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ENSEMBLE INTRUSION DETECTION
SYSTEM FOR IOT PLATFORMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is based upon and claims the benefit of
U.S. Provisional Application No. 63/450,764 titled
“Ensemble Intrusion Detection System for IoT Platforms,”
filed with the United States Patent & Trademark Office
(USPTO) on Mar. 8, 2023, the specification of which is
incorporated herein by reference in its entirety.

This application also incorporates by reference in its
entirety related U.S. Non-Provisional application Ser. No.
18/419,037 titled “Detection and Survival Method Against
Adversarial Attacks on Automated Systems,” filed with the
USPTO on Jan. 22, 2024.

FEDERALLY SPONSORED RESEARCH AND
DEVELOPMENT

This application was developed using U.S. Government
Funds under contract of the National Institute of Standards
and Technology (NIST), contract no. 640000-02.

FIELD OF THE INVENTION

The invention relates to security for an Internet of Things
(IoT) cloud platform and edge devices. More specifically,
the invention relates to systems and methods for capturing,
parsing, and transforming data for intrusion detection in an
IoT environment.

RELATED ART

Among related art, U.S. Pat. No. 10,218,718 provides for
rapid and targeted network threat detection that can be
implemented in an IoT environment. U.S. Pat. No. 11,075,
934 involves a method for hybrid networks in an IoT
environment. U.S. Pat. No. 11,443,230 executes a machine
learning model for an IoT open environment. U.S. Pat. No.
10,454,955 uses behavior models that are continuously
updated by learning machine determinations. Among the
related art that involve some use of preprocessors include
U.S. Pat. Nos. 10,650,079, 11,206,280, and 11,206,279.

BACKGROUND OF THE INVENTION

As Internet of Things (IoT) devices become more com-
monplace in everyday life, security concerns are at the
forefront. An IoT system can include a plethora of various
devices interconnected by constrained devices, which play a
critical role to enable connectivity and data collection even
in challenging environments. A constrained device typically
possesses limited processing and storage capabilities and is
designed to provide maximum data output while operating
with minimal power input for cost-effectiveness. These
devices are often used in environments and scenarios where
there is no external source of power, such as in remote
locations or harsh conditions (e.g., agricultural monitoring,
weather and environmental condition monitoring) indepen-
dent from infrastructure. As such, constrained devices typi-
cally include limited-function microcontrollers, sensors,
actuators, and other small computers that operate effectively
in these limited environments.

Due to their limitations, constrained devices lack built-in
security protection. For example, power and memory limi-
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tations may not support antivirus software such as Norton,
McAfee, and Kaspersky. Further, IoT technology builders
do not emphasize security during the design process, releas-
ing products into the market that are prone to hacking.
Lastly, constrained devices may not be able to handle
automatic firmware updates or remote configuration. There-
fore, IoT devices, including cameras, thermostats, smoke
detectors, and fire alarms, that rely on such constrained
devices for their connectivity and operation in an IoT
ecosystem may function 24/7 without any human interven-
tion or protection.

Even for IoT systems that are well within reach of 24/7
human monitoring and care, such as intelligent home sys-
tems, hackers can pose challenges. According to research by
Nippon Telegraph and Telephone (NTT) Data Corporation,
80 percent of customers in the United States are concerned
about the security of their smart home data. In the home, loT
technology has several advantages, and more people world-
wide are becoming increasingly reliant on the technology
and the gadgets that support it. Many loT devices, on the
other hand, are deployed without regard for security,
increasing the number of attack avenues available to attack-
ers. Attackers have gained access to IoT devices that lack
security safeguards, resulting in a large number of security
issues.

Attackers can access intelligent home devices and use
them to take control of the house, such as shutting off the
lights, manipulating alarm systems, and opening smart
locks. Attackers have been able to gain access to the
intelligent home network, resulting in data exfiltration.
Smart homes must contend with various risks, including
Man-in-the-Middle (MIM) attacks, data and identity theft,
and Denial of Service (DOS) assaults. Hardware vulner-
abilities related to common communication protocols such
as Serial Peripheral Interface (SPI), Inter-Integrates Circuit
(I2C), and Universal Asynchronous Reception and Trans-
mission (UART), testing standards such as Joint Test Action
Group (JTAG) standards for debugging embedded systems,
malware planting or direct physical access by Universal
Serial Bus (USB) devices, and other hardware vulnerabili-
ties are frequently targeted by attackers.

Consequently, regardless of the environment, attackers
can take advantage of an loT system’s flaws to acquire
unauthorized access and modify customer settings. Although
specific devices function via Secure Sockets Layer/Trans-
port Layer Security (SSL/TLS) protocol, which provides a
digital certificate that allows systems to verify the identity of
and subsequently establish an encrypted network connection
to another system, hackers continue to develop new methods
of circumventing security and intercepting communication
between the target devices.

Being a hundred percent secure in cyberspace with more
than 25 trillion devices is quasi-impossible. Most intrusion
detection and intrusion prevention systems contain a list of
attacks signatures in their database, limiting the potential of
the tools to alert the user when there is new attack traffic
coming from resource constrained devices. The challenges
highlighted previously thus expose devices to different types
of attacks, such as the Mirai Botnet attack, the Denial of
Service (DoS) Synflood attack, the Man in the Middle
(MIM) attack, and many others.

Furthermore, intelligent home automation systems, medi-
cal Internet devices, and building automation equipment
handle sensitive user information that must be appropriately
monitored. As a result, proposing an Intrusion Detection
System (IDS) for IoT devices is vital to limit the threat
surface and protect consumer data. Many literature reviews
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have proposed a solution using Deep Learning (DL) models.
However, Deep Learning requires high processing power,
unsuitable for constrained devices.

Given that many devices used in an IoT system have little
capacity and can send small bits of data into a central
network, more than 90% of IoT devices’ data are unen-
crypted, opening doors to cyber-attack. Increasingly, hack-
ers are now exploiting these edge device vulnerabilities to
cause harm to IoT platforms.

To improve the security of the smart gadgets that are
becoming increasingly prevalent in our everyday lives,
threat modeling should be addressed early in any system’s
development cycle to ensure that a system is as secure as
possible. Although threat modeling may be carried out at any
point during the creation of a system, incorporating it
throughout the development stage allows developers to stay
ahead of new risks, improve a system’s security, protect
customers’ safety, and deliver solutions that save both time
and money for all parties involved.

SUMMARY OF THE INVENTION

Methods and systems for securing loT automation
devices, particularly a subset of IoT devices consisting of
smart home automation devices such as intelligent cameras,
doorbells, light switches, baby monitors, and many other
home appliances, are disclosed. A testbed comprising more
than fifty IoT devices with various protocols was developed.
Several different types of attacks were orchestrated, includ-
ing Man-in-the-Middle (MIM) and Denial of Service (DoS)
attacks, to understand the devices’ behavior and data pat-
terns at the network level in the event of a security breach.
Further, due to the lack of specialized cyber threat data and
preprocessing tools, a novel packet capture (PCAP) parsing
tool was developed to extract meaningful patterns from the
captured dataset. The tool has been tested on real-world
attacks and normal traffic data. The framework can process
large amounts of data at a high rate. The estimated process-
ing time of more than one million packets is seven minutes
and twelve seconds. Finally, an ensemble machine learning
(ML) based Intrusion Detection System (IDS) was built as
a countermeasure to minimize the threat surfaces between
the IoT cloud platform and edge devices. The techniques
contribute to identifying the attacks directed through
resource constrained devices.

