used at step 140 for finding the probable sequences based 
on the output of learned parameters from the first level of the 
same layer.

The learning processes carried out by a multi-level ΗΜΜ 
method and system configured in accordance with certain 
aspects of the invention may thus be summarized as follows:

1. Learning at Layer 1:
Vector Quantization technique using K-Means Clustering 

is applied on the training dataset; and
The Baum-Welch algorithm, an Expectation Maximiza­

tion (EM) algorithm, is used to compute the maximum 
log-likelihood estimates of the ΗΜΜ model param­
eters (A, Β, Π).

2. Learning at Layer 2:
Vector Quantization technique using K-Means Clustering 

is applied on the training dataset. Here, the training 
dataset corresponds to matrix F defined above;

As we have a single ΗΜΜ at Layer 2, the Baum-Welch 
method is used to compute the maximum log-likeli­
hood estimates of the ΗΜΜ model parameters (A, Β, 
Π).

FIG. 3 provides a schematic view of an intrusion detection 
system 300 for implementing the foregoing intrusion detec­
tion methods. As shown in FIG. 3, intrusion detection 
system 300 receives network data packets from a remote 
source, such as from a distributed wide area network 310, 
which are intended for transmission to a user 320. Intrusion 
detection system 300 comprises a processor 320, memory 
325, and a network traffic monitor module 330 in data 
communication with the processor 320 and memory 325. 
Network traffic monitor module 330 includes a traffic clas­
sifier 332 configured to manage the above-described intru­
sion detection processes, and an alert generator 334 config­
ured to generate an alert for transmission to a network 
administrator 340. More particularly, when network traffic 
monitor module 330 determines that there is a pre-defined

A multi-layer ΗΜΜ method configured as described 
15 above is simulated to produce the following experimental 

results. In this simulation, the two HMMs that are consid­
ered as the lower layer are HTTP traffic and SSH traffic. The 
following simulated results reflect each of the processes 

2Q described above, including dataset analysis using PCA for 
dimension reduction, K-Means clustering for vector quan­
tization, and finally the results of the LHMM.

First, PCA analysis is performed on the HTTP traffic data. 
FIG. 4 shows a scree plot of the dimensions with respect to 

25 percentage of explained variance and eigenvalues. The 
elbow method can be used to determine the number of 
dimensions to be retained. Equivalently, the cumulative 
percent of variance with respect to the number of dimen­
sions, as shown in Table 1, can be used to determine the 

30 number of dimensions to be retained.

TABLE 1

35
Principal components with their variance contribution.

Cumulative

Eigenvalue
Percent of
Variance

Percent of
Variance

Dim.l 4.762758 χ 102 5.826067 χ 101 58.26067
Dim.2 2.011200 χ 102 2.460210 χ 101 82.86276
Dim.3 7.160326 χ 101 8.758904 91.62167
Dim.4 2.027640 χ 101 2.480320 94.10199
Dim.5 1.437619 χ 101 1.758575 95.86056
Dim.6 1.010701 χ 101 1.236345 97.09691
Dim.7 4.111222 5.029072 χ 10-1 97.59981
Dim.8 4.057777 4.963695 χ 10^1 98.09618
Dim.9 2.812110 3.439927 χ 10 1 98.44018
Dim. 10 2.672606 3.269278 χ 10 1 98.7671
Dim. 11 1.433143 1.753099 χ 10-1 98.94241
Dim. 12 1.283170 1.569643 χ 10-1 99.09938
Dim. 13 1.226318 1.500099 χ 10-1 99.24939
Dim.14 9.864789 χ 101 1.206715 χ 10-1 99.37006
Dim. 15 8.110305 χ 10-1 9.920970 χ 10~2 99.46927
Dim. 16 7.242188 χ 10-1 8.859041 χ 10-2 99.55786
Dim. 17 6.931104 χ 10-1 8.478506 χ №2 99.64264
Dim. 18 6.044243 χ 10^1 7.393649 χ 10~2 99.71658
Dim. 19 4.243713 χ 10-1 5.191142 χ 10-2 99.76849

60
For the HTTP traffic, 8 principal components which 

correspond to 98.09618% of the explained variance are 
selected from Table 1. Those selected 8 PCs and the first 6 
(head) out of the total number of features are shown in Table 

65 2. Each PC is constructed from a linear combination of the 
total features and their multiplying coefficients specified the 
table.
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16
TABLE 2

The selected 8 Principal components and head (6 original features displayed here).

