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Abstract 

Previous studies have shown that the optimal speed trajectories for vehicles with different engine 

types (e.g., gasoline versus electric vehicles) are very different under certain conditions. This study 

aims to solve this issue by developing a general speed control algorithm that calculates a 

compromised solution across different vehicle engine types while optimizing the entire mixed 

traffic flow in the network. The proposed algorithm optimizes vehicle trajectories for mixed traffic 

flow, including both internal combustion engine vehicles (ICEVs) and battery electric vehicles 

(BEVs). To investigate the performance of the proposed controller under various traffic demand 

levels, a case study was designed using a simulated arterial corridor with three signalized 

intersections. The algorithm for mixed flow was compared with the algorithms previously 

developed for each individual vehicle type to investigate the system-level performances. Test 

results demonstrate that the proposed controller for mixed flow outperforms the previously 

developed controllers for individual vehicle models by further reducing fuel consumption, battery 

energy, and traffic delay under various traffic demand levels. Lastly, the proposed algorithm was 

used to develop a speed guidance system that provides two options of output: 1) recommended 

speed value, and 2) color-coded speed guidance. The developed speed guidance system was coded 

into a DLL file by the Delphi coding program and can be directly used in driving simulators to test 

human responses to two options of driving guidance and their corresponding performances. This 

study utilizes a 3D driving simulator to investigate how drivers respond to and comply with speed 

guidance system, which provides real-time speed guidance for connected vehicles at signalized 

intersections throughout the entire route. Speed guidance system is implemented in the driving 

simulator, and participants are given a color-coded speed recommendation through the entire route 

in different scenarios. Participants’ driving behaviors in various speed guidance scenarios are 

compared with those driving the same route without any speed guidance. Descriptive and statistical 

analyses including ANOVA, Post hoc Tukey and regressions are performed on the data obtained 

from 15 participants with various sociodemographic backgrounds. The drivers’ behavior and 

adherence to the recommended speed guidance provided by the color-coded speed guidance 

system, were assessed. The study reveals that sociodemographic factors, such as gender and age, 

influence the effectiveness of the speed guidance system. Female drivers exhibit lower compliance 

with speed guidance, while older drivers face challenges in following the recommendations. In 

future research, extended testing will be conducted by using a large-scale traffic network to 

validate the system-level performances under different combinations of mixed flow (including 

ICEVs, BEVs, and hybrid electric vehicles - HEVs), various congestion levels, and different levels 

of market-penetration-rate of controlled vehicles. 
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1 INTRODUCTION 

Urban areas are known for having high traffic volumes and emissions at signalized intersections. 

These areas cause frequent braking and accelerating and generate the longest periods of vehicle 

idling. Drivers often approach a green light at maximum speed and are forced to abruptly 

decelerate as the light changes. Drivers’ limited knowledge about when the traffic signal will 

change thus leads to increased fuel consumption and longer travel times. Researchers have 

attempted to use connected vehicle and infrastructure technologies to develop eco-driving 

strategies aimed at optimizing vehicle speed. One of these strategies is the implementation of SCA, 

which aims to optimize the speed of connected vehicles by providing recommended trajectories in 

the presence of signalized intersections.  

Many researchers have examined the influence of different speed optimization methods on 

driving behaviors. Previous studies on speed control can be broadly categorized into five main 

areas: those that explore the effects of speed control on reducing emissions, those investigating 

speed control in mixed traffic, those focusing on implementing speed control on Eco-driving, those 

related to CAVs, and systematic reviews. In order to reduce CO2 emissions from vehicle transport; 

however, more advanced fuel consumption models are increasingly needed.  