In a first embodiment, a computer-automated method of
modeling intrusion detection on an [oT network includes
preprocessing a set of raw data packets received from one or
more entities on the loT network, wherein the preprocessing
includes receiving the set of raw data packets from the one
or more entities on the IoT network; converting the raw data
packets to a PCAP file; converting the PCAP file to a comma
separated value (CSV) file; filtering the CSV file to create a
normal CSV file and an abnormal CSV file; merging the
normal CSV file and the abnormal CSV file to create a
merged file; removing redundant data in the merged file;
adding the merged file to a concatenated file with other
merged files; and extracting features from the concatenated
file to create a set of extracted features. Further, the method
includes building a test machine language (ML) model using
the set of extracted features; determining at least one ML
classifier of a set of ML classifiers based on the test ML
model; and building an ensemble ML model from the set of
ML classifiers. The filtering of the method can include
extracting and deleting packet headers of the CSV file before
creating the normal CSV file and the abnormal CSV file.

10

15

20

25

30

35

40

45

50

55

60

65

4

Additionally, the method can include identifying an attack
in the abnormal CSV file and labeling the features as being
associated with the attack and classifying the attack as an
attack type based on the features. The method can further run
additional raw data packets from the loT network through
the ensemble ML model to detect another attack of the attack
type.

In generating an ensemble set of ML classifiers, the
method can include selecting a first ML classifier to include
in the set of ML classifiers that detects a first attack during
training of the test ML model. The ensemble set of ML
classifiers can include one or more of Logistic Regression,
Decision Tree, Random Forest, AdaBoost, Gradient Boost-
ing, eXtreme Gradient Boosting (XGB), XGB Random
Forest (XGBRF), K-neighbor, Light Gradient Boosting
Machine (LGBM), and Support Vector Machine (SVM)
classifiers.

In building an ensemble ML, model and the ensemble set
of ML classifiers, the method can include splitting the set of
extracted features into test data and training data. For
example, the test data can include 20% of the set of extracted
features while the training data can include 80% of the set
of extracted features. The ensemble set of ML classifiers can
then be determined from the training data, while each ML
classifier of the ensemble set of ML classifiers can be
determined from unique features in the test ML model. Thus,
the test ML model can be built from the test data, while the
ML classifiers can be built from the training data.

Further, the method can create other files in the merged
files by preprocessing a corresponding other set of raw data
packets from the one or more entities on the IoT network.
The ensemble ML model can be further built from additional
extracted features resulting from the preprocessing of the
corresponding other set of raw data packets for each of the
other merged files.

As the method progresses, the further built ensemble ML
model can be used to create additional ML classifiers, thus
building an ensemble set of ML classifiers. The ensemble set
of ML classifiers can dynamically detect attacks of multiple
different attack types, which attack types may evolve in the
IoT network in real time as other attacks are identified.

The computer-automated method can also include evalu-
ating metrics associated with the detection of the other
attacks and updating at least one ML classifier of the set of
ML classifiers based on the metrics. The method can also
include evaluating aggregated metrics associated with the
detection of the attacks of multiple different attack types and
updating the set of ML classifiers based on the aggregated
metrics.

In another embodiment, a system for modeling intrusion
detection on an IoT network includes at least one device
having one or more processors and memory storing com-
puter-executable instructions that, when executed by the one
or more processors, cause the device to perform the methods
described above. A person having ordinary skill in the art
(POSITA) would understand that variations of the system
having components performing all or some of the functions
are within the scope of this disclosure. Further, the system
can incorporate components and functions in support of this
disclosure and as complementary to the IDS embodiments
described herein as disclosed in U.S. Non-Provisional appli-
cation Ser. No. 18/419,037, titled “Detection and Survival
Method Against Adversarial Attacks on Automated Sys-
tems,” filed with the USPTO on Jan. 22, 2024, for example,
and as would be understood by such POSITA for IDS
configurations in general.
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In still other embodiments, non-transitory computer-read-
able media storing computer-executable instructions cause
embodiments of the disclosed system to perform the meth-
ods described above when the computer-executable instruc-
tions are executed by the one or more processors of such
disclosed systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The numerous advantages of the present invention may be
better understood by those skilled in the art by reference to
the accompanying drawings in which:

FIG. 1 illustrates a typical configuration of an IoT net-
work, according to some embodiments;

FIG. 2 illustrates an example of a data flow diagram
(DFD) produced by an IDS employing automated threat
modeling to model threats for an example loT network,
according to some embodiments;

FIG. 3 illustrates a sequence diagram depicting an
example of a step-by-step procedure by which one or more
attackers may launch an attack and gain access to and
control over an IoT system;

FIG. 4 illustrates an intrusion detection system (IDS)
utilizing traditional intrusion detection components comple-
mented by a machine learning (ML) based IDS implement-
ing ensemble ML classifiers, according to some embodi-
ments;

FIG. 5 illustrates a method for capturing, preprocessing,
and extracting intrusion data from an IoT system to deter-
mine ensemble ML classifiers for building intrusion detec-
tion models, according to some embodiments;

FIG. 6 illustrates a method of preprocessing IoT system
traffic to extract meaningful patterns for determining
ensemble ML classifiers to be used in an ML-based IDS,
according to some embodiments;

FIG. 7 illustrates an exemplary computer system suitable
for implementing the methods and systems described herein;
and

FIG. 8 illustrates how the disclosed IDS incorporates
Welford’s Technique to compute sample variance for pack-
ets incrementally for improved processing metrics, accord-
ing to some embodiments.

DETAILED DESCRIPTION OF THE
INVENTION

The invention summarized above may be better under-
stood by referring to the following description, claims, and
accompanying drawings. A description of an embodiment,
set out below to enable one to practice an implementation of
the invention, is not intended to limit the preferred embodi-
ment, but to serve as a particular example thercof. Those
skilled in the art should appreciate that they may readily use
the conception and specific embodiments disclosed as a
basis for modifying or designing other methods and systems
for carrying out the same purposes of the present invention.
Those skilled in the art should also realize that such equiva-
lent assemblies do not depart from the spirit and scope of the
invention in its broadest form.

Descriptions of well-known functions and structures are
omitted to enhance clarity and conciseness. The terminology
used herein is for the purpose of describing particular
embodiments only and is not intended to limit the present
disclosure. As used herein, the singular forms “a,” “an,” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. Furthermore, the use
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6

of the terms a, an, etc. does not denote a limitation of
quantity, but rather denotes the presence of at least one of the
referenced items.

The use of the terms “first,” “second,” and the like does
not imply any particular order, but they are included to
identify individual elements. Moreover, the use of the terms
first, second, etc. does not denote any order of importance,
but rather the terms first, second, etc. are used to distinguish
one element from another. It will be further understood that
the terms “comprises” and/or “comprising,” or “includes”
and/or “including” when used in this specification, specify
the presence of stated features, regions, integers, steps,
operations, elements, and/or components, but do not pre-
clude the presence or addition of one or more other features,
regions, integers, steps, operations, elements, components,
and/or groups thereof.