PCI PC2 PC3 PC4

Flow_ID 7.955283 χ 1CT3 1.457065 χ 10~2 1.644281 χ 10~3 3.287887 χ lO”1
Source_IP 7.387470 χ 10~8 4.617471 χ 10~2 4.837233 χ 10~3 2.641242 χ 10_1
Destination_IP 2.773583 χ 10~7 1.824271 χ 10~2 7.112974 χ 10~3 4.124236 χ lO”1
Destination_Port 1.232595 χ 10~3° 1.232595 χ 10~5 5.772448 χ 10~3 1.774937 χ 10-28
Flow.Duration 1.309048 4.731603 2.933845 χ 10^4 3.366436 χ lO”1
Total. Fwd. Packets 8.387569 χ 10~2 2.23493 χ 10~3 2.357590 χ 10~2 3.209392 χ 10“3

PC5 PC6 PC7 PC8

Flow_ID 5.998037 χ 10~2 9.81543 χ 10~2 2.131072 χ lO”1 3.108175 χ 10-1
Source_IP 2.070467 χ 10~2 2.057702 χ 10~2 2.77837 χ 10~3° 6.927052 χ 10_1
Destination_IP 2.091758 χ 10-4 5.843059 χ 10~2 1.562471 χ lO”1 2.848223 χ 10-1
Destination_Port 8.493351 χ 10-30 2.097338 χ 10-29 1.203706 χ 10-29 4.930381 χ 10-30
Flow.Duration 4.514761 5.269066 9.913239 6.871774 χ 10-1
Total.Fwd.Packets 3.453238 χ 10~2 1.038723 χ lO”1 6.913426 χ lO”1 4.477584

Likewise, PCA analysis is performed on the SSH traffic 
data. FIG. 5 shows a scree plot of the dimensions with 
respect to percentage of explained variance and eigenvalues. 25 
The elbow method can be used to determine the number of 
dimensions to be retained. Equivalently, the cumulative 
percent of variance with respect to the number of dimen-

For the SSF1 traffic, 4 principal components which corre­
spond to 99.76292% of the explained variance are selected 
from Table 3. The first three dimensions of the PCA retains 
slightly over 99% of the total variance (i.e., information) 
contained in the data. Those selected 3 PCs and the first 6 
(head) out of the total number of features are shown in Table
4.

TABLE 4

The selected 4 Principal components and head (6 original features displaved here).

PCI PC2 PC3 PC4

Flow ID 5.20233 χ 10-10 9.18848 χ 10~9 4.46286 χ 10~8 9.02167 χ 10~8
Source IP 6.00175 χ 10-13 1.93802 χ 10-12 1.48850 χ 10“n 1.77674 χ 10-“

Destination IP 1.23960 χ 10-30 0.00000 1.23260 χ 10-30 1.01882 χ 10-29
Destination Port 0.00000 0.00000 0.00000 1.23260 χ 10~3°
Flow.Duration 3.52624 χ 101 7.10929 χ 10_1 8.77584 χ 10_1 7.02152 χ 10~2

Total.Fwd.Packets 1.22041 χ 10-“ 5.02931 χ 10-“ 6.34210 χ 10-9 4.41869 χ IQ-10

sions, as shown in Table 3, can be used to determine the 
number of dimensions to be retained.

TABLE 3

Principal components with their variance contribution.

