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• Biofouling communities, generated by marine sessile organisms, are 
important links in estuarine food chains.

• Biofouling succession begins with “microfouling,” as microorganisms 
create a thin layer of biogenic material called “biofilm.” This is followed by 
“macrofouling” by larger organisms which create three-dimensional 
structures that provide shelter to motile organisms.

• Artificial Intelligence (AI) can be a useful tool to efficiently assess biofouling 
organisms and system health. However, accuracy depends on data 
availability.

• This project sought to improve AI algorithms currently applied at APL 
through the observation of differences in biofouling communities due to 
depth and position of collection plates in a shallow, coastal marine 
environment.

• Samples were collected June 25 to July 22, 2025.

Field Methods:
• We deployed at three different sites on the shoreline of the Patuxent R. 

(Figure 1) that differed in substrate type and wave energy.
• Shallow plates were anchored at 3” depth and deep plates were placed 

approx. 25” below the surface of the water. 

Lab Methods:
• Tested image quality of 4 camera models on pre-existing collection plates 

that had been submerged in the water for over a year, to ensure the 
presence of well-developed fouling communities.

• In situ (in water) and ex situ (in air) photos taken.
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• AI predicted depth, side, site, and week with 
high accuracy using images collected in 
week 2 (Figures: 5, 6, 7, 8).

• Week 3 results are similar, with accuracy of 
depth, side, and site being 95%, 97.7%, 
79.5% respectively. 

• Site 2 had overlap with sites 1 and 3, which 
may reflect more substantial differences 
between sites 1 and 3, such as wave energy 
or bottom substrate type.

• iPhone 11 camera with a waterproof case 
was used to take photos throughout the 
project due to its image clarity and user-
friendly design, compared to images taken 
in situ and ex situ with a GoPro Max, GoPro 
Hero 11, and Insta360 (Figure 3).

• Best method for taking photos was when 
plates were exposed to air (Figure 4). This 
method is also compatible with pervious 
data collected, allowing for a larger dataset 
to be used in future machine learning tasks.

• Numerous unanticipated differences in 
community structure were observed:
▪ Encrusting bryozoans present in high 

quantities at site 2 compared to other 
sites.

▪ Increased presence of bryozoans on 
deep plate bottoms compared to deep 
plate tops.

▪ From site 1 to site 3, green algae growth 
decreased on top plates.

▪ Environmental factors at site 3 differ most 
from sites 1 and 2.

Main Takeaways

• Explore possible factors attributable to 
unexpected observations, e.g., higher 
bryozoan presence.
▪ Ho1: UV availability
▪ Ho2: Wave energy
▪ Ho3: Bottom substrate type
▪ Ho4: Community interactions
▪ Ho5: Increased human traffic at site 3

• Continue improvement of machine learning 
by supplying AI with more images of 
collection plates to increase the number of 
training images.

• YSI measurements were recorded twice a week.
• One-way ANOVA (Analysis of Variance) was run for all environmental 

factors with a p-value > 0.05.

Figure 1: Deployment 
s ites  a long the 
Patuxent River. 

Figure 2: Shallow 
and deep PVC 
frames  deployed at 
each s ite.

Machine Learning Methods:
• All images of collection plates were processed through CLIP (Contrastive 

Language-Image Pre-training) AI, a learning model which pairs text and 
images based on similarity, to encode images.

• The image encoding step converts each image into a series of numbers 
that describe and represent the content of the image.

• A dimensionality reduction algorithm, t-SNE (t-distributed Stochastic 
Neighbor Embedding), is applied to the image encodings. The t-SNE 
algorithm reduces the image encoding from 512 dimensions to two 
dimensions while preserving the overall structure of the data set to analyze 
plate depth, side, site, and week accuracy (Figures: 5, 6, 7, 8).

• 100 images from week 2 were used to train the AI and 44 were used for 
testing accuracy.

7) Environmental differences between sites was not significant.
• Temperature, salinity, and DO is do not vary enough between sites to indicate a difference in biofouling structure on collection plates.

Figure 9: Comparis on of dis s olved oxygen, s alinity, and temperature between three s ites .

1) iPhone 11 camera had the best quality photos
compared to GoPro Max, GoPro Hero 11, and 
Insta360.

Figure 3: In s itu 
(underwater in the 
Patuxent River) 
pictures  taken by each 
camera tes ted. From 
left to right: iPhone 11, 
GoPro Max, GoPro 
Hero 11, Ins ta360.

Figure 4: iPhone 11 
images  of pla tes  in 
s itu and ex s itu, left 
to right.

2) Out of water imaging was chosen for the remainder 
of the project as the best image taking method.

3) Depth is predicted with 95% accuracy.

Figure 5: t-SNE plot of panel depth a t week 2. images . from s ite 1 s howing differences  
between depths . Top right: s hallow (S), bottom right: deep (D). 
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4) Surface (top vs. bottom) is predicted with 90% 
accuracy.

Figure 6: t-SNE plot of panel s ide a t week 2. Images  s howing difference between s ides . Top 
s ide (T) s hown above bottom s ide (B) of the s ame plate.
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Figure 7: t-SNE plot of panel s ites  a t week 2. Images  (top s ide) s howing differences  
between s ites . In order of s ites .

5) Site is predicted with 86.3% accuracy.
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6) Exposure time is predicted with 85.7% accuracy.

Figure 8: t-SNE plot of panels  by week. Images  s howing s ucces s ion of one plate 
(s ite 1) over three weeks . In order of weeks .
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• PVC frames were created to hold

12 3x5” collection plates. We 
deployed two frames per site 
(Figure 2).

• Each week, photos were taken of 
each individual plate’s top and 
bottom.
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