Although some features may be described with respect to
individual exemplary embodiments, aspects need not be
limited thereto such that features from one or more exem-
plary embodiments may be combinable with other features
from one or more exemplary embodiments.

While the IoT market continues to grow, cloud service
providers and researchers are looking for new methods to
enhance the platform’s security. Due to the technical
requirements and characteristics of both open source and
commercial loT platforms, such IoT platforms inherently
experience platform vulnerabilities that emerge from an IoT
gateway that communicates with the backend of an IT
system. The most severe vulnerabilities can be found on IoT
devices at the edge of the IoT system because cloud pro-
viders have no control over the security of the devices that
are interfering with the platform. Because of their low power
and memory needs, loT devices cannot perform complicated
algorithms, posing a threat to the cloud computing platform.
Attackers use the vulnerabilities in IoT devices to enter the
IoT platform, allowing the attackers to take control of the
platform.

MIM and DoS attacks, for example, were conducted on an
intelligent testbed to better understand the behavior of the
IoT devices and assess the impact of the attacks. To deter-
mine the success of the disclosed countermeasure embodi-
ments for loT platform security, vulnerabilities from entities
interfering with the platform were simulated. Misconfigu-
ration, unpatched software leading to a potential attack, a
lack of proper security built-in constraint devices, and
firmware upgrades, for example, were considered. As part of
the countermeasure approach, normal and malicious data
traffic from the intelligent testbed were collected and ana-
lyzed to identify trends. A supervised machine learning
(ML) technique was applied to identify various attacks from
the smart gadgets in the IoT environment. Cloud providers
could integrate the disclosed IDS systems and methods into
their backend systems or have such systems and methods
operate in their gateways to monitor traffic and identify
attacks organized by IoT devices with little resources.

The following describes embodiments of methods and
systems to capture and parse intrusion data and apply ML
techniques to effectively support a more robust IDS.
Embodiments of an IDS include a framework with multiple
ML classifiers to model and detect various attacks. In one
example embodiment, at least ten ML classifiers were evalu-
ated against a variety of multiple types of attack data. The
accuracy of each classifier was recorded as follows: LR
(Logistic Regression) has 97%, SVC (Support Vector
Machine) has 98%, Extreme Gradient Boosting Random
Forest (XGBRF) has 99%, K-Nearest Neighbors (KNN) has
99%, AdaBoost (AB) is 99% accurate, Random Forest (RF)
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has 99%, Decision Tree (DT) has 99%, and Extreme Gra-
dient Boosting (XGB) has 99%. Finally, additional critical
parameters were considered to enhance the overall efficacy
of the IDS. A POSITA would understand that various other
ML techniques and algorithms could be applied.

In some embodiments, a method employs certain known
methodologies as building blocks, such as threat analysis,
threat modeling, and analytics. The purpose of threat mod-
eling is to prepare a system to avoid future threats and
assaults by identifying system weaknesses. The disclosed
method allows for the identification and analysis of possible
attackers, the determination of their objectives and tactics,
and the development of remedies and mitigation plans. In
one example embodiment, the method allows identification
of several entry points, such as SPI, UART, USB, Pulse—
With Modulation (PWM), and In-Circuit Serial Program-
ming (ICSP), that attackers may use to access a system
microcontroller and launch an attack.

In some embodiments, the method employs Common
Attack Pattern Enumeration and Classification (CAPEC)
analysis. CAPEC is a framework for a better understanding
of adversaries (attackers) and attack methods (threats).
CAPEC threat modeling can help security practitioners
better understand potential threats to applications and IT
systems. CAPEC provides a list of common attack methods
and patterns used by attackers to attack applications and IT
systems. This is useful because most attacks follow a certain
pattern, and an understanding of these patterns enables
development of mitigations for these attack patterns. Each
CAPEC attack pattern describes how attackers can breach
applications, including the common steps involved to use
the attack pattern. With its typical assault patterns, CAPEC
serves as a threat library, exposing the complexity and
possibility of an attack. Such attack threats defined in
CAPEC are CAPEC-94 (Man-in-the-Middle), CAPEC-615
(Evil Twin), CAPEC-651 (Eavesdropping), CAPEC-469
(Denial of Service), and CAPEC-151 (Spoofing), CAPEC-
81 (Access to Data Logs), for example. An understanding of
traditional attack patterns provides a foundation for attack
analysis disclosed herein.

In some embodiments, the method then employs STRIDE
threat modeling to identify and evaluate different threats to
the system microcontroller, including spoofing (identifying
authentication issues involving actors pretending to be
something or someone other than what or who they are),
tampering (identifying integrity issues, e.g., the modification
of data on parts of the network, such as a storage location),
repudiation (identifying actors that deny responsibility for
their actions), information disclosure (identifying confiden-
tiality issues involving actors obtaining information that
they are not allowed to access), denial of service (identifying
availability issues involving exhausted resources that are
needed to provide service), and elevation of privilege (iden-
tifying lack of authorization for actors attempting to perform
unauthorized actions).

In some embodiments, STRIDE threat modeling is used
in conjunction with a model of the target system that is
constructed in parallel. For construction of the model,
including a full breakdown of processes, data stores, data
flows, and trust boundaries, some embodiments of the
system utilize the pythonic framework (Py™), a code-based
solution utilizing a collection of Python modules that pro-
vides a set of common functionality for building applica-
tions of any type. Py™ enables developers to automate
constructing a threat model for any system. Further, some
embodiments of the system use a tool for visualizing a
system or plant, such as PlantUML. For example, PlantU-
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ML jar is a component that allows creation of various
Unified Modeling Language (UML) diagrams through
simple textual descriptions for visualizing representations of
complex systems, such as sequence and deployment dia-
grams.

In some embodiments, a threat modeling tool, such as the
Microsoft Threat Modeling Tool, can be used to identify and
mitigate potential security issues. Such a tool provides
automation for threat model development and diagramming,
in which guided STRIDE analysis of threats and mitigations
can be considered for focused design analysis, regarding
each element of the resulting diagram(s), as further illus-
trated and described below. The threat modeling methodol-
ogy applied herein provides a list of risks that demonstrate
the threats that are exposed to the IoT system’s micropro-
cessor board and recommends various mitigation strategies.
From the threat list, the program generates a threat report, a
structured document that presents all dangers and mitiga-
tions present in the environment.

For example, for a spoofing (authentication) threat, rec-
ommended mitigation might be creating a sufficient pass-
word. For a tampering (integrity) threat, recommended
mitigation might be using a digital signature to enhance the
security of the board. For a repudiation threat, usage of a
digital signature might be recommended. For an information
disclosure (confidentiality) threat, encryption, such as an
encrypted password, might be recommended. For a DoS
threat, the usage of firewalls to block unknown data traffic
might be recommended. For an elevation of privilege threat,
the tool might recommend securing the input data, such as
by encryption, for example.

