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1
ATTACK DETECTION AND
COUNTERMEASURES FOR AUTONOMOUS
NAVIGATION

FIELD OF THE INVENTION

This invention relates to autonomous driving systems.

SUMMARY OF THE INVENTION

The present invention addresses the problem in which a
cyber-attack targets/corrupts sensor data (for example, from
a GPS/IMU sensor and camera) of an autonomous vehicle
navigation system, thereby influencing the control algorithm
and/or making real-time map, localization, or navigation
data unavailable to the autonomous entity. Two solutions are
presented: Replay-Attack Detection Using Pose Validation
and GPS Spoofing Detection Using Visual Odometry, both
optionally augmented with root-of-trust hardware.

It is specifically noted that every combination and sub-
combination of the above-listed and below-described fea-
tures and embodiments is considered to be part of the
invention.

BRIEF DESCRIPTION OF DRAWINGS

The foregoing summary, as well as the following detailed
description of the preferred invention, will be better under-
stood when read in conjunction with the appended drawings.
For the purpose of illustrating the invention, there are shown
in the drawings embodiments which are presently preferred.
It should be understood, however, that the invention is not
limited to the precise arrangements and instrumentalities
shown. In the drawings:

FIGS. 1A-1C show an example of replay attack on stereo
visual odometry. FIG. 1A shows flow matching for stereo-
visual odometry on the KITTI data-set. A. Geiger, P. Lenz,
C. Stiller, and R. Urtasun, “Vision meets robotics: The
KITTI dataset,” International Journal of Robotics Research
(IJRR), 2013. FIG. 1B shows feature selection. FIG. 1C
shows a replay attack on the camera inputs that affects the
stereo visual odometry (VO).

FIG. 2: Attack detection using a shallow closed-loop
neural network. The inertial measurement unit (IMU) pose
is represented by the variable x, and the VO-estimated pose
is represented by y. Any attack that corrupts the y(t) will
force the error of a trained model to jump as shown in FIGS.
3A and 3B.

FIG. 3A shows an example of replay attack detection in
which the closed loop network predicts the VO pose using
the IMU data and updates itself based on the VO pose. The
VO measurements have the frequency of 10 Hz. Thus, the
x-axis represents a window of 10 seconds.

FIG. 3B shows the difference in distance x between
predicted and measured pose over traveled distance z.

FIG. 4A is a graph showing GPS spoofing data attack (red
line) that introduces sudden jumps in both x-axis and z-axis
pose as derived from the OxTS measurement. An LSTM
based drift forecasting is used for determining attack sce-
narios. It is assumed that the LSTM is trained on the first 50
frames and predicts the difference between GPS and VO-
derived pose for the remaining 50 frames.

FIG. 4B shows the difference between forecast pose and
observed x axis pose for the data of FIG. 4A.

FIG. 4C charts the differences shown in FIG. 4B as error.

FIG. 4D shows the difference between forecast pose and
observed z-axis pose for the data of FIG. 4A.
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2

FIG. 4E charts the differences in FIG. 4D as error.

FIG. 5A shows attack survival using on-board hardware
oscillators in which a GPS spoofing attack on the autono-
mous system is simulated where the attacker corrupts the
GPS timing data by replaying the same data with a delay
added.

FIG. 5B shows attack survival using on-board hardware
oscillators in which a GPS spoofing attack on the autono-
mous system is simulated where the attacker corrupts the
GPS timing data by taking control of the GPS signal and
slowly moving the perceived truth.

DETAILED DESCRIPTION OF THE
INVENTION

A. Replay-Attack Detection Using Pose Validation

In replay attacks, visual sensors are compromised, and the
attacker inserts previous frames or holds an image frame
during the attack. As a result, visual odometry-based algo-
rithms fail. For example, the effect of a replay attack on a
stereo camera data is demonstrated in FIGS. 1A-1C which
present an example of a replay attack on stereo visual
odometry. Stereo-visual experiments are performed using
SOFT algorithm and code to enable training of neural
networks presented in 1. Cvis” 16 and I. Petrovid, “Stereo
odometry based on careful feature selection and tracking,” in
2015 Furopean Conference on Mobile Robots (ECMR),
2015, pp. 1-6; and Stereo-odometry-soft. [Online]. Avail-
able: FIGS. 1A and 1B show flow matching (FIG. 1A) and
feature selection (FIG. 1B) for stereo-visual odometry on the
KITTI vision dataset that provides recordings from two
high-resolution color and gray-scale video cameras along
with the ground truth provided by a laser scanner and a
GPS/IMU localization system. A. Geiger, P. Lenz, C. Stiller,
and R. Urtasun, “Vision meets robotics: The KITTI dataset,”
International Journal of Robotics Research (IJRR), 2013.
FIGS. 1A and 1B have spoofed data on both of the stereo
sensors for 20 frames. FIG. 1C shows the large deviation of
the stereo odometry pose (red line) from the ground truth
(green line) resulting from the replay attack on the camera
inputs that affects both stereo sensors for 20 frames.