Cumulative 
Percent of Percent of

Eigenvalue Variance Variance

Dim.l 1.11834 χ 1014 8.53962 χ 101 85.39622
Dim.2 1.77023 χ 1013 1.35175 χ 101 98.91367
Dim.3 6.84686 χ 1011 5.22826 χ 10_1 99.4365
Dim.4 4.27484 χ 10“ 3.26427 χ 10-1 99.76292
Dim.5 2.53906 χ 10“ 1.93883 χ 10-1 99.95681
Dim.6 2.83901 χ 1010 2.16787 χ 10~2 99.97848
Dim.7 1.66896 χ 1010 1.27442 χ 10~2 99.99123
Dim.8 6.49554 χ 109 4.95999 χ 10-3 99.99619
Dim.9 3.08202 χ 109 2.35343 χ 10-3 99.99854
Dim. 10 1.31229 χ 109 1.00207 χ 10“3 99.99954
Dim. 11 3.37909 χ 10s 2.58027 χ 10~4 99.9998
Dim. 12 1.19652 χ 10s 9.13658 χ 10-5 99.99989
Dim. 13 5.03480 X 107 3.84457 X 10“5 99.99993
Dim.14 3.36857 χ 107 2.57224 χ 10“5 99.99996
Dim. 15 2.31915 χ 107 1.77090 χ 10“5 99.99998
Dim. 16 1.72495 X 107 1.31717 X 10“5 99.99999
Dim. 17 1.00092 χ 107 7.64299 χ 10“6 100

Next, vector quantization is carried out to simplify the 
dataset from a complex higher dimensional space into a 
lower dimensional space so that it can be easier for visual­
ization and finding patterns. In this example, it is achieved 
by using K-Means clustering. To determine the number of 
clusters (Κ) in K-Means, the simplest method involves 
plotting the number of clusters against the within groups 
sum of squares and find the “elbow” point in the plot. This 
is similar in concept to the scree plot for PCA discussed 
above.

K-Means clustering is applied to the HTTP traffic after 
PCA, and the number of clusters is determined where the 
elbow occurs in FIG. 6, which is Κ=4. The plot shows the 
within cluster sum of squares (wcss) as the number of 
clusters (Κ) varies. Likewise, clustering is applied on the 
SSH traffic after PCA, and the number of clusters is deter­
mined where the elbow occurs in FIG. 7, which is Κ=3.

The simulated lower layer HMMs are then trained using 
the corresponding training data and the optimized model 
parameters are determined using the Baum-Welch algo­
rithm. For HTTP ΗΜΜ training, the ΗΜΜ model param­
eters (A, Β, Π) after training are as shown below:
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r 0.9827 0.0173 1 
[ 0.0140 0.9860 J
r 0.3088 0.0973 0.2007 0.39321 
[ 0.0000 0.8129 0.0952 0.0919 J

The number of hidden states in the HTTP training traffic 
is shown in Table 5. The corresponding state symbols 
sequence is plotted against the HTTP training data in FIG. 
8.

TABLE 5

_______Hidden State Symbols of the HTTP traffic._____

State Symbols HTTP

1 HTTP-BENIGN
2 HTTP-Web-attack-bruteforce

Likewise, SSH ΗΜΜ training, the ΗΜΜ model param­
eters (A, Β, Π) after training are as shown below:

r 0.9772 0.02281 
0.0308 0.9692 J

_ ro.6135 0.1518 0.23481 
B -[ 0.5092 0.2482 0.2427 J

The number of hidden states in the SSH traffic is shown 
in Table 6. The corresponding state symbols sequence is 
plotted against the SSH training data in FIG. 9.

State Symbols SSH

1 SSH-BENIGN
2 SSH-Patator

Following the training of the lower layer HMMs, the 
ΗΜΜ model parameters (A, Β, Π) after training of the upper 
layer ΗΜΜ were found to be:

0.9860 0.0000 0.0000 0.0000 0.0140
0.0011 0.8962 0.0026 0.0988 0.0014
0.0000 0.2557 0.2870 0.4240 0.0334
0.0255 0.7642 0.0024 0.1401 0.0678
0.0568 0.0105 0.0684 0.0007 0.8636

0.0000 1.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000
0.9996 0.0000 0.0004 0.0000
1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000.

τ
0

π = 0 
0 

.0

The hidden states in the upper layer ΗΜΜ training traffic 
are shown in Table 7. The corresponding state symbols 
sequence is plotted against the upper layer ΗΜΜ training 
data in FIG. 10.
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TABLE 7

Hidden State Symbols of the Upper layer in the training data.