Road freight transport systems are essential to economic development, but they also have 

adverse impacts on the environment and public health. Demir et al. conducted a review of 59 

papers on green road freight transportation, and the results showed that the speed of travel is one 

of the most important factors in reducing fuel consumption (1). Unnecessary braking and 

acceleration increase the engine's energy consumption and leads to higher emissions. Wang et al. 

conducted a simulated study of two cruise control systems, a conventional cruise control system, 

and a Longitudinal control system. The authors optimized traffic signals according to real-time 

traffic flow, which allowed all of the CVs to form a “platoon” and hold a recommended speed 

while maintaining a safe distance from one another (2). The results indicated that the Longitudinal 

control system can reduce unnecessary braking and acceleration to reduce emissions. They also 

showed that the proposed model reduced stop time and coordinate phase stops by up to 53.69% 

and 41.15%, respectively. Moreover, the signal delays at the intersection for each vehicle declined 

by 13.19%, allowing the CVs to pass the intersection with no stops. In another study, Colon et al. 

created an integrated traffic microsimulation model to find the impact of autonomous vehicles on 

GHG emissions. Their results showed a 4% reduction in CO2 emissions (3). Building on previous 

research, Lu et al. developed a new speed control system to reduce fuel consumption and CO2 

emissions (4). The authors designed different signal timing methods and achieved an 18% 

reduction in fuel consumption and a 9% decrease in travel time. Ahangari et al. introduced an eco-

speed control system to investigate drivers’ responses and emission reductions (5). The results 

showed that younger male drivers were more willing to follow the suggested speed. In addition, 

the eco-speed control system was found to reduce emissions by 9.1% compared to countdown 

timing systems. In another study, Gamage et al. the proposed Eco Speed Control algorithm 

eliminating idling in the presence of isolated signal intersections, allowing individual vehicles to 
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obtain fuel-efficient driving paths. The proposed method resulted in an 18% reduction in fuel 

consumption and significantly reduced travel time (6). Chen et al. proposed another adapted speed 

controller designed for autonomous vehicles (7). The experimental results showed that the 

proposed method can effectively match the target speed. In another study, Xu et al. (8) proposed a 

double-layer, real-time speed optimization method to improve vehicle fuel consumption while 

passing several signalized intersections. The results showed that the proposed methods have the 

potential to improve fuel consumption and reduce travel time. The significant variability of fuel 

costs has led companies and governments to think about strategies to reduce energy consumption. 

Speed profiles, especially on urban roads with many signalized intersections, have a huge impact 

on fuel consumption. Lim et al. proposed a distance-based eco-driving scheme that optimizes 

speed for an entire route before departure and adapts to real-time traffic conditions during the drive. 

The method focuses on nearby heavy traffic regions for adaptation while maintaining the 

effectiveness of the optimized speed profile elsewhere. The scheme aims to improve fuel 

efficiency and vehicle performance through real-time adaptation and long-term optimization (9). 

In another research project, Nasri et al. sought to enhance the speeds and routes of autonomous 

delivery trucks. They conducted a comparative analysis of two linear models designed to minimize 

the expenses associated with emissions, fuel consumption, and travel durations. (10). The results 

demonstrated that stochastic modeling provided significantly greater value compared to the 

benefits derived from speed optimization. Chen et al. proposed a novel Energy Management (EM) 

method that optimizes two aspects of hybrid vehicles: fuel efficiency and battery durability (11). 

Khooban suggested a combination of a new fuzzy logic system and a non-integer controller for 

speed control in Hybrid Electric vehicles and achieved better results than previous studies (12). In 

another study, Liang et al. used a joint traffic signal optimization algorithm to reduce stop-and-go 

by implementing information from connected vehicles (CV) and speed guidance-enabled 

vehicles(SGVs) (13). The results showed 10% more efficiency in AVs compared to SGVs. 

In one study, Lee et al. proposed a real-time intelligent speed optimization system for 

CAVs by combining a conventional speed optimization planner and reinforcement learning (14). 

The results showed that the proposed method reduces energy consumption and does not increase 

travel time when compared with conventional speed optimization planners. In another study, 