Visual and inertial odometry (VIO) algorithms can pro-
vide navigation support during an attack. Standard visual
odometry can give a measure of pose and localization during
navigation. Hence, an attack on the camera image will create
erroneous pose estimates. According to a first embodiment
of the invention, secondary pose measurement from the
inertial measurement units (“IMUs”) is used to cross-vali-
date the results generated from the visual odometry (“VO™)
algorithms. According to a preferred embodiment, the
SOFT-VO algorithm and tool may be used for measuring
pose. Since any attack on the sensor image will corrupt the
pose measurement, attacks can be detected by estimating a
corresponding pose from the IMUs at every frame.

However, IMU measurements are not an absolute repre-
sentation of the ground truth, and as time progresses, these
measurements exhibit a non-linear drift away from the
correct value. Therefore, using an IMU-derived pose alone
for comparison and anomaly detection may result in high
false-positive rates. Therefore, the present invention
includes a fast and configurable detection technique to
model the relative nonlinear drift between the IMU and VO
measurements. Specifically, according to a preferred
embodiment of the invention, a shallow neural network-
based non-linear autoregressive exogenous model (NARX)
is used to model the nonlinear drift between the IMU pose
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and the VO-derived pose estimation. NARX can model a
target y at time t that depends on previous values of y and
another input x.

Shallow neural network-based NARX models are fast,
computationally efficient, and useful in modeling nonlinear
drifts. Accordingly, an open-loop NARX model is used for
training the drift estimation between pose measurements
from different sensor inputs. A closed-loop model (see FIG.
2) is used for multi-step prediction of the pose drift y(t)
based on Equation (1):

HE M

Attack detection can be performed based on specifying a
threshold on the modeling error, as shown in FIGS. 3A and
3B. In this way, small temporal windows (such as the 10 s
window in FIG. 4A) can be used to detect replay attacks on
the image sensors. An anomalous event is considered to have
been detected when the error E(t) crosses a predefined
threshold. This windowed approach can provide attack
detection within (10 s) from the launch of the attack.

B. GPS Spoofing Detection Using Visual Odometry

For a GPS spoofing attack, an attacker can spoof the GPS
data using weak or strong attack techniques. Q. Luo, Y. Cao,
J. Liu, and A. Benslimane, “Localization and navigation in
autonomous driving: Threats and countermeasures,” /[EEE
Wireless Communications, vol. 26, no. 4, pp. 38-45, 2019.
G. Oligeri, S. Sciancalepore, O. A. Ibrahim, and R. Di
Pietro, “Drive me not: GPS spoofing detection via cellular
network: (architectures, models, and experiments),” in Pro-
ceedings of the 12th Conference on Security and Privacy in
Wireless and Mobile Networks, 2019, pp. 12-22. For
example, during replay based weak spoofing attack, an
attacker first records the authentic GPS data and then, using
a stronger signal generator, replays the GPS data near the
sensor. As a result, the GPS sensor can be induced to follow
the replayed data. On the other hand, during a strong attack,
an attacker creates a spoofed GPS data set and slowly
induces the victim to follow the fabricated data. Strong GPS
attacks start with a small perturbation in the receiver data so
that the attack is difficult to detect using anomaly detection
techniques. As time progresses, the attacker further deviates
the data from the ground truth and captures the receiver.

In this embodiment, there is presented a long short-term
memory (LSTM)-based detection technique that offers real-
time attack detection. In this embodiment, data from the
inertial measurement unit and GPS is cross-validated using
a secure LIDAR or camera measurement, under the assump-
tion that attackers do not have access to the image/[LIDAR
sensor and therefore cannot corrupt the VO or LIDAR-based
pose estimation. For example, a GPS spoofing attack is
depicted in FIG. 4A, where a spoofed GPS signal is intro-
duced for 20 frames. To detect such attacks, LSTM-based
prediction and anomaly detection methods are used. The
LSTM design parameters are given in Table 1.

YOTFGerYez - -, XoXe1:Xp25 + -

TABLE 1

LSTM DESIGN PARAMETERS USED IN THIS WORK.

Design Parameter Value

Layers Sequence Input Layer with 1 feature
LSTM Layer with 200 hidden units
Fully Connected Layer with 1 response

Regression Layer

Training Algorithm ADAM
Max. Epochs 100
Gradient Threshold 1
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4
TABLE I-continued

LSTM DESIGN PARAMETERS USED IN THIS WORK.