State
Symbols HTTP SSH

1 HTTP-BENIGN SSH-BENIGN
2 HTTP-Web-attack-bruteforce SSH-Patator
3 HTTP-Web-attack-bruteforce SSH-BENIGN
4 HTTP-Web-attack-bruteforce SSH-Patator
5 HTTP-BENIGN SSH-Patator

Next, the sequence of network states during testing are 
determined using the Viterbi algorithm, which uses as input 
the model parameters that are determined during the training 
phase. During testing of the HTTP ΗΜΜ, the hidden states 
of the HTTP ΗΜΜ shown in Table 8 are similar to the 
training phase hidden states. The corresponding state sym­
bol sequences are plotted with the HTTP testing data in FIG. 
11.

TABLE 8

Hidden State Symbols of the HTTP traffic during testing.

State Symbols HTTP

1
2

HTTP-BENIGN
HTTP-Web-attack-bruteforce

Similarly, the SSH ΗΜΜ hidden state symbols are the 
same as the SSH training data hidden states as shown in 
Table 9. These state symbols are plotted against a time series 
data of the testing data as shown in FIG. 12.

TABLE 9

Hidden State Symbols of the SSH traffic in testing data.

State Symbols SSH

1 SSH-BENIGN
2 SSH-Patator

Next, the upper layer ΗΜΜ testing hidden states are 
shown in Table 10 and constitute the hidden states of the 
lower HMMs. Final results shown in FIG. 13 (showing state 
symbols plotted against a time series of the upper layer test 
data) prove the validity of the multi-layer ΗΜΜ in deter­
mining the hidden states within the IDS detection engine.

TABLE 10

Hidden State Symbols of the Upper layer testing data.

State Symbols HTTP SSH

1 HTTP-BENIGN SSH-BENIGN
2 HTTP-Web-attack-bruteforce SSH-Patator
3 HTTP-Web-attack-bruteforce SSH-BENIGN
4 HTTP-Web-attack-bruteforce SSH-Patator
5 HTTP-BENIGN SSH-Patator

The performance of a multi-layer ΗΜΜ intrusion detec­
tion system and method configured in accordance with 
aspects of the invention may be evaluated by calculating the
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common performance measures of Accuracy, Sensitivity, 
Specificity, Precision, Recall, and F-Measure. Those metrics 
are among the few considered which are commonly used for 
evaluating IDS performance. The main aspects to consider 
when measuring such performance are:

True Positive (TP): Number of intrusions correctly 
detected;

True Negative (ΤΝ): Number of non-intrusions correctly 
detected;

False Positive (FP): Number of non-intrusions incorrectly 
detected; and

False Negative (FN): Number of intrusions incorrectly 
detected.
The performance measures of Accuracy, Precision, Recall, 
and F-measure may be defined as follows:

Accuracy: the proportion of true results (both true nega­
tives and true positives) with respect to the total number:

19

Precision: the fraction of the states which were classified 
as the interesting state (loaded in this case) that are really 
that state:

Precision =-------—
*p + fp

Recall: the fraction of the interesting states that were 
correctly predicted as such. It is also referred to as sensi­
tivity:

t„
Recall = —

tp + fn

F-measure: a combination of precision and recall and 
provides the percentage of positively classified incidents that 
are truly positive:

2xPrecision X Recall
FI =------------------------

Precision + Recall

The performance of a multi-level ΗΜΜ method and system 
configured as above an employed in the foregoing examples 
is as follows:

[Accuracy Precision Recall f_measure]=[0.9898 
0.9793 1.0000 0.9895]

In comparison to a single-layer ΗΜΜ, a multi-layered 
ΗΜΜ system and method configured in accordance with 
certain aspects of the invention may provide one or more of 
the following advantages:

(1) A single layer ΗΜΜ may have to be trained on a large 
number of observations space. In this case, the model can be 
over-fitted when an insufficient amount of training data is 
used. As the observation space increases, the amount of data 
needed to train the model well also increases. As a result, it 
incurs what is commonly referred as the curse of dimen­
sionality. On the contrary, the layers in a layered ΗΜΜ 
system and method configured in accordance with certain 
aspects of the invention are trained over small-dimensional

observation spaces which results in more stable models and 
does not require large amounts of training data.

(2) The lower layer HMMs are defined and trained with 
their corresponding data as needed.

(3) The second layer ΗΜΜ is less sensitive to variations 
in the lower layer features as the observations are the outputs 
from each of the lower layer HMMs, which are expected to 
be well trained.

