Morgan State University MDTC 411 CLINICAL CHEMISTRY AND URINALYSIS PRACTICUM SUGGESTED LABORATORY ROTATION SCORING RUBRIC Please attach the student's test record to this evaluation

Clinical Chemistry Analyzer Operation

TEST ITEM	Exceeds	Meets	Meets Standards	Does Not Meet
1E3111EW	Standards	Standards	AFTER REVIEW	Standards
Impulant out the atom doud	(4 pts)	(3.5 pts)	(2.5 pts)	(1.5 pt)
Implement the standard	Exceeds the	Meets the standard	Fail to meet the	Fail to meet the
safety precautions in the	standard safety	safety precautions	standard safety	standard safety
clinical laboratory-	precautions		precautions,	precautions,
12 runs			counseled one time	counseled more
D	0	O	0	than one time
Prepares reagents, calibrators and control	Completes all of the tasks	Completes 2 of the 3 tasks	Completes 1 of the 3 tasks	Fail to complete any of the tasks
material within the	the tasks	3 lasks	o lasks	of the tasks
acceptable QA limits for a				
minimum of 10 different				
runs with 100% accuracy				
Prepares a dilution with	Prepares 8 of the	Prepares 6 of the 10	Dranaras 4 of the 10	Dranaras 2 of the 10
	10 dilutions		Prepares 4 of the 10	Prepares 2 of the 10
100% accuracy	correctly	dilutions correctly	dilutions correctly	dilutions correctly
Completes a minimum of	Completes 10 runs	Completes 8 of the	Completes 6 of the 10	Completes less than
10 runs/assays with	with the	10 runs with	runs with acceptable	6 of the runs with
acceptable results and	acceptable results	acceptable results	results and	acceptable results
within the laboratory	and designated	and designated	designated times	and designated
timeframe specified for	times	times	designated times	times
stat and/or routine turn-	unics	unics		unics
around time				
Organizes the workflow	Exceeds Standard	Meets SOP	Fail to meet SOP	Fail to meet SOP
organizoo ino wonknow	Operation	standards	standards, counseled	standards,
	Procedures	otariaarao	one time	counseled more
	(SOP)-by writing		3.1.5	than one time
	suggestions for			
	improvement			
Recognizes common	Recognizes	Recognizes some of	Fail to recognize all	Fail to recognize all
malfunctions of the	common	the common	common malfunctions	common
instrument/analyzer	malfunctions of the	malfunctions of the	of the instrument or	malfunctions of the
-	instrument and	instrument and	fail to inform	instrumentation
	demonstrates	demonstrates some	technologist of	and fail to inform
	troubleshooting	troubleshooting	problem	technologist of
	skills	skills		problem
Calculates anion gap and		100% accuracy	After review,	After review,
creatinine clearance for a			100% accuracy	< 100% accuracy
minimum of 5 samples				
Performs a minimum of 2		100% accuracy	After review,	After review,
manual tests		,	100% accuracy	< 100% accuracy
Identify patient values that	Identify all values	Identify some of the	Identify the values,	Fail to identify the
are significantly different	and inform the	values and inform	but fail to inform the	values and fail to
(e.g. risk values, panic	technologist for all	the technologist for	technologist of the	inform the
values, analytical errors)	values	some of the values	values	technologist of the
and to bring these to the				values
attention of the				
technologist immediately				
· · · · · · · · · · · · · · · · · · ·		İ	İ	

Scoring and Grading			
/ 31 5	Y	100 =	0/

Morgan State University MDTC 411 CLINICAL CHEMISTRY AND URINALYSIS PRACTICUM SUGGESTED LABORATORY ROTATION SCORING RUBRIC

Medical Laboratory Science Students

Please attach the student's test record to this evaluation.

Non Automated Method

TEST ITEM	Exceeds Standards (4 pts)	Meets Standards (3.5 pts)	Meets Standards AFTER REVIEW (2.5 pts)	Does Not Meet Standards (1.5 pt)
Implements the standard safety in the clinical laboratory -12 samples	Exceeds the standard safety precautions	Meets the standard safety precautions	Fail to meet the standard safety precautions, counseled one time	Fail to meet the standard safety precautions, counseled more than one time
Organize the workflow	Exceed Standard Operation Procedures (SOP)- by writing suggestions for improvement	Meet SOP standards	Fail to meet SOP standards for 1 of the 2	Fail to organize the work of operations
Prepares reagents, calibrators and control material within the acceptable QA limits or a minimum of 10 different assays with 100% accuracy	Completes all of the tasks	Completes 2 of the 3 tasks	Completes 1 of the 3 tasks	Fail to complete any of the tasks
Completes a minimum of 10 runs/assay with acceptable results and within the laboratory timeframe specified for stat and/or routine turnaround time	Completes 10 runs with the acceptable results and designated times	Completes 8 of the 10 runs with acceptable results and designated times	Completes 6 of the 10 runs with acceptable results and designated times	Completes less than 6 of the runs with acceptable results and designated times
Identify patient values that are significantly different (e.g. risk values, panic values, analytical errors) and to bring these to the attention of the technologist immediately	Identify all values and inform the technologist for all values	Identify some of the values and inform the technologist for some of the values	Identify the values, but fail to inform the technologist of the values	Fail to identify the values and fail to inform the technologist of the values
Document manually lot numbers, expiration dates, initials, prep time, patient values, QC results and standard values if applicable	No error in the documentation	Errors in 2 of the documentation	Errors in 4 of the documentation	Errors in 5 of the documentation

