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Marshes and Oyster pe—-
Aquaculture
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Back ground: Organic Matter

How does carbon enter our waterways?
How does carbon cycle through the biosphere and hydrosphere?

Decoraposition
e

X
_
05\) - )
’————?\(\&@ Plant Matter W
| ¥ | _.:"j\ . ;; .
LI -

2




J

A PR B
] | I

{1 M M N | AR AR AY B) |

Sources of Or'qanic Matter

Marsh-Estuarine 4
_ Interface
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e Place of change where these

materials are exchanged
e This could also be true for the

interface between oyster S -

aquaculture and estuaries Estuar
watershed, soils, marsh plankton/algae, fish,

plants ocean
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C omposition of Dissolved Organic Matter

DOM is a complex mixture

1. Many different sources
a. Riverine inputs, plankton, plants, algae, soils, GW pores

1. Range of molecular weights
a. Can organisms use/consume it? Is it worth it? Is it
useful?
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C omposition of Dissolved Organic Matter

DOM is a complex mixture

1. To help identify this complex mixture, we use CDOM
a. Absorption and fluorescence of CDOM used to estimate
potential sources, average molecular weight, and bio and
photochemical reactivity
.. Will it break down in sunlight?

1. Fluorescence (fDOM) helps identify humic-like materials
(terrestrial) and protein-like (aquatic) materials
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5 How do CDOM SR and fDOM SF ratio vary between
6;03 I S @ Tidal Marshes and Oyster Aquaculture systems?
]
®

e

907 How does this impact future climate change

studies?
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field & Lab Methodology  (

1. Place ISCOs to run for 25 hour period at TM
and OA sites
2. Use vacuum filtration to filter known
quantity of sample through GF/F Filters
3. Collect filtrate and filter again through 0.2
um syringe filters for fDOM and CDOM TM : Tidal Marsh
analysis OA : Oyster Aquaculture
4. Store filtratein fridge = ES - Eastern Shore

5. Repeat for all samples | NS SN
3. 1-11. A&B. ES&JP S W N = JP : Jefferson Patterson Park

.. More sample reps ’gu | 4_ =/ EX: OAJP is Oyster Aquaculture at

Jefferson Patterson Park
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CDOM Methodology

1. Let refrigerated samples sit for one
hour

2. Boot up UV-1900i “Leela” and run DI
water for standardization

3. Run samples through UV-1900i
Spectrophotometer

4. Absorbance measured from 240 -
/750 nm

5. Run data through MATLAB
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CDOM Absorbance Scan
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Amount of light
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light hitting the
sample
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CDOM & Slope Ratio

Slope Ratio

e High slope ratio: More low molecular weight Definition
molecules (marine/ocean)

e Low slope ratio: More high molecular weight

molecules (terrestrial)
Slope Ratio:

Importance ,
A comparison of the slopes of two

e Learning source and type of organic matter = portions of CDOM absorbance scan.

(5275-295 and S350-400)
Greatest variability!

learning about what's available for organisms
e OM regulates water quality/health of coastal
ecosystems
e Climate changeimpacts on TM and OA
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CDOM Slope Ratio Results

Average CDOM Slope Ratio at Oyster Aquaculture and Tidal Average CDOM Slope Ratio Compared to Tides
Marsh B Tidal Marsh [} Oyster Aquaculture
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Average CDOM Slope Rat

Site Type

Tidal Marshes had a lower slope ratio Low tides had lower slope ratios than

than Oyster Aquaculture Systems most other tidal stages
p=0.2078 (not significant) p=0.1247 (not significant)
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CDOM Slope Ratio Discussion

1. Tidal Marshes had a lower slope 2. Low tides had a lower slope
ratio (SR) ratio
a. Lower SR = more terrestrial a. Less marine/ocean water
sources, and higher molecular coming in, more riverine
weights input
.. Harder to breakdown and
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fDOM Meth odoloqg

1. Let refrigerated samples sit for one hour
2.Boot up RF-6000 “Kiki” and run DI water for standardization
3. Run samples through SF programs in RF-6000

a. SF: Synchronous Fluorescence
4.Run data through MATLAB
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fDOM Synchronous fluorescence (Sf)
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fDOM & SF Ratio

fDOM SF Ratio

e High SF Ratio- higher molecular weight, terrestri Definition
e Low SF Ratio - lower molecular weight, marine
e Higher SF Ratio at low tide (more terrestriall)

Fluorescent Dissolved Organic Matter:
Fraction of CDOM that fluoresces.
Absorbs light over a broad range of

visible and UV wavelength.
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Tzortziou et al. 2008
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fDOM SF Results

Average SF Ratio m Tidal Marshes and Oyster Aquaculture Average SF Ratio Compared to Tides

0.45 B Tidal Massh [l Oyster Aquaculture
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Tidal Marshes had a higher SF ratio Tidal Marshes had more variation than
than Oyster Aquaculture Systems Oyster Aquaculture

p< 0.001 (significant) p=0.019 (significant)
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fDOM SF Discussion

1. Tidal Marshes had a higher SF 2. TM and OA variation
ratio difference
a. Higher SF = more terrestrial a. Tidal stage influences TM
sources, and higher molecular more dramatically than OA
weights b. High tides = lower SF =more
.. Harder to breakdown and marine/ocean
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®
® 6) 1 How do CDOM SR and fDOM SF Ratio vary between Tidal

60& I S : Marshes and Oyster Aquaculture systems?

( RCV’ S lth ) - 0 Z How does this impact future climate change studies?

y |

I [ 11 § A o i A I A A A \ ' A | AN NN ~

More terrestrial organic matter was found in tidal marshes

' 0 and during low tides. Tidal stages played larger role in Tidal

. 1 Marshes.

CDOM SR and fDOM SF Ratio in agreement.

. 0 Z Possible oysters are transforming terrestrial OM into marine

OA minimizes impact of tides on OM— less variation.

OM. Less terrestrial »>easier to use—used for respiration or

energy instead—less sequestration—more CO, in atm
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Next Steps

fDOM Excitation Emission Matrix
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1. Congressionally Directed Spending 2023 (Earmark) “Morgan

State University's PEARL Lab Student Research Enhancements.”
2.Dr. Amanda Knobloch (where would | be without her?!)
3. Imani & Lilah
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