(4) The two layers (lower and upper) are expected to be 
well trained independently. Thus, we can explore different 
ΗΜΜ combination systems. In particular, we can replace 
the first layer HMMs with models that are more suitable for 
network traffic data sequences, with the goal of gaining an 
understanding of the nature of the data being used. The 
framework is thus easier to improve and interpret individu­
ally at each level.

(5) The layered framework in general can be expanded to 
learn new network traffics that can be defined in the future 
by adding additional HMMs in the lower layers.

The results thus demonstrate how a Markov Model can 
capture the statistical behavior of a network and determine 
the presence of attacks and anomalies based on known 
normal network behaviors gathered from training data. 
Using the vector quantization method, we are able to include 
multiple dimensions of information into the model, and this 
will be helpful in reducing false positives and determining 
more attack states in the future. The model can be re-trained 
to identify new network states based on the robustness of the 
training data. This is a promising approach because it is 
extensible.

Having now fully set forth the preferred embodiments and 
certain modifications of the concept underlying the present 
invention, various other embodiments as well as certain 
variations and modifications of the embodiments herein 
shown and described will obviously occur to those skilled in 
the art upon becoming familiar with said underlying con­
cept. For example, a new anomaly detection or zero day 
attack detection can be achieved using systems and methods 
configured in accordance with the invention by computing 
the posterior probability to determine the level of confidence 
that the new attach belongs to a previously seen attack. 
Likewise, a large scale IDS configured in accordance with 
the foregoing description may be achieved by running the 
ΗΜΜ parameter computations on a distributed cloud 
resource or mainframe computers rented for the computing 
resources. Still further, the foregoing layered framework in 
general may be expanded to learn new network traffic that 
can be defined in the future by adding additional HMMs in 
the lower layers. It should be understood, therefore, that the 
invention may be practiced otherwise than as specifically set 
forth herein.

What is claimed is:
1. A method of protecting a computer network against 

unauthorized intrusion, comprising the steps of:
receiving network packet data at a processor of a com­

puter-implemented network traffic monitor module;
applying at said processor data normalization to said 

network packet data, said data normalization compris­
ing applying log-normalization to said network packet 
data;

generating at said processor meaningful Hidden Markov 
Model (“HMM”) observations formatted as data input 
for one or more first HMM’s, said one or more first 
HMM’s forming a first processing layer of HMM’s;

generating from said first processing layer of HMM’s a 
first probable sequence of network traffic states;
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processing at said processor said first probable sequence 
of network traffic states to form a feature vector;

processing at said processor said feature vector to gener­
ate meaningful ΗΜΜ observations formatted as data 
input for a second ΗΜΜ, said second ΗΜΜ forming a 
second processing layer;

generating from said second processing layer a second 
probable sequence of network traffic states; and

upon determining that said second probable sequence of 
network traffic states exhibits a designated probability 
of a non-normal data traffic state, generating an alert of 
a likely non-normal data traffic state and transmitting 
said alert to an administrator.

2. The method of claim 1, said step of generating from 
said first processing layer of HMM’s a first probable 
sequence of network traffic states to form a feature vector 
further comprising:

processing at said processor said observations formatted 
as data input for said one or more first HMM’s as ΗΜΜ 
training data using a vector quantization algorithm;

applying at said processor a Baum-Welch algorithm to 
compute maximum-likelihood estimates of HMM 
model parameters for each of said one or more first 
HMM’s; and

forming said feature vector as a data matrix comprising 
said maximum-likelihood estimates of HMM model 
parameters.

3. The method of claim 2, said step of generating from 
said second processing layer a second probable sequence of 
network traffic states further comprising:

processing at said processor said feature vector using a 
vector quantization algorithm; and

applying at said processor a Baum-Welch algorithm to 
compute maximum likelihood estimates of HMM 
model parameters for said second HMM.

4. The method of claim 1, wherein said maximum like­
lihood estimates of HMM model parameters for said second 
HMM are not recognizable in said first probable sequence of 
network traffic states.