Further, a built-in application programming interface
(API) and Software Development Kits (SDKs) are used to
develop or construct new applications and gateways for
connecting to third-party systems. For example, IoT Hub, a
cloud gateway for data management in an intelligent home-
based device that connects with the Microsoft Azure Cloud
platform, can be used.

FIG. 1 depicts a typical configuration of an IoT network
100. An attacker 122A, 122B, 122C can discover open ports
that are made available to devices 108 (including, for
example, light sensor(s) 110, smoke detector(s) 112, door
lock(s) 114, thermostat(s) 116, and a myriad of other sensor
(s) 118) that are normally authorized by network adminis-
trator 102 to use the IoT network 100. Attacker 122A, 122B,
122C can exploit the IoT network 100 at a router 104 or
gateway 106, adversely affecting control, monitoring, or
other interaction by IoT hub 120. In this way, hacker sensors
can exploit vulnerabilities to gain unauthorized access using
MIM or DoS attacks, for example. Methods and systems
described herein can assess such threats to various IoT
platforms, like the IoT network configuration in FIG. 1,
based on the functional capabilities and security features of
the IoT platforms, for both open source and commercial
platforms.

FIG. 2 illustrates an example of a data flow diagram
(DFD) 200 produced by an intrusion detection system (IDS)
employing automated threat modeling to model threats for
an example IoT network. In some embodiments, a threat
modeling tool, such as the Microsoft Threat Modeling Tool
previously described, can be used to identify and model
threats for a given IoT system. FIG. 2 illustrates an example
threat model depicting data flow diagramming, in which
guided STRIDE analysis of threats and mitigations can be
considered, with regard to attackers’ specific purposes for
intrusion, for focused design analysis.
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In at least one embodiment, the DFD 200 shown in FIG.
2 includes a list of possible threats that are generated for the
IoT system microprocessor 210, which can be a part of or in
communication with gateway 106. IoT system microproces-
sor 210 can be any of a number of development boards with
a microcontroller sufficient for performing the processing
described herein. For example, the Arduino Mega model
2560, an open-source development board with microcon-
troller, may be used. The Arduino Mega board has multiple
analog and digital inputs and outputs pins, a Universal
Asynchronous Receiver and Transmitter (UART) interface,
an oscillator with 16 MHz frequency, a Universal Serial Bus
(USB), an In-Circuit Serial Programming (ICSP) interface,
a Pulse Width Modulation (PWM) chip, a reset button,
different power sources and the integrated Wifi and Blu-
etooth modules. Some of the roles of the IoT system
microprocessor 210 include authenticating, registering,
managing, controlling, and/or monitoring sensors 108 in the
IoT system 100.

Further in reference to FIG. 2, PC 206 can be equivalent
to or part of network administrator 102. PC 206 can further
be in communication with cloud server 208 for communi-
cating outside of the IoT system, such as oT system 100. PC
206 and cloud server 208 are within a generic trust boundary
224 in which PC 206 and cloud server 208 exchange trusted
communications. However, beyond the trust boundary 224,
PC 206 and cloud server 208 consider IoT system micro-
processor 210 an untrusted source for which automated
threat modeling serves to detect and contain threats within
the IoT system, such as IoT system 100, controlled by IoT
system microprocessor 210.

FIG. 2 illustrates such modeled threats on the IoT system
100 by Attackers 202A-D, which can be the same or
different attackers, and which can be the same or similar to
Attackers 122A-C of FIG. 1. In a first modeled threat, an
external destination entity Attacker 202A connects 212 to
the IoT system microprocessor 210 via Wifi. Such threat is
categorized by the threat modeling tool as a spoofing threat
in which Attacker 202 A spoofs a legitimate user, process, or
entity to gain access to sensitive data via Wifi. In this case,
Attacker 202 A poses, or substitutes, as something other than
itself. Examples of such spoofing include substituting a
process, a file, a website, or a network address. An attacker
may spoof the user, sending data to the attacker’s target
instead of the user. By identifying the possible threat to the
system and modeling its interaction, IoT system 100 can
prioritize such a threat and be prepared to mitigate it when
it occurs. For mitigating such a threat, the threat modeling
tool may recommend using a standard authentication mecha-
nism to identify the external entity, such as having strong
Wired Equivalent Privacy (WEP)/WiFi Protected Access
(WPA) encryption on access points, having stronger router
login credentials, or using a Virtual Private Network (VPN),
for example.

In a second modeled threat illustrated by FIG. 2, Attacker
202B potentially denies receiving data and gains access to
sensitive data via UART. Such threat allows Attacker 202B
to send and transmit signals wirelessly 214, which allows
Attacker 202B to tamper with logs sent to IoT system
microprocessor 210. Such threat is categorized by the threat
modeling tool as a repudiation threat involving an adversary
denying something happened. In this case, Attacker 202B
claims that it did not receive data from a process on the other
side of the trust boundary 224. For mitigating such a threat,
the threat modeling tool may recommend using logging or
auditing to record the source, time, and summary of the
received data for validation of the sender and its data.
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In a third modeled threat illustrated by FIG. 2, Attacker
202C causes a denial of service (DoS) when it enters the loT
system via a Serial Peripheral Interface (SPI) to send bad
data between microcontrollers and small peripherals in the
IoT system. A DoS is sent to the IoT system microcontroller
210 from the affected entities when the process or a datastore
associated with the entities cannot service incoming requests
or perform up to specification. The result is a man-in-the-
middle (MIM) attack because the affected entities will send
requested information back to Attacker 202C instead of a
valid user, thus disclosing information to an undesirable
party. For mitigating such a threat, the threat modeling tool
may recommend techniques to establish better user authen-
tication for entities addressing microcontrollers and small
peripherals in the IoT system.

In a fourth modeled threat illustrated by FIG. 2, Attacker
202D attacks via the In-Circuit Serial Programming (ICSP)
interface to connect the IoT system microcontroller 210 to
the PC 206 for programming (at 218). The IoT system
microcontroller 210 provides an elevation of privilege to the
Attacker 202D. Attacker 202D can then interrupt data flow.
This can cause a denial of service or disable the datastore
from servicing incoming requests. Thus, memory on the IoT
system microcontroller 210 can be corrupted.

The first through fourth modeled threats are in contrast to
normal communications for general board connections. For
example, as illustrated, User 204A communicates normally
over USB to connect loT system microprocessor 210 and PC
206 (at 220) for normal communications, and the IoT system
microprocessor 210 provides these comnunications to User
204A. As another example, User 204B makes another gen-
eral board connection over the PWM interface to limit motor
and LED power (at 222). The IoT system microprocessor
210 provides analog results to User 204B.

FIG. 3 illustrates a sequence diagram depicting an
example of a step-by-step procedure by which one or more
attackers may launch an attack and gain access to and
control over an IoT system. The sequence diagram tracks the
illustrations of FIG. 2. The sequence diagram illustrates the
IoT system’s microprocessor board’s (e.g., microprocessor
210’s) entry points and documents the process of an attack
according to the board components and priority. Specifically,
the first modeled threat from Attacker 202A in FIG. 2 is
represented by steps (1)-(3) in FIG. 3. The second modeled
threat from Attacker 202B in FIG. 2 is represented by steps
(4)-(6) in FIG. 3. The third modeled threat from Attacker
202C in FIG. 2 is represented by steps (7)-(9) in FIG. 3. The
fourth modeled threat from Attacker 202D in FIG. 2 is
represented by steps (10)-(12) in FIG. 3.