	,	37.400
Scoring and Grading:	/ 21	X 100 = %

Student's Score divided by the total possible points that can be earned at the "Meets Standards" level, times 100

MDTC 411 CLINICAL CHEMISTRY AND URINALYSIS PRACTICUM SUGGESTED LABORATORY ROTATION SCORING RUBIRIC Medical Laboratory Science Students

Please attach the student's test record to this evaluation.

Urinalysis

TEST ITEM	Exceeds Standards (4 pts)	Meets Standards (3,5 pts)	Meets Standards AFTER REVIEW (2.5 pts)	Does Not Meet Standards (1.5 pt)
Implements the standard safety in the clinical laboratory - 12 samples	Exceeds the standard precautions	Meets the standard safety precautions	Fail to meet the standard safety precautions, counseled one time	Fail to meet the standard safety precautions, counseled more than one time
Demonstrates the ability to organize workflow	Exceed Standard Operation Procedures (SOP) - by writing suggestions for improvement	Meets SOP standards	Fail to meet SOP standards for 1 of the 2	Fail to organize the work of operations
Identify cellular elements	95%- 8 out of 10 matches instructor's results	75%-6 out of 10 matches instructor's results	50%- 4 out of 10 matches instructor's results	25%- 2 out of 10 matches instructor's results
Enumerates the component of the urine	95%- 8 out of 10 matches instructor's results	75%-6 out of 10 matches instructor's results	50%- 4 out of 10 matches instructor's results	25%- 2 out of 10 matches instructor's results
Performs follow-up for abnormal results	95%- 8 out of 10 matches instructor's results	75%-6 out of 10 matches instructor's results	50%- 4 out of 10 matches instructor's results	25%- 2 out of 10 matches instructor's results
Correlates the microscopic and reagent strip results for 10 samples	95%- 8 out of 10 matches instructor's results	75%-6 out of 10 matches instructor's results	50%- 4 out of 10 matches instructor's results	25%- 2 out of 10 matches instructor's results

Scoring and Grading:	/21_	X 100 =%

Student's Score divided by the total possible points that can be earned at the "Meets Standards" level, times 100

Morgan State University MDTC 411 - CLINICAL CHEMISTRY PRACTICUM TECHNICAL PERFORMANCE EVALUATION

Instructions

Please rate the student's technical performance at the end of the rotation. This should reflect the student's terminal ability and not the normal growth of the student during the rotation. Match the student's performance on each item with the numerical rating that most closely describes his/her performance in comparison to an entry-level MLS employee with no experience or training. It is recognized that with an entry level MLS, proficiency, speed and level of judgment will increase with experience.

Each task in the Technical Performance Evaluation is evaluated using the scale below:

1.0 Unacceptable performance

After appropriate training, the student performs the task with <u>consistent performance errors</u>, needs <u>constant supervision</u> and <u>does not adhere to affiliate policies</u> (e.g., safety) during task performance. The student also appears unwilling to improve performance.

2.0 Marginal performance

After appropriate training, the student performs the task with <u>inconsistent technical skills</u> OR <u>needs</u> <u>constant and detailed instructions</u> in order to achieve acceptable performance. The student <u>demonstrates</u> <u>an understanding</u> of the principle of the assay or procedure. **Performance at this level is equivalent to a grade of 'C'**.

3.0 Acceptable performance

After appropriate training, the student performs the task with <u>average technical skill</u>, <u>but still</u> <u>needs/requires direct supervision</u>. The student <u>demonstrates an understanding</u> of the principle of the assay or procedure and its application. **Performance at this level is equivalent to a grade of 'B'**.