5. The method of claim 1, wherein said first probable 
sequence of network traffic states is defined by:

GiT=l?i‘. ?i2. ■ ■ ■ , ?iT}> 1 q2'. ?22. ■ ■ ■ .
9¾6 7 * * * * *}. · · · . 1 ℅Λ ℅Λ ■ ■ ■ . ?/}; and

wherein said feature vector is constructed as:
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q τ

ν/ = 1, 2,

f = (Ji,/2,... Λ),ν;=ΐ,2,

6. The method of claim 1, further comprising the steps of:

prior to said step of generating meaningful HMM obser­
vations formatted as data input for said one or more first
HMM’s, causing said processor to perform dimension
reduction on said network packet data using Principal
Component Analysis, and to form one or more feature
vectors comprising features exhibiting a designated 
Percent of Total Variation of said network packet data.

7. The method of claim 6, wherein said step of generating 
meaningful HMM observations formatted as data input for 
said one or more first HMM’s further comprises applying 
K-Means clustering on said one or more feature vectors to

5 generate feature cluster labels.
8. A system for protecting a computer network against 

unauthorized intrusion, comprising:
one or more processors; and

jo one or more memories coupled to said one or more 
processors, wherein the one or more memories are 
configured to provide the one or more processors with 
instructions which when executed cause the one or 
more processors to:

15 receive network packet data;
apply data normalization to said network packet data, 

wherein said data normalization comprises applying 
log-normalization to said network packet data; 

generate meaningful Hidden Markov Model (“HMM”) 
observations formatted as data input for one or more 
first HMM’s, said one or more first HMM’s forming 
a first processing layer of HMM’s; 

generate from said first processing layer of HMM’s a 
25 first probable sequence of network traffic states;

process said first probable sequence of network traffic 
states to form a feature vector; 

process said feature vector to generate meaningful 
HMM observations formatted as data input for a 

30 second HMM, said second HMM forming a second
processing layer;

generate from said second processing layer a second 
probable sequence of network traffic states; and 

35 upon determining that said second probable sequence 
of network traffic states exhibits a designated prob­
ability of a non-normal data traffic state, generate an 
alert of a likely non-normal data traffic state and 
transmit said alert to an administrator.

40 9. The system of claim 8, wherein said instructions that
generate from said first processing layer of HMM’s a first 
probable sequence of network traffic states to form a feature 
vector are further configured to:

process said observations formatted as data input for said 
45 one or more first HMM’s as HMM training data using 

a vector quantization algorithm;
apply a Baum-Welch algorithm to compute maximum-

likelihood estimates of HMM model parameters for
each of said one or more first HMM’s; and 

50
form said feature vector as a data matrix comprising said 

maximum-likelihood estimates of HMM model param­
eters.

10. The system of claim 9, wherein said instructions that 
55 generate from said second processing layer a second prob­

able sequence of network traffic states are further configured 
to:

22

process said feature vector using a vector quantization 
algorithm; and

60
apply a Baum-Welch algorithm to compute maximum 

likelihood estimates of HMM model parameters for 
said second HMM.

11. The system of claim 8, wherein said maximum like- 
65 lihood estimates of HMM model parameters for said second 

HMM are not recognizable in said first probable sequence of 
network traffic states.
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12. The system of claim 8, wherein said first probable 
sequence of network traffic states is defined by:

℮Τ=ΐ9,1. 9,2, .... 1, {U, ?22, ■ ■ ■ ,

9¾7}. ■ ■ ■ . 1℅Λ ℅Λ ■ ■ ■ . ℅Τΐ; and

wherein said feature vector is constructed as:

’

*= \ >Vi=1’2’-^ .0
.qlT.

F = (A,f2, ... fj),Vj= 1,2, ... ,ρ. 13 14

13. The method of claim 8, wherein said instructions are 15 
further configured to cause the one or more processors to:

prior to generating meaningful ΗΜΜ observations for­
matted as data input for said one or more first HMM’s, 
perform dimension reduction on said network packet 
data using Principal Component Analysis, and form 20 
one or more feature vectors comprising features exhib­
iting a designated Percent of Total Variation of said 
network packet data.

14. The method of claim 13, wherein said instructions 
configured to generate meaningful ΗΜΜ observations for- 25 

matted as data input for said one or more first HMM’s are 
further configured to apply K-Means clustering on said one
or more feature vectors to generate feature cluster labels.
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