Cheng et al. developed an eco-driving assistance system that combines a fuel consumption model 

and a robust optimization model for vehicle fuel consumption optimization (15). The results 

obtained from vehicle experiments indicated that the proposed model performs efficiently. Kramer 

et al. proposed an optimization algorithm for speed and departure times to reduce pollution-routing 

problems (PRP) (16). The computational experiments showed up to 8.36% savings in operational 

costs. Pourmehrab et al. developed an Intelligent Intersection Control System (IICS) simulation 

for signal control optimization. The obtained results demonstrated a 38-52% reduction in average 

travel time when compared with conventional signal control (17). Shen et al. built an optimization 

algorithm to minimize fuel consumption and achieved a fuel savings of at least 8% in two different 

simulated highway environments (18). In another study, Talati et al. proposed a model that can 

determine the acceptable and safe speed range for self-driving vehicles with better latency and 
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accuracy  than traditional schemes (19). Xu et al. developed a model-free reinforcement learning 

approach for optimal speed control of gasoline engines (20). The simulation and experimental 

results showed that the learning mechanism is effective even when no model information is used 

in the learning algorithm. Lu et al. conducted a comprehensive study focusing on the impact of 

speed limit facilities on expressways. The study involved speed surveys, the development of an 

evaluation system, assessment of the speed control effect, and verification of the effectiveness of 

measures that aim to improve speed control. (21). The authors considered four types of speed limit 

control, including colored pavement, vibration markings, deceleration markings, and portal frames. 

The study’s results show that the speed limit effect of portal frame is the best, and that deceleration 

markings were the least effective.  In summary, these studies collectively demonstrate that speed 

optimization methods have the potential to improve energy efficiency, reduce travel time, and 

enhance overall performance in transportation systems. 

The systematic review of 313 papers conducted by Asghari et al. indicated that factors like 

vehicle weight, speed, and travel time affect greenhouse emissions. They also presented a new 

classification of papers published on the green vehicle routing problem (Green-VRP) (22) and 

highlighted gaps in the research regarding conventional, electric, and hybrid vehicles. Moreover, 

the authors examined optimization techniques that can address the unique challenges of various 

engine types. The authors provided an overview of the existing research that has been done on the 

three major streams of the Green-VRP, which are internal combustion engine vehicles (ICEVs), 

alternative-fuel powered vehicles (AFVs), and hybrid electric vehicles (HEVs). The main purpose 

of this was to organize the existing literature and provide a reference point for future research into 

the new aspects of the Green-VRP. In another study, Vahidi et al. reviewed 198 papers to 

emphasize the CAVs’ potential energy savings by conducting a literature review on eco-driving 

and applying the first principles of movement and optimal control theory (23). The results showed 

an increase in the energy efficiency of a group of CVs when they moved in a coordinated manner.  

Connected and Automated Vehicles (CAVs) are therefore effective way to reduce pollution 

and travel delay, as well as to save energy in the transportation system. CAVs provide a new 

computational framework for real-time control movements that maximize energy consumption and 

introduce other related benefits. From the point of view of control, CAVs can reduce traffic 

congestion and emissions, improve fuel efficiency, and increase passenger safety in different 

traffic scenarios.  

Mahbub et al. provided a rigorous control framework for enabling platoon formations in 

mixed traffic conditions, which were simultaneously coordinated with both CAVs and human 

controlled vehicles (24). The results obtained from numerical analysis validated the proposed 

method. In another study, Garg et al. studied real traffic and communications data from a large-

scale road network in Ireland to investigate the effect of CAVs on the efficiency of traffic (25). 

The results showed that CAVs significantly improve traffic efficiency in congested traffic 

scenarios. In other study, Ko et al. proposed speed harmonization and merge controls for CAVs 

and reduced fuel consumption by up to 20% compared to the merge control without speed 
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harmonization (26). As signalized intersections have an important role in vehicle efficiency in 

urban areas, Xu et al. proposed a method for simultaneously controlling traffic signals and 

optimizing CAV speed to reduce CAVs’ fuel consumption (27). The results obtained from the 

numerical experiment and simulation studies showed that the proposed method can improve the 

efficiency of transportation and vehicle fuel consumption in different traffic volumes. Tajalli et al. 

developed Distributed Optimization and Coordination Algorithms (DOCA) to find near-optimal 

solutions for CAVs speed optimization (28). The results indicated that travel time decreased by up 

to 14.8% and speed variation decreased by 9.7–13.4% across different demand patterns. In 2013, 

Nemeth et al. developed a cruise control system that utilizes predicted road and traffic information. 