Design Parameter Value
Initial Learning Rate 0.005
Learning Rate Schedule piecewise
Learning Rate Drop Period 125
Learning Rate Drop Factor 0.2

According to this embodiment of the invention, LSTMs
are employed to predict the measurement differences
between the GPS position and VO-derived positions in x-
and z-coordinates. The LSTMs use data from the first half of
a 10 s window for training and make predictions on the last
half of the window. Discontinuous, sudden, or abrupt
changes in the GPS measurement will create an anomalous
shift from the predicted and forecast positions, as shown in
FIGS. 4A-E which show the results of a spoofed GPS signal
for 20 frames, compromising the integrity of the positional
data and corrupting the IMU’s computation.

FIG. 4A presents the GPS data attack that introduces
sudden jumps in both x-axis and z-axis pose as derived from
the OxTS measurement. An LSTM-based drift forecasting is
used for determining attack scenarios, where the LSTM is
trained on the first 50 frames and predicts the difference
between GPS and VO-derived pose for the remaining 50
frames. FIGS. 4B and 4C show the difference (FIG. 4B) and
error (FIG. 4C) between forecast and observed x-axis pose.
Figured 4D and 4E show the difference (FIG. 4D) and error
(FIG. 4E) between forecast and observed z-axis pose.

C. Hardware Root-of-Trust in Spoofing Detection

The learning-based embodiments for cross-validation
described herein require a trusted sensor reading. That is,
if/when an attacker corrupts external sensor inputs, an
internal root-of-trust is required for detecting the attack and
bearing through it or gracefully terminating driving. There-
fore, according to various embodiments of the invention,
on-board trusted hardware is employed to provide another
layer of protection against corrupted sensor data.

Trusted hardware mounted internally in the autonomous
system can monitor the sensors’ intrinsic properties and
detect data corruption. For example, GPS time signals may
be cross-validated with a free-running hardware oscillator. A
free-running oscillator will accumulate drift when compared
with another clock. Since GPS data contains time signals for
precise synchronization, GPS time signals can measure the
intrinsic frequency drift of a local free-running oscillator.
This frequency drift can be efficiently modeled using a
Kalman filter. Any attack on the IMU/GPS sensor will create
large deviations in measuring the local clock’s frequency
drift. Thus, by measuring the frequency states of a hardware
clock using the received GPS signal as a reference, attacks
on the received GPS data can be detected.

During an attack on an autonomous vehicle, it is impera-
tive to survive the attack either by relying on secondary
driving tactics or by graceful termination of the autonomous
driving. Therefore, the LSTM-based forecasting techniques
can be critical for surviving attacks. Moreover, an attack on
the GPS/IMU can be survived using the approximate on-
board measurement of relevant data, as shown in FIGS. 5A
and 5B. The attacks shown in both FIGS. SA and 5B are
detected using an on-board free-running oscillator. M. T.
Arafin, “Hardware-based authentication for the internet of
things.” M. T. Arafin, D. Anand, and G. Qu, “A low-cost
GPS spoofing detector design for internet of things (IoT)
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applications,” in Proceedings of the on Great Lakes Sym-
posium on VLSI 2017. ACM, 2017, pp. 161-166.

It will be appreciated by those skilled in the art that
changes could be made to the preferred embodiments
described above without departing from the inventive con-
cept thereof. It is understood, therefore, that this invention is
not limited to the particular embodiments disclosed, but it is
intended to cover modifications within the spirit and scope
of the present invention as outlined in the present disclosure.
It is specifically noted that every combination and sub-
combination of the above-listed and below-described fea-
tures and embodiments is considered to be part of the
invention.

The invention claimed is:

1. A method for detecting a replay attack on an autono-
mous navigation system and surviving said replay attack,
comprising:

using two or more stereo image sensors mounted in an

autonomous vehicle to collect primary pose data for
said autonomous vehicle, using inertial measurement
units mounted in said autonomous vehicle to collect
secondary pose date for said autonomous vehicle,

sending said primary data and said secondary data to a

neural network,

20

6

using an open-loop shallow neural network-based non-
linear autoregressive exogenous model on said neural
network to train drift estimation between said primary
pose data and said secondary pose data; and

using a closed-loop model on said neural network for
multi-step prediction of pose drift y(t) between said
primary pose data and said secondary pose data based
on the equation:

YO = F(Vi-15 Y1-25 «ov s Xay X1=15 X1-2, ) T € @

wherein said neural network comprises a predefined
threshold modeling error and a predefined temporal
window for assessing anomalous events;

said method further comprising implementing attack sur-

vival steps when error E(t) exceeds said predefined
threshold modeling error, said attack survival steps
including termination of autonomous driving.

2. The method of claim 1, further comprising monitoring
trusted hardware mounted internally in said autonomous
navigation system to detect data corruption by cross-vali-
dating GPS time signals with a free-running oscillator.

* * * * *
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