In each case of attack detection such as those shown in
FIGS. 2 and 3, the threat modeling tool can assign a priority
to each threat based on overall impact, probability, cost to
clean from the system, etc. For example, the first, second,
and third modeled threats may be considered high or
medium priority because the threats could result in provid-
ing an attacker access to sensitive data. However, the type of
data provided may suggest a lower priority.

FIG. 4 illustrates an intrusion detection system (IDS) 400
utilizing traditional intrusion detection components 404
complemented by advanced components 420 including a
machine learning (ML) based IDS 422 implementing
ensemble ML classifiers 424, according to some embodi-
ments. A typical IDS may use several different techniques to
detect malicious network activity. Traditional components
404 of an IDS 402 for detecting malicious attacks may
include signature-based IDS 406, host-based IDS 408, and
network-based IDS 410 components. Fach of these tradi-



US 12,399,994 B2

11

tional components utilize a database of known attacks, rules
engine, etc. 412, which is available to the system for
comparison to and analysis of IoT system data (e.g., network
traffic, such as requests, responses, and handshakes). For
example, a signature-based IDS 406 identifies data having
unique patterns or identifiers in network traffic that indicate
malicious activity or unauthorized access, compares the data
to known signatures in a database, and generates an alert
when a match is found. Signature-based detection is com-
mon to antivirus tools, for example. Signature-based IDS
solutions are limited in that they are unable to detect patterns
or indicators of new threats that are not already known.

As another example of traditional components 404 of an
IDS, host-based IDS 408 solutions operate on individual
host systems, such as a server, a PC, or any other type of
device that produces logs, metrics, and other data that can be
monitored for security purposes. In comparison, a network-
based IDS 410 solution monitors for suspicious activity
from the perspective of the network, by analyzing network
data sources such as network switch logs for data indicating
threat patterns or indicators. While a host-based IDS 408
similarly monitors network activity, it does so from the
perspective of individual hosts, not centralized networking
equipment like switches. Additionally, a host-based IDS 408
may use additional data sources over network data and thus
can be more effective for various types of attack detection.
However, like signature-based IDS solutions, both host-
based IDS 408 and network-based IDS 410 solutions are
limited in their effectiveness because they are limited to
detection of known types of attacks and use established and
static detection rules from such database of known attacks,
rules engine, etc. 412.

Traditional components 404 of IDS 402 may utilize
previously described tools and frameworks from Toolset 414
for data collection, threat modeling, coding, and analysis
(e.g., CAPEC analysis, STRIDE threat modeling, code
frameworks such as the Pythonic framework, threat model-
ing tools such as the Microsoft Threat Modeling Tool, UML
tools such as PlantUML, etc.), to varying degrees.

Preferably, advanced components 420 are used in con-
junction with traditional components 404 and Toolset 414 to
provide context into actual network behavior that can be
dynamically configured as new types of attacks arise. To that
end, a machine learning (ML)-Based [DS 422 captures data
from an IoT system (including various commercial loT
devices), extracts meaningful patterns that indicate possible
suspicious activity from the captured dataset, and establishes
new and ever-changing rules for detecting and classifying
new attacks. ML-Based IDS 422 limits the threat surfaces
between the loT cloud platform and edge devices in an
automated way. By contrast, viewing normal data traffic
from IoT devices is a non-automated process for traditional
IDSs.

Further, although established ML techniques such as
logistic regression, decision tree, random forest, gradient
boosting, and K-neighbor classification are applied, various
aspects of the disclosed methods performed by MIL.-Based
IDS 422 apply algorithms for automatically pruning the
data, automatically selecting the most effective ML algo-
rithm(s) for accurately and dynamically identifying possible
attacks at a present time, and automatically determining a set
of ensemble ML classifiers 424 to apply to present and new
IoT system data for real-time attack detection. Thus, ML-
Based IDS 422, utilizing ensemble ML classifiers 424, is not
limited to detection of known types of attacks as would only
be possible for traditional components 404 by applying
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detection rules and pattern data from database of known
attacks, rules engine, etc. 412.

Specifically, MLL-Based 1IDS 422 includes Preprocessor
426 for preparing IoT system data for establishment and
dynamic maintenance of ensemble ML classifiers 424. Pre-
processor 426 is a unique tool to assist practitioners in
leveraging the gaps identified by other data collection tools.
IoT devices generate enormous amounts of data, necessitat-
ing an efficient tool capable of performing real-time pro-
cessing. Whereas traditional tool CICFlowMeter uses lists
of all of the packets captured to calculate the mean, variance,
and standard deviation from a few metrics such as packet
length, flow interval, arrival time, and flow active/idle time,
it repeats the calculation of the list of packets at each
iteration, which requires considerable processing time and
power. To get around this problem, Preprocessor 426 adds
CICFlowMeter metrics to a repository and applies Welford’s
technique to compute each packet incrementally. FIG. 8
illustrates how the disclosed IDS incorporates Welford’s
Technique to compute sample variance for packets incre-
mentally for improved processing metrics, according to
some embodiments. Welford’s technique compares the sums
of squared differences for M and M-1 data to compute
sample variance of the data, as shown in FIG. 8.

A novel packet capture (PCAP) Parsing Tool 428 was
developed for Preprocessor 426 to extract meaningful pat-
terns from a captured loT system dataset. PCAP files contain
the raw data of network packets captured from a network
interface, including headers and payloads of each packet.
Various packet capture tools exist that capture and analyze
PCAP files for detecting, investigating, and diagnosing
network security incidents, troubleshooting network issues,
analyzing protocols for identifying vulnerabilities and
developing mitigation strategies, and monitoring network
performance. However, existing tools are limited as to
processing performance and effectiveness in adapting to
changing security environments with new vulnerabilities.

Using PCAP Parsing Tool 428, Preprocessor 426 can
ingest raw packet files and apply specific scripts and filters,
merge and concatenate files, and apply ML techniques on the
combined data more efficiently and accurately than known
tools. For example, in the process of applying the PCAP
Parsing Tool 428 on a captured dataset, packet headers are
not saved, resulting in less processing time. In testing,
Preprocessor 426 performed significantly better in terms of
processing time than other techniques such as Argus,
nProbe, Zeek, Shark, and CICFlowMeter, with Preprocessor
426 processing at a rate of 1 M packets in 7 minutes and 12
seconds compared to 20 to 50 minutes for these other
techniques. Further, the PCAP parsing tool 428 has been
tested on both real-world attacks and normal traffic data and
shown to prepare datasets for identifying possible attacks
more effectively than other detection tools for similar attack
datasets collected from commercial IoT devices.