The main contribution in this study was the incorporation of traffic light intersections in the speed 

design. In their design, an optimal speed trajectory was computed, considering factors such as 

longitudinal force, traveling time, and emissions. Simulation results confirmed that the controller 

reduces energy consumption near the actuators (29). In 2019, Seeber et al. addressed the issue of 

adhering to the prescribed speed tolerance while tracking the speed profile of an automotive test 

cycle for emission measurement. By applying an optimization-based iterative learning control 

scheme to the first third of the Worldwide Harmonized Light Vehicle Test Procedure (WLTP) test 

cycle, the study found a significant reduction in tolerance violations and pedal position changes 

(30).   

In another study, Roy et al. proposed using traffic graphs to understand traffic behavior at 

intersections in developing countries with mixed traffic types and lane-less driving behavior. The 

study used a large dataset and showed that a spatio-temporal CNN-GRU network can identify 

congestion-prone behavior in different spatial regions of an intersection (31). Xu et al. presented 

a new speed control system for autonomous electric vehicles (AEVs) that combines deep 

reinforcement learning and robust control. The approach has a hierarchical architecture, with a 

deep maximum entropy proximal policy optimization algorithm used for decision-making and a 

linear matrix inequality controller used for motion control. Simulation experiments demonstrate 

the feasibility and effectiveness of the proposed approach, which shows an integrated performance 

with robustness to uncertainties and disturbances, driving smoothness, low fuel consumption, and 

good responsiveness (32). Veysi et al. proposed a stable fuzzy controller for an electric vehicle 

that ensures speed stabilization in the presence of disturbances and uncertainties. The controller is 

designed using the Takagi-Sugeno fuzzy model and parallel distributed compensation (PDC) fuzzy 

controller. Simulation results confirm the effectiveness of the proposed controller in stabilizing the 

EV speed with low computational load and power consumption (33). In the research conducted by 

Gamage et al.  a Q-learning based vehicle speed control algorithm was proposed to minimize fuel 

consumption at an isolated signal intersection. The algorithm was trained and validated using a 

single-vehicle scenario under varying traffic signal and arrival speed conditions in the Aimsun 

microsimulation platform. Results show that the algorithm can reduce fuel consumption by 

15.78% compared to a baseline scenario where speed control is disabled (34). 

Wan et al. developed a Speed Advisory System (SAS) for connected vehicles to reduce 

fuel consumption. Their research found that implementing a fuel minimal driving strategy, 
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alternating between acceleration, engine shut down, and constant speed, significantly improves 

fuel economy. SAS-equipped vehicles benefit themselves and other vehicles, with a slight 

compromise in traffic flow and travel time. The proposed suboptimal solution maintains drivability 

while increasing energy efficiency. SAS has the potential to harmonize traffic and decrease fuel 

consumption (35). 

Studies have shown that traffic delays at signalized intersections on arterial roadways 

contribute to approximately 5%~10% of all traffic delays in the U.S., and the estimated cost of 

these delays is roughly $22.9 billion in urban areas (36). Stop-and-go traffic near signalized 

intersections can greatly increase traffic delays, energy consumption, and emission levels on 

arterial roads since vehicles are forced to stop ahead of traffic signals when encountering red 

indications, producing shock waves within the traffic stream (37, 38). During the past decade, 

communications between vehicles (V2V) and between vehicles and infrastructure (V2I) provides 

additional data for researchers to develop control strategies to improve transportation system 

efficiency. These include eco-driving systems that optimize vehicle trajectories in the vicinity of 

signalized intersections, enhance mobility, and reduce vehicle fuel consumption and emissions. 

However, existing studies usually consider only one vehicle engine type to simplify roadway 

traffic conditions. There is a need to develop a general eco-driving strategy for mixed traffic flow 

by considering different vehicle powertrains. 