4.0 Very Good performance

After appropriate training, the student performs the task with <u>average technical skill with minimal supervision</u>. The <u>instructor feels confident</u> in student performance and outcomes. The student <u>demonstrates an understanding</u> of the principle of the assay or procedure and its application. **Performance at this level is equivalent to a grade of 'A'.**

Using the above criteria, the final score for the Technical Evaluation is calculated as follows:

- 1. Add the Points Earned on the Technical Tasks.
- 2. Divide this total by the Total Possible Points (number of tasks actually performed x 4)
- 3. Multiply that Total x 100 to calculate % Score

Points Earned / (Tasks performed x 4) = Raw score x 100 = % Technical Performance Score

Technical Tasks 1. Check for correct identification/labeling of specimens. Evaluate specimens for appropriate anticoagulant, collection time and site of collection. 3. Identify specimens that may be unsuitable for analysis due to incorrect anticoagulant used, hemolysis, lipemia, icteric, clot, and/or air bubble present. 4. Explain corrective measures for unacceptable specimens. 5. Prepare a minimum of 20 specimens for analysis by centrifugation and separation of cells from serum/plasma. 6. Dispose of waste according to laboratory protocol. 7. Prepare reagents, calibrators and control material within the acceptable QA limits for a minimum of 10 different assays with 100% accuracy. 8. Perform calibrations. 9. Perform routine maintenance checks. 10. Evaluate the validity of standardization/calibration of the instrument. 11. Document results of calibration, performance and maintenance checks, malfunctions, and corrections without error. 12 Identify control results that are not within the accepted quality control limits with 100% accuracy. 13. Explain appropriate actions for unacceptable control results. 14. Observe corrective documentation for unacceptable control values. 15. State possible sources of error. If results are not within limits (e.g. outside instrument limitations.) 16. Observe basic LIS computer applications where relevant. 17. Describe various periodic maintenance procedures for the different instruments and maintenance sheets.

- 19. Follow the procedure and safety precautions, without error, for the analytical instrument and manual testing with respect to:
 - Specimen preparation

18. Comply with regulatory issues.

- Control selection
- Intervals at which standards and controls are to be analyzed
- Identification and correct positioning of specimens
- Operation of the instrument

20.	Pipet reagents and samples accurately.
21.	Prepare dilutions with 100% accuracy.
22.	Complete a minimum of 10 runs/assays with acceptable results within the laboratory's timeframe specified for stat and/or routine turnaround time.
23.	Operate at least one analyzer with minimal supervision in accordance with laboratory protocol.
24.	Observe the sample path or flow in 2 instruments.
25.	Describe the theoretical principles for each analytical methodology
26.	Demonstrate the ability to organize workflow.
27.	Recognize common malfunctions of the instrument.
28.	Describe or demonstrate basic trouble-shooting skills.
29.	Recognize interfering substances for each procedure performed.
30.	Identify patient values that are significantly different (e.g. risk values, panic values, analytical errors) and bring these to the attention of the technologist immediately.
31.	Determine need for repeat analysis on unacceptable reportable ranges.
32.	Determine whether results fit the expected pattern with respect to previously obtained results on the same test or other test results on the same patient.
33.	Evaluate a minimum of 50 patient results according to laboratory protocol for routine results, STAT results (including telephone results) and panic value results.
34.	Perform and interpret 10 routine calculations (to include dilutions anion gap, 24 hour urine, creatinine clearance, LDL, thyroid index) with 100% accuracy.
35.	Correlate laboratory data with clinical implications with 70% accuracy. This includes:
	 Cardiac enzymes Creatinine Liver enzymes Blood gases Bilirubin Iron Protein Lipids Glucose
	Endocrine functionElectrolytes
	Blood urea nitrogenTumor markers

Therapeutic Drugs Drugs of Abuse

36	6. Correlate abnormal test results to abnormal disease states with 100% accuracy.
37	7. Recognize reference serum intervals and panic values for the following tests:
	 Glucose Blood urea nitrogen Total protein Creatinine Sodium Total bilirubin Potassium Cholesterol Chloride Blood gases
38	3. Define the following terms:
39	 End-point spectrophotometry Kinetic spectrophotometry Ion-selective electrodes Osmometry Electrophoresis Chemiluminescence Peak Trough Immunoassay Occupancy Classify the instruments at the site according to the approach of automation (i.e., discrete and parallel analyzers)
Student's Name:_	
Evaluator(s):	
Date:	
Using the above	criteria, the final score for the Technical Evaluation is calculated as follows:
2. Divide this total	Earned on the Technical Tasks. by the Total Possible Points (number of tasks actually performed x 4) tal x 100 to calculate % Score
Points Earned / (Tasks performed x 4) = Raw score x 100 = % Technical Performance Score
Total Points Earne Total Possible Poi (# Tasks x 4)	

Morgan State University MDTC 411 - URINALYSIS PRACTICUM TECHNICAL PERFORMANCE EVALUATION

Instructions

Please rate the student's technical performance at the end of the rotation. This should reflect the student's terminal ability and not the normal growth of the student during the rotation. Match the student's performance on each item with the numerical rating that most closely describes his/her performance in comparison to an entry-level MLS employee with no experience or training. It is recognized that with an entry level MLS, proficiency, speed and level of judgment will increase with experience.