FIG. 5 illustrates a method 500 for capturing, preprocess-
ing, and extracting intrusion data from an IoT system (such
as IoT system 100) to determine ensemble ML classifiers
424 for building dynamic intrusion detection models for an
ML-based IDS 422, according to some embodiments.
Method 500 utilizes Preprocessor 426 with PCAP Parsing
Tool 428. In step 502, a dataset of raw packet data is
captured from network data sent over an [oT network. Such
raw packet data may be sent by or be affected by attackers
122A-C of FIG. 1, for example. In step 504, the dataset is
preprocessed using Preprocessor 426 with PCAP Parsing
Tool 428 according to the method of FIG. 6. In step 506,
features in the preprocessed dataset are extracted according
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to filtering rules for separating attack packets from benign
packets. In steps 508 and 510, the dataset including
extracted features identifying an attack are separated into
test data and training data. For example, in step 508, 20% of
the dataset is used for test data, and in step 510, the other
80% of the dataset is used for training data.

Additionally, or alternatively, the network traffic packets
are examined based on their potential source and destination
1P addresses. Through this method, ML-Based IDS 422 can
determine flow direction, analyzing source/destination from
components of an IP address. Because an IoT system’s
microprocessor can have many access points into which
various attacks can flow, the method is effective at concen-
trating the data at the access points for identification and
processing of attacks regardless of their source or destina-
tion.

From the test data, in step 512, a test ML, model is built.
In step 514, using an ensemble of ML classifiers arranged for
identifying various types of attacks, an ensemble ML model
is built for specific attacks that are found in the features of
the preprocessed dataset. In step 516, such ensemble ML
classifiers are determined from the training data determined
in step 510. For example, depending on a type of attack
determined from the captured features, one or more
ensemble ML classifiers can be determined as logistic
regression, decision tree, random forest, AdaBoost, gradient
boosting, eXtreme Gradient Boosting (XGB), XGB Random
Forest (XGBRF), K-neighbor, Light Gradient Boosting
Machine (LGBM), and/or support vector machine (SVM)
classifiers, for example.

In step 518, the ensemble ML model can be used to detect
one or more attacks of different attack types, for example, as
disclosed herein. As the ensemble ML model is used to
determine new attacks, new ML classifiers may be deter-
mined to feed back into and enhance the set of ensemble ML
classifiers. This in turn allows the ensemble ML model to be
further developed from the enhanced set of ensemble ML
classifier. In step 520, metrics are determined from the data
and evaluated for effectiveness in detecting attacks. Classi-
fication metrics can include accuracy, recall, and f1 score per
class, for example. In addition, true and false positives, true
and false negatives, can be used to calculate the metrics.
Thus, there are four possible outcomes: true, false, and
whether the predictions determining an attack were correct
or not. Such outcomes can include:

True Negative (TN): a case in which the actual label was
negative and predicted negative;

True Positive (TP): a case in which the actual label was
positive and predicted positive;

False Negative (FN): a case in which the actual label was
positive but predicted to be negative; and

False Positive (FP): a case in which the actual label was
negative but predicted positive.

Further, the precision represents how accurate the predic-
tions are in the model. Precision is defined as the ratio of true
positives to the sum of true and false positives for each class.
Recall represents the percentage of positive cases detected in
the model. Recall is defined as the ratio of true positives to
the sum of true positives and false negatives. Accuracy is the
number of correct predictions, which includes both positive
and negative predictions, divided by the total number of
predictions made. Score F1 represents the percentage of
correct positive predictions. Score F1 is a weighted har-
monic average of precision and recall such that the best
score is 1.0, and the worst is 0.0.

In step 522, the ensemble ML model can be updated,
using the enhanced ensemble ML classifiers, for further use
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in an IDS to detect new and evolving attacks. Both the
ensemble ML model and the set of ensemble ML classifiers
can be continuously improved as an IDS is used in a fielded
IoT system, thus continuously improving the ability of the
IDS to detect and prevent threats in the IoT system.

Specifically, the system performing method 500 can
evaluate the metrics associated with the detection of each
attack and update at least one ML classifier of the set of
ensemble ML classifiers based on the metrics. Further,
aggregated metrics associated with the detection of the
attacks of multiple different attack types can be used to
update the set of ensemble ML classifiers based on the
aggregated metrics.

FIG. 6 illustrates a method 600 of preprocessing loT
system traffic to extract meaningful patterns for determining
ensemble ML classifiers 424 to be used in an ML-based IDS
422 for threat modeling, according to some embodiments.
Method 600 can be performed for automated intrusion
modeling and detection on an IoT network. Method 600
utilizes Preprocessor 426 with PCAP Parsing Tool 428 and
can perform the function of step 504 in FIG. 5 in which the
method preprocesses a set of raw data packets from entities
on the IoT network, such as the IoT network illustrated in
FIG. 1. In step 602, raw data packets are received from one
or more entities on the loT network. Such raw data packets
may be sent by or be affected by attackers 122A-C of FIG.
1, for example. Raw data packets may be captured using a
packet capturing tool such as Wireshark, for example, at
various time intervals.

In step 604, the method converts the raw data packets and
creates, from the converted data, a packet capture (PCAP)
file. In step 606, the method applies a script to convert the
PCAP file to a comma separated value (CSV) file. In step
608, the method applies a filter to separate the data in the
dataset, creating a normal CSV file and an abnormal CSV
file, where the normal CSV file includes normal network
traffic and the abnormal CSV file includes indications of
abnormalities, such as would indicate a threat or intrusion by
attackers 122A-C. A description file is provided in the
dataset specifying the filtering rules for separating attack
packets from benign packets.

In step 610, the method then identifies an attack in the
abnormal CSV file. An attack may be identified in the data
using the threat detection and modeling tools previously
described herein. Once identified, the attack can be labeled
by labeling the features of the attack that are found in the
data. In step 612, based on the features, an attack can be
classified as a specific attack type using predetermined
models from the threat modeling tools described herein. In
step 614, the normal CSV file and the abnormal CSV file can
be merged to create a merged file. In merging the files,
redundant data can be removed to reduce file size. Addi-
tionally, packet header data can be discarded to further
reduce file size. Reduction of file size for the merged file
allows for faster processing times and improved focus on the
important data related to an identified attack.

In step 616, the method checks whether all raw data
packets have been preprocessed. If not, the method contin-
ues to preprocess raw data packets from step 602. If so, the
method continues to step 618. In step 618, the merged files
are combined in a concatenated file, and attack features are
extracted from the concatenated file to create a set of
extracted features for further processing by an ML modeling
and processing engine.

In step 622, similar to steps 508 and 512, a test ML model
is built, using the extracted features, by first separating a
portion of the data having the extracted features into test
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data. For example, 20% of the data may be portioned for
building the test MLL model. Continuing this example, the
remaining 80% of the data may be portioned as training data
for building an ML training model in step 620. Further in
step 620, one or more ML classifiers can be determined as
matching identified attack data and corresponding to an
attack type. An ensemble set of ML classifiers, as illustrated
in step 516 of FIG. 5, can be built from the determined ML
classifiers and continually enhanced as more attacks are
identified in attack data by performing method 600 on
network data of the [oT system.

Continuing method 600, in step 624, the test ML model
(as in step 512 of FIG. 5) can be used to build an ensemble
ML model (as in step 514 of FIG. 5), which is enhanced with
ML classifiers from step 620 specific to attacks that are
identified and classified in the network data as an IDS
operates on the IoT network in real time (according to steps
518, 520, and 522 of FIG. 5). In this way, both the ensemble
ML model in step 624 and the ensemble ML classifiers in
step 620 can be continuously enhanced for detecting further
attacks, as attacks evolve on the IoT network. Attacks may
evolve as Attackers 122A-C get more sophisticated or
attempt different types of attacks, or as new attackers enter
the IoT network.