  In previous studies, an eco-driving system entitled Eco-CACC-I was developed for fuel-

powered vehicles (39–42), and field tests were conducted to demonstrate that the system can 

efficiently reduce stop-and-go traffic and produce significant fuel and delay savings of 31% and 

9%, respectively. Thereafter, the Eco-CACC-I algorithm was extended from ICEVs to BEVs  (40) 

and HEVs  (43). According to the findings of these studies, the optimal speed trajectories for 

vehicles with different engine types (e.g., gasoline versus electric vehicles) are very different under 

certain conditions. Therefore, it is necessary to develop a general speed control algorithm that 

calculates a solution that accommodates a mixed traffic with different vehicle engine types. In 

addition, one driving simulator study showed that a color display that prompts drivers to speed up 

or slowdown is a better design choice than directly providing a recommended speed to drivers  (5). 

Therefore, it is necessary to consider this option when developing a speed control algorithm for 

mixed traffic flow to deliver simple driving instructions for drivers and compare it with the 

guidance speed. 

  This study aims to address these problems by developing a general eco-driving system that 

optimizes speed control for vehicles mixed with different engine types at signalized intersections. 

The proposed algorithm solely focuses on mixed traffic flow comprising ICEVs and BEVs to 

develop a general approach. Further testing of mixed traffic flow incorporating ICEVs, BEVs, and 

HEVs will be left to future research. The proposed vehicle controller has been implemented into 

the microscopic traffic simulation software (INTEGRATION) to validate the system-wide impacts 

of using the proposed system on traffic mobility and energy consumption under a mixed 

combination of vehicle types and various traffic conditions. A case study that models an arterial 
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corridor with eight signalized intersections was used to investigate the performance of the 

proposed controller under various traffic demand levels. The test results demonstrate that the 

proposed controller for mixed flow traffic outperforms the vehicle speed controller for individual 

vehicle models and produces the most savings in fuel consumption, battery electric energy, and 

traffic delay. Lastly, the proposed algorithm is used to develop a speed guidance system providing 

two options of output: 1) recommended speed value, and 2) color-coded speed guidance. The 

developed speed guidance system is coded into a DLL file by the Delphi coding program and can 

be directly used in driving simulators to test the human responses to two options of driving 

guidance and the corresponding performances. This study utilizes an Eco Speed Guidance (ESG) 

system in a driving simulator to investigate its efficacy in optimizing speed control for vehicles 

with different engine types at signalized intersections. In the driving simulation phase, this study 

evaluates the effectiveness of color-coded speed recommendations provided to drivers when 

implementing ESG systems in vehicles. By utilizing a driving simulator, the research examines 

driver responses to the implementation of an in-vehicle ESG system that offers real-time speed 

guidance throughout the entire route. Specific objectives include assessing the percentage of 

drivers who adhere to the suggested speed guidance and those who successfully navigate 

intersections while the traffic signal is green, based on their reactions to the speed guidance system. 

2 METHODOLOGY 

This section first introduces the vehicle trajectory optimization algorithm for individual vehicle 

types, including ICEV and BEV. Thereafter, the optimal speed profiles for ICEV and BEV are 

analyzed and compared while considering the impacts of the speed limit and roadway grade. Based 

on the findings, a general vehicle speed controller is developed to optimize vehicle trajectory for 

a mixed flow including ICEVs and BEVs. 

2.1 Vehicle Trajectory Optimization 

In this study, vehicle trajectories are optimized using the Eco-Cooperative Adaptive Cruise Control 

at Intersections (Eco-CACC-I), connected eco-driving controller previously developed in  (39–42) 

to assist vehicles traversing signalized intersections by computing real-time fuel consumption and 

the resulting energy-optimized speed profile. The control region was defined as the distance 

upstream of the signalized intersection (dup) to the distance downstream of the intersection (ddown) 

in which the Eco-CACC-I controller optimizes the speed profiles of vehicles approaching and 

leaving signalized intersections. Upon approaching a signalized intersection, the vehicle may 

accelerate, decelerate, or cruise (maintain a constant speed) based on several factors, such as 

vehicle speed, signal timing, phase, distance to the intersection, headway distance, etc. (44). We 

assumed no leading vehicle ahead of the subject vehicle so that we could compute the subject’s 

energy-optimized vehicle trajectory without considering the impacts of other surrounding vehicles. 