Each task in the Technical Performance Evaluation is evaluated using the scale below:

1.0 Unacceptable performance

After appropriate training, the student performs the task with <u>consistent performance errors</u>, needs <u>constant supervision</u> and <u>does not adhere to affiliate policies</u> (e.g., safety) during task performance. The student also appears unwilling to improve performance.

2.0 Marginal performance

After appropriate training, the student performs the task with inconsistent technical skills or needs constant and detailed instructions in order to achieve acceptable performance. The student demonstrates an understanding of the principle of the assay or procedure. Performance at this level is equivalent to a grade of 'C'.

3.0 Acceptable performance

After appropriate training, the student performs the task with <u>average technical skill</u>, <u>but still</u> <u>needs/requires direct supervision</u>. The student <u>demonstrates an understanding</u> of the principle of the assay or procedure and its application. **Performance at this level is equivalent to a grade of 'B'**.

4.0 Very Good performance

After appropriate training, the student performs the task with <u>average technical skill with minimal supervision</u>. The <u>instructor feels confident</u> in student performance and outcomes. The student <u>demonstrates an understanding</u> of the principle of the assay or procedure and its application. **Performance at this level is equivalent to a grade of 'A'.**

Using the above criteria, the final score for the Technical Evaluation is calculated as follows:

- 1. Add the Points Earned on the Technical Tasks.
- 2. Divide this total by the Total Possible Points (number of tasks actually performed x 4)
- 3. Multiply that Total x 100 to calculate % Score

Points Earned / (Tasks performed x 4) = Raw score x 100 = % Technical Performance Score

<u>Technical</u>	<u>Tasks</u>
1.	Check for correct identification/labeling of specimens according to the current National Patient Safety Procedure from JCAHO.
2.	Explain the importance of proper collection and transport of specimens.
3.	List criteria for evaluating specimen quality and corrective actions to resolve problems.
4.	List substances that will cause false negative and false positive results in a routine urinalysis.
5.	Summarize the advantages and disadvantages of commonly used urine preservatives
6.	State the confidentiality policy of the facility during testing procedure and reporting in accordance with HIPAA guidelines.
7.	Observe basic computer applications where relevant.
8.	Report or record quality control results according to the standard operating procedures of the laboratory with 100% accuracy.
9.	For a minimum of 25 urine specimens with 95% accuracy:
	 Describe the physical appearance. Perform specific gravity analysis using the refractometer and/or dipstick methods. Perform chemical analysis of the urine specimens. Interpret results obtained from chemical analysis. Where applicable, confirm abnormal results with appropriate confirmatory tests for a minimum of 5 different abnormal urine specimens. Interpret the confirmatory test results. Perform microscopic analysis on urine specimens according to the standard operating procedure of the laboratory. Given a specimen or kodachrome, identify normal and abnormal constituents in a microscopic analysis of urine specimens with 95% accuracy. These constituents include: Erythrocytes Leukocytes Epithelial cells: squamous, transitional, renal Bacteria Yeast Casts: hyaline, fine and coarse granular, rbc, wbc, waxy Crystals: uric acid, calcium oxalate, triple phosphate, tyrosine, cystine, ammonium biurate Oval fat bodies

10. Operate automated dipstick readers with 100% accuracy.

□ Contaminants: fibers, talc, glass, etc.

____ 11. For the following procedures, it is essential that the student receive hands-on experience and perform *with 95% accuracy* in whichever department the procedure is performed:

- Cerebrospinal fluid analysis to include cell count, differential, chemistry
- Fecal occult blood
- Urine/serum pregnancy test

	12.	Recognize cells specific to each body fluid type to include histiocytes, mesothelial cells, malignant cells, macrophage with inclusions, crystals, yeast, bacteria and others.
	13.	Discuss or perform body fluid analysis on synovial, serous, and other fluids.
	14.	State the reference (normal) values for all routine assays performed in the urinalysis laboratory.
	15.	With 95% accuracy, correlate quantitative data with microscopic data.
	16.	Correlate abnormal results with associated common disease states.
	17.	Interpret the results obtained from performing body fluid analysis on synovial, serous, and other fluids.
	18.	Report all divergent or discordant results between quantitative and microscopic data to the clinical instructor.
	19.	Recognize all critical values and report these findings to the Clinical Instructor.
Student	ťs N	ame:
Evaluat	or(s):
Date:		
Using t	the a	above criteria, the final score for the Technical Evaluation is calculated as follows:
2. Divid	e th	Points Earned on the Technical Tasks. Is total by the Total Possible Points (number of tasks actually performed x 4) That Total x 100 to calculate % Score
Points	Ear	ned / (Tasks performed x 4) = Raw score x 100 = % Technical Performance Score
Total Po Total Po (# Task	ossil	Earned =x 100 =% Technical Score ble Points 4)