The threat detecting and modeling process of FIGS. 5 and
6 may be carried out at any point during the creation of an
IoT system, incorporating it throughout the development
stage and leveraging the benefits of improved threat mod-
eling at each point in an IDS to improve the IoT system’s
security.

Such threat modeling as disclosed herein can go much
farther in securing many devices in an intelligent home
setup. Realistically, ordinary individuals will have a variety
of 10T devices in their house, many of which will have
fundamental functions that the individuals will not be aware
of. Homeowners are thus placed in an insecure setting as the
IoT devices are susceptible to cyber threats. The concepts
described herein can be applied to map out the security
posture of a whole system of IoT devices. In the case of loT
devices in an intelligent home, additional hardware and
software for cloud capabilities can be developed. The dis-
closed threat models can target diverse capabilities depend-
ing on a system’s complexity while bringing to light new
risks that may have previously gone unnoticed.

Exemplary Computer System

FIG. 7 illustrates an exemplary computer system 700
suitable for implementing the methods and systems
described herein. The Intrusion Detection System and
aspects implementing the physical security techniques
described herein may take the form of computer system 700,
although variations thereof may readily be implemented by
persons skilled in the art as may be desirable for any
particular installation. In each such case, one or more
computer systems 700 may carry out the foregoing methods
as computer code.

Computer system 700 includes a communications bus
702, or other communications infrastructure, which com-
municates data to other elements of computer system 700.
For example, communications bus 702 may communicate
data (e.g., text, graphics, video, other data) between com-
munications bus 702 and an I/O interface to input device 726
and output device 728, which may include a display, a data
entry device such as a keyboard, touch screen, mouse, or the
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like, and any other peripheral devices capable of entering
and/or viewing data as may be apparent to those skilled in
the art.

Further, computer system 700 includes at least one pro-
cessor, which may include central processing unit (CPU)
704 and general processing unit (GPU) 708, and which may
comprise a special purpose or a general purpose digital
signal processor. CPU 704 may communicate with cache
706 for temporary processing memory. CPU 704 can include
one or more hardware or software service(s), such as ser-
vices 718, 720, 722 stored in storage device 716, configured
to control the one or more processors of CPU 704. A
software service can perform one or more functions when
the one or more processors execute(s) the software associ-
ated with the service. In some embodiments, a service is a
program or a collection of programs that carry out a specific
function. In some embodiments, a service can be considered
a server. CPU 704 can alternatively, or additionally, include
a special-purpose processor having software instructions
incorporated into the processor design.

Still further, computer system 700 includes a system
memory 710, which may include or interface with random
access memory (“RAM?”) 714, read-only memory (“ROM™)
712, one or more mass storage devices, or any combination
of tangible, non-transitory memory, for example. Still fur-
ther, computer system 700 may include a secondary
memory, which may comprise a hard disk, a removable data
storage unit, or any combination of tangible, non-transitory
memory. For example, computer system 700 may include
storage device 716.

Finally, computer system 700 may include a communi-
cation interface 724, such as a modem, a network interface
(e.g., an Ethernet card or cable), a communications port, a
PCMCIA slot and card, a wired or wireless communications
system (such as Wi-Fi, Bluetooth, Infrared, and the like),
local area networks, wide area networks, intranets, and the
like.

Each of system memory 710, ROM 712, RAM 714,
storage device 716, communication interface 724, and com-
binations of the foregoing may function as a non-transitory
computer usable storage medium or computer readable
storage medium to store and/or access computer software
including computer instructions. For example, computer
programs or other instructions may be loaded into the
computer system 700 such as through a removable data
storage device (e.g., a floppy disk, ZIP disks, magnetic tape,
portable flash drive, optical disk such as a CD, DVD, or
Blu-ray disk, Micro Electro Mechanical Systems
(“MEMS”), and the like). Thus, computer software includ-
ing computer instructions may be transferred from, e.g., a
removable storage or hard disc to secondary memory, or
through communications bus 702 to system memory 710.

Communication interface 724 allows software, instruc-
tions and data to be transferred between the computer
system 700 and external devices or external networks.
Software, instructions, and/or data transferred by the com-
munication interface 724 are typically in the form of signals
that may be electronic, electromagnetic, optical or other
signals capable of being sent and received by communica-
tion interface 724. Signals may be sent and received using
a cable or wire, fiber optics, telephone line, cellular tele-
phone connection, radio frequency (“RF”) communication,
wireless communication, or other communication channels
as will occur to those of ordinary skill in the art.

Computer programs, when executed, allow one or more
processors of computer system 700 to implement the meth-
ods discussed herein for the detection and prevention of
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various cyber-attacks on BACnet devices in communication
on a BACnet MS/TP network, according to computer soft-
ware including instructions. Computer system 700 may
perform any one of, or any combination of, the steps of any
of the methods described herein. It is also contemplated that
the methods according to the present invention may be
performed automatically or may be accomplished by some
form of manual intervention.

The computer system 700 is provided only for purposes of
illustration, such that the invention is not limited to this
specific embodiment. Persons having ordinary skill in the art
are capable of programming and implementing the instant
invention using any computer system.

Further, computer system 700 may, in certain implemen-
tations, comprise a handheld device and may include any
small-sized computing device, including by way of non-
limiting example a cellular telephone, a smartphone or other
smart handheld computing device, a personal digital assis-
tant, a laptop or notebook computer, a tablet computer, a
hand held console, an MP3 player, or other similarly con-
figured small-size, portable computing device as may occur
to those skilled in the art.

An Intrusion Detection System may, in an exemplary
configuration, be implemented in a cloud computing envi-
ronment for carrying out the methods described herein. That
cloud computing environment uses the resources from vari-
ous networks as a collective virtual computer, where the
services and applications can run independently from a
particular computer or server configuration making hard-
ware less important. The cloud computer environment
includes at least one user computing device. The client
computer may be any device that may be used to access a
distributed computing environment to perform the methods
disclosed herein and may include (by way of non-limiting
example) a desktop computer, a portable computer, a mobile
phone, a personal digital assistant, a tablet computer, or any
similarly configured computing device.

A client computer preferably includes memory such as
RAM, ROM, one or more mass storage devices, or any
combination of the foregoing. The memory functions as a
computer readable storage medium to store and/or access
computer software and/or instructions.

A client computer also preferably includes a communi-
cations interface, such as a modem, a network interface (e.g.,
an Ethernet card), a communications port, a PCMCIA slot
and card, wired or wireless systems, and the like. The
communications interface allows communication through
transferred signals between the client computer and external
devices including networks such as the Internet and a cloud
data center. Communication may be implemented using
wireless or wired capability, including (by way of non-
limiting example) cable, fiber optics, telephone line, cellular
telephone, radio waves or other communications channels as
may occur to those skilled in the art.

Such client computer establishes communication with the
one or more servers via, for example, the Internet, to in turn
establish communication with one or more cloud data cen-
ters that implement an Intrusion Detection System. A cloud
data center may include one or more networks that are
managed through a cloud management system. Each such
network includes resource servers that permit access to a
collection of computing resources and components of the
Intrusion Detection System, which computing resources and
components can be invoked to instantiate a virtual computer,
process, or other resource for a limited or defined duration.
For example, one group of resource servers can host and
serve an operating system or components thereof to deliver
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and instantiate a virtual computer. Another group of resource
servers can accept requests to host computing cycles or
processor time, to supply a defined level of processing
power for a virtual computer. Another group of resource
servers can host and serve applications to load on an
instantiation of a virtual computer, such as an email client,
a browser application, a messaging application, or other
applications or software.

The cloud management system may comprise a dedicated
or centralized server and/or other software, hardware, and
network tools to communicate with one or more networks,
such as the Internet or other public or private network, and
their associated sets of resource servers. The cloud manage-
ment system may be configured to query and identify the
computing resources and components managed by the set of
resource servers needed and available for use in the cloud
data center. More particularly, the cloud management system
may be configured to identify the hardware resources and
components such as type and amount of processing power,
type and amount of memory, type and amount of storage,
type and amount of network bandwidth and the like, of the
set of resource servers needed and available for use in the
cloud data center. The cloud management system can also be
configured to identify the software resources and compo-
nents, such as type of operating system, application pro-
grams, etc., of the set of resource servers needed and
available for use in the cloud data center.

In accordance with still further aspects of an embodiment
of the invention, a computer program product may be
provided to provide software to the cloud computing envi-
ronment. Computer products store software on any com-
puter useable medium, known now or in the future. Such
software, when executed, may implement the methods
according to certain embodiments of the invention. By way
of non-limiting example, such computer usable mediums
may include primary storage devices (e.g., any type of
random access memory), secondary storage devices (e.g.,
hard drives, floppy disks, CD ROMS, ZIP disks, tapes,
magnetic storage devices, optical storage devices, MEMS,
nanotech storage devices, etc.), and communication medi-
ums (e.g., wired and wireless communications networks,
local area networks, wide area networks, intranets, etc.).
Those skilled in the art will recognize that the embodiments
described herein may be implemented using software, hard-
ware, firmware, or combinations thereof.

The cloud computing environment described above is
provided only for purposes of illustration and does not limit
the invention to this specific embodiment. It will be appre-
ciated that those skilled in the art are readily able to program
and implement the invention using any computer system or
network architecture.

Having now fully set forth the preferred embodiments and
certain modifications of the concept underlying the present
invention, various other embodiments as well as certain
variations and modifications of the embodiments herein
shown and described will obviously occur to those skilled in
the art upon becoming familiar with said underlying con-
cept. It should be understood, therefore, that the invention
may be practiced otherwise than as specifically set forth
herein.

The invention claimed is:

1. A computer-automated method of modeling intrusion
detection on an Internet of Things (IoT) network, the method
comprising:

preprocessing a set of raw data packets received from one

or more entities on the IoT network, wherein the
preprocessing comprises:
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receiving the set of raw data packets from the one or
more entities on the IoT network;

converting the raw data packets to a packet capture
(PCAP) file;

converting the PCAP file to a comma separated value
(CSV) file;

filtering the CSV file to create a normal CSV file and
an abnormal CSV file;

merging the normal CSV file and the abnormal CSV
file to create a merged file;

removing redundant data in the merged file;

adding the merged file to a concatenated file with other
merged files; and

extracting features from the concatenated file to create
a set of extracted features;

building a test machine language (ML) model using the

set of extracted features;

determining at least one ML classifier of a set of ML

classifiers based on the test ML model;

building an ensemble ML model from the set of ML

classifiers to determine one or more attack types;
identifying an attack in the abnormal CSV file and label-
ing the features as being associated with the attack; and
classifying the attack as an attack type based on the
features.

2. The computer-automated method of claim 1, further
comprising running additional raw data packets from the loT
network through the ensemble ML model to detect another
attack of the attack type.

3. The computer-automated method of claim 1, wherein
the filtering comprises extracting and deleting packet head-
ers of the CSV file before creating the normal CSV file and
the abnormal CSV file.

4. The computer-automated method of claim 1, further
comprising selecting a first ML classifier to include in the set
of ML classifiers that detects a first attack during training of
the test ML model.

5. The computer-automated method of claim 1, wherein
the set of ML classifiers comprise one or more of Logistic
Regression, Decision Tree, Random Forest, AdaBoost, Gra-
dient Boosting, eXtreme Gradient Boosting (XGB), XGB
Random Forest (XGBRF), K-neighbor, Light Gradient
Boosting Machine (LGBM), and Support Vector Machine
(SVM) classifiers.

6. The computer-automated method of claim 1, further
comprising splitting the set of extracted features into test
data and training data.

7. The computer-automated method of claim 6, wherein
the test data comprises 20% of the set of extracted features
and the training data comprises 80% of the set of extracted
features.

8. The computer-automated method of claim 7, wherein
the set of ML classifiers is determined from the training data.

9. The computer-automated method of claim 1, wherein
each ML classifier of the set of ML classifiers is determined
from unique features in the test ML, model.

10. The computer-automated method of claim 1, wherein
each one of the other merged files is created by preprocess-
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ing a corresponding other set of raw data packets from the
one or more entities on the IoT network.

11. The computer-automated method of claim 10, wherein
the ensemble ML model is further built from additional
extracted features resulting from the preprocessing of the
corresponding other set of raw data packets.

12. The computer-automated method of claim 11, wherein
the further built ensemble ML model comprises ensemble
ML classifiers to detect attacks of multiple different attack
types.

13. The computer-automated method of claim 6, wherein
the test ML model is built from the test data.

14. The computer-automated method of claim 2, further
comprising evaluating metrics associated with the detection
of the other attack and updating at least one ML classifier of
the set of ML classifiers based on the metrics.

15. The computer-automated method of claim 12, further
comprising evaluating aggregated metrics associated with
the detection of the attacks of multiple different attack types
and updating the set of ML classifiers based on the aggre-
gated metrics.

16. A system for modeling intrusion detection on an
Internet of Things (IoT) network, the system comprising:

a device comprising one or more processors and memory

storing computer-executable instructions that, when
executed by the one or more processors, cause the
device to:
preprocess a set of raw data packets received from one
or more entities on the IoT network, wherein the
preprocessing comprises:
receive the set of raw data packets from the one or
more entities on the IoT network;
convert the raw data packets to a packet capture
(PCAP) file;
convert the PCAP file to a comma separated value
(CSV) file;
filter the CSV file to create a normal CSV file and an
abnormal CSV file;
merge the normal CSV file and the abnormal CSV
file to create a merged file;
remove redundant data in the merged file;
add the merged file to a concatenated file with other
merged files; and
extract features from the concatenated file to create
a set of extracted features;
build a test machine language (ML) model using the set
of extracted features;
determine at least one ML classifier of a set of ML
classifiers based on the test ML model;
build an ensemble ML model from the set of ML
classifiers to determine one or more attack types;
identify an attack in the abnormal CSV file and label
the features as being associated with the attack; and
classify the attack as an attack type based on the
features.
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