The computed optimal speed was used as a variable speed limit, denoted as ve(t), which acts as 

one of the constraints on the subject vehicle’s longitudinal motion. When a vehicle travels on the 

roadway, there are other constraints to be considered, including the allowed speed set by the 
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vehicle dynamics model, steady-state car following mode, collision avoidance constraint, and 

roadway speed limit. All of these constraints work together to control the vehicle’s speed.  

  Within the control region, the vehicle’s behavior can be categorized into one of two cases: 

(1) the vehicle can pass through the signalized intersection without decelerating, or (2) the vehicle 

must decelerate to pass through the intersection. Given that vehicles drive in different manners for 

cases 1 and 2, the Eco-CACC-I control strategies were developed separately for the two cases. 

  Case 1 does not require the vehicle to decelerate to pass the signalized intersection. In this 

case, the cruise speed when the vehicle approaches a red light can be calculated by Equation (1) 

to maximize the average vehicle speed during the control region. When the vehicle enters the 

control region, it should adjust its speed to uc by following the vehicle dynamics model developed 

in (45). After the traffic light turns from red to green, the vehicle accelerates from the speed uc to 

the maximum allowed speed (speed limit uf) by following the vehicle dynamics model until it 

leaves the control region. 

 𝑢𝑐 = 𝑚𝑖𝑛 (
𝑑𝑢𝑝

𝑡𝑟
, 𝑢𝑓) (1) 

  In case 2 the vehicle with the initial speed of u(t0) needs to brake at the deceleration level 

denoted by a, then cruise at a constant speed of uc to approach the signalized intersection after 

entering the control region After passing the stop bar, the vehicle should increase speed to uf per 

the vehicle dynamics model and then cruise at uf until the vehicle leaves the control region. In this 

case, the only unknown variables are the upstream deceleration rate a and the downstream throttle 

fp. The following optimization problem is formulated to compute the optimum vehicle speed 

profile associated with the least energy consumption. The vehicle’s energy-optimized speed profile 

is illustrated in Figure 1. 

uf

Time

Speed

u(t0)

uc

Red phase Green phase

t1 tr t2 t0+Tt0

a

 

Figure 1: Vehicle optimum speed profile. 

  Assuming a vehicle enters the Eco-CACC-I control region at time t0 and leaves the control 

region at time t0+T, the objective function entails minimizing the total energy consumption as 
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 𝑚𝑖𝑛∫ 𝐸𝐶(𝑢(𝑡))
𝑡0+𝑇

𝑡0

· 𝑑𝑡 (2) 

where EC denotes the energy consumption at instant t. The energy models for ICEV and BEV are 

presented in the next sections. The constraints to solve the optimization problem can be built 

according to the relationships between vehicle speed, location, and acceleration/deceleration as 

presented below: 

 𝑢(𝑡):

{
 
 

 
 

𝑢(𝑡) = 𝑢(𝑡0) − 𝑎𝑡

𝑢(𝑡) = 𝑢𝑐

𝑡0 ≤ 𝑡 ≤ 𝑡1
𝑡1 < 𝑡 ≤ 𝑡𝑟

𝑢(𝑡 + ∆𝑡) = 𝑢(𝑡) +
𝐹(𝑓𝑝) − 𝑅(𝑢(𝑡))

𝑚
∆𝑡

𝑢(𝑡) = 𝑢𝑓

𝑡𝑟 < 𝑡 ≤ 𝑡2
𝑡2 < 𝑡 ≤ 𝑡0 + 𝑇

 (3) 

 

 

𝑢(𝑡0) · 𝑡 −
1

2
𝑎𝑡2 + 𝑢𝑐(𝑡𝑟 − 𝑡1) = 𝑑𝑢𝑝

𝑢𝑐 = 𝑢(𝑡0) − 𝑎(𝑡1 − 𝑡0)

∫ 𝑢(𝑡)
𝑡2

𝑡𝑟

𝑑𝑡 + 𝑢𝑓(𝑡0 + 𝑇 − 𝑡2) = 𝑑𝑑𝑜𝑤𝑛

𝑢(𝑡2) = 𝑢𝑓
𝑎𝑚𝑖𝑛 < 𝑎 ≤ 𝑎𝑚𝑎𝑥
𝑓𝑚𝑖𝑛 ≤ 𝑓𝑝 ≤ 𝑓𝑚𝑎𝑥

𝑢𝑐 > 0

 

