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Results

T1dal marshes play a crucial role 1n the production and transport of various
forms of carbon 1n riverine and estuarine ecosystems

As tidal marshes are at risk of drowning and disappearing due to sea level rise,
oyster aquaculture facilities are increasing as demands rise for seatood
produced with less environmental impact

Comparison of carbon concentrations, tidal trends, and seasonal trends 1n
tidal marshes (1'M) and oyster aquaculture tacilities (OA) could reveal

similarities that allow OA to supplement the coastal carbon cycling provided
by TM!

Dissolved organic carbon (DOC) compounds are smaller than 0.7 pm and are
produced from erosion, decomposition, plate leachates, plankton, and a variety
of other terrestrial and aquatic sources?

Fluorescent dissolved organic matter ({DOM) 1s made up of marine and
terrestrial components that can be characterized by their tfluorescent properties
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Methodology

At paired OA and T'M sites in each sampling location (ES, JP, PR), 950 mL
of water were sampled by leledyne ISCO 6712 Automatic Water Sampler
every 2.5 hours for 25 hours (11 samples) every other month'

All samples were vacuum filtered; DOGC samples were additionally filtered

through 0.2 pm Supor membrane syringe filters and acidified with 2 pl. 4M
HCI per 1 mL water’

Concentration of DOC 1n water samples was measured using Shimadzu

TOC-L with TNM-L
fDOM samples were analyzed using Shimadzu RF-6000 Spectro

Fluorophotometer to produce excitation-emission matrices (EEMs)*

EEMs were analyzed for f{DOM components and maximum fluorescence
(fMax) intensity values using parallel factor analysis (PARAFAC)
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Figure 2. Average concentrations of DOG (mg/L) measured in oyster aquaculture and tidal marsh water samples collected in June 2025 at ES, JP, and PR sites. No statistically significant differences were observed between
the OA and TM total averages across all sites (left), averages at each individual sampling site (middle), or averages at each tide stage: low, rising, high, and falling (right).
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Figure 3. Four components of {DOM derived from PARAFAC of EEMs. Components | and 2 are likely

terrestrial due to their high fluorescence. Component 3 1s similar to traditional peak “M” which 1s
characterized as marine humic-like.* Component 4 is likely marine humic-like.

OA and TM do not differ significantly in average DOC concentration in total, by

Conclusions

site, or at different tide stages. '1'his supports the potential for oyster aquaculture

and tidal marshes to contain similar concentrations and tidal fluctuations of DOC,

which will become increasingly important as tidal marshes are lost and oyster

aquacul

OA and

ture expands.

'I'M do not differ significantly in average total {Max intensity for any of

the four components, however, seasonal differences between OA and '1T'M were
significant. Specifically, there was significant seasonal variation in terrestrial
components (1) across all seasons, while marine components (3 and 4) varied

significantly only in winter and spring. 'T'hese differences in {DOM composition

indicate that although carbon concentrations are similar between OA and TM, the

composition of this organic matter varies between them.

Figure 4. Average intensity of the {Max of each fDOM component measured in OA and TM water samples collected
from Oct 2024 — June 2025 at ES, JP, and PR sites. No statistically significant difference was observed between the OA
and TM averages across all sites (top). Asterisks denote statistically significant differences between OA and TM average
intensities of individual components (fMax1-4) in certain seasons (**** p<0.0001, * p <0.09).
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