 

(4) 

where u(t) is the velocity at instant t; m is the vehicle mass; 𝑎(𝑡) = 𝑑𝑣(𝑡) 𝑑𝑡⁄  is the acceleration 

of the vehicle in [m/s2] (𝑎(𝑡) takes negative values when the vehicle decelerates); function F 

denotes vehicle tractive force, and function R represents all resistance forces (aerodynamic, rolling, 

and grade resistance forces). Note that the maximum deceleration is limited by the comfortable 

threshold felt by average drivers  (44). The throttle value fp ranges between fmin and fmax. An A-star 

dynamic programming approach is used to solve the problem by constructing a graph of the 

solution space by discretizing the combinations of deceleration and throttle values and calculating 

the corresponding energy consumption levels; the minimum path through the graph computes the 

energy-efficient trajectory and optimum parameters  (44, 46).   

2.2 Energy Consumption Models for ICEVs 

The Virginia Tech Comprehensive Power-based Fuel Consumption Model (VT-CPFM) type 1 is 

selected in this study to estimate the instantaneous fuel consumption rate for ICEVs  (47). The VT-

CPFM utilizes instantaneous power as an input variable and can be easily calibrated using publicly 

available fuel economy data (e.g., Environmental Protection Agency [EPA]-published city and 
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highway gas mileage). Thus, the calibration of model parameters does not require gathering any 

vehicle-specific field data. The VT-CPFM is formulated as shown below. 

 𝐹𝐶𝐼𝐶𝐸𝑉(𝑡) = {
𝑎0 + 𝑎1𝑃(𝑡) + 𝑎2𝑃(𝑡)

2 ∀ 𝑃(𝑡) ≥ 0
𝑎0 ∀ 𝑃(𝑡) < 0

 (5) 

 

 𝑃(𝑡) = (𝑚𝑎(𝑡) +  𝑚𝑔 ∙
𝐶𝑟
1000

(𝑐1𝑢(𝑡) + 𝑐2) +
1

2
𝜌𝐴𝑖𝑟𝐴𝑓𝐶𝐷𝑢

2(𝑡) + 𝑚𝑔 𝜃) 𝑢(𝑡) (6) 

where FCICEV(t) is the fuel consumption rate for ICEVs; α0, α1 and α2 are the model parameters 

that can be calibrated for a particular vehicle using publicly available vehicle specification 

information from the manufacturer, and the details of calibration steps can be found in  (48); P(t) 

is the instantaneous total power (kW); 𝑔 [m/s2] is the gravitational acceleration; 𝜃 is the road 

grade; 𝐶𝑟 , 𝑐1 and 𝑐2 are the rolling resistance parameters that vary as a function of the road surface 

type, road condition, and vehicle tire type; 𝜌𝐴𝑖𝑟  [kg/m3] is the air mass density; 𝐴𝑓 [m2] is the 

frontal area of the vehicle, and 𝐶𝐷 is the aerodynamic drag coefficient of the vehicle (2015; 2013; 

2015). 

2.3 Energy Consumption Model for BEVs 

The Comprehensive Power-based Electric Vehicle Energy Consumption Model (CPEM) 

developed by (49) is used in the Eco-CACC-I system to compute instantaneous energy 

consumption levels for BEVs. The CPEM is a quasi-steady backward highly resolved power-based 

model, which only requires the instantaneous speed and the EV characteristics as input to compute 

the instantaneous power consumed. The CPEM model is summarized by the following equations. 

 𝐸𝐶(𝑡) = ∫ 𝑃𝐵𝑎𝑡𝑡𝑒𝑟𝑦(𝑡)
𝑡

0

· 𝑑𝑡 (7) 

 

 𝑃𝐵𝑎𝑡𝑡𝑒𝑟𝑦(𝑡) = (𝑃𝑊ℎ𝑒𝑒𝑙𝑠(𝑡) ·
𝜂𝑟𝑏(𝑡)

𝜂𝐷 · 𝜂𝐸𝑀
+ 𝑃𝐴) ·

1

𝜂𝐵
 (8) 

 

 𝑃𝑊ℎ𝑒𝑒𝑙𝑠(𝑡) = (𝑚𝑎(𝑡) + 𝑅(𝑡)) · 𝑢(𝑡) (9) 

 

 𝜂𝑟𝑏(𝑡) = {

1 ∀ 𝑃𝑊ℎ𝑒𝑒𝑙𝑠(𝑡) ≥ 0

[𝑒
(

𝜆
|𝑎(𝑡)|

)
]

−1

∀ 𝑃𝑊ℎ𝑒𝑒𝑙𝑠(𝑡) < 0
 (10) 
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Where EC represents the energy consumption from time 0 to t; PBattery is the power consumed by 

(regenerated to) electric motor; PA is the power consumed by the auxiliary systems; ηD and ηEM are 

the driveline efficiency and the efficiency of electric motor, respectively; ηD denotes the efficiency 

from battery to electric motor; ηrb represents the regenerative braking energy efficiency, which can 

be computed using Equation (10); and the parameter λ has been calibrated (λ = 0.0411) in  (49) 

using the empirical data described in  (50). 

2.4 Optimal Vehicle Trajectory for ICEV and BEV 

This section aims to compare the optimal vehicle trajectory for an ICEV and a BEV by considering 

the impacts of signal timing, speed limit and road grade. Different combinations of these variables 

may change the optimal solution of the speed control algorithm. The 2015 Nissan Leaf EV is 

selected for testing considering it is one of the most popular EVs available on the market. In order 

to compare the optimal solutions for BEV and ICE vehicles, an ICEV - 2015 Honda Fit is selected 

since it has a similar engine power and weight as the Nissan Leaf. 

  The test road consists of a single signalized intersection with a control length that starts 

200 meters upstream and ends 200 meters downstream of the intersection (a total length of 400 

meters). The automated connected vehicle equipped with the Eco-CACC-I system follows the 

optimal speed profile calculated by the Eco-CACC-I algorithm within the abovementioned 400-

meter distance.  The combinations of speed limit (25, 30, 40, 50 mph), green indication offset (15, 

20, 25, 30 seconds), and road grade (uphill 3% and downhill -3%) are tested. The test results show 

that speed profiles with deceleration levels in the middle area (between the minimum and 

maximum values) are the optimal solution for the uphill roadway. Besides, the speed profiles 

associated with the maximum deceleration level are the optimal solution for the downhill roadway.  

  The same tests are conducted using a 2015 Nissan Leaf, a BEV which has a similar engine 

power and weight as the 2015 Honda Fit. The test results demonstrate that the speed profile 

associated with the maximum deceleration level is the optimal solution for the uphill direction. 

Besides, the speed profile associated with the minimum deceleration level is the optimal solution 

for the downhill direction.  

2.5 Vehicle Trajectory Optimization for Mixed Flow 

The differences in optimal vehicle trajectory between ICEVs and BEVs are related to their distinct 

vehicle maneuvers and deceleration levels. The resulting differences in speed can generate traffic 

shockwaves, leading to increased traffic and safety hazards. To overcome this issue, it is necessary 

to develop a method that reduces the differences in vehicle maneuvers between ICEVs and BEVs, 

resulting in a more uniform traffic flow. Here, we propose a new approach to finding the optimal 

vehicle trajectory by selecting the middle level of deceleration from all candidate levels that satisfy 

the constraints in Equations (2) and (3). As this approach does not rely on energy consumption 

models for specific vehicle engines, we use it for mixed flow traffic to produce similar vehicle 

maneuvers for ICEVs and BEVs by using the middle level of deceleration. 
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2.6 Case Study 

In order to test the performance of the proposed control strategies, we implemented the vehicle 

speed controllers in microscopic traffic simulation software and assessed system level performance 

in an arterial corridor with three signalized intersections.  

INTEGRATION was the software used to simulate the traffic network in the case study. 

INTEGRATION is an integrated simulation and traffic assignment model that creates individual 

vehicle trip departures based on an aggregated time-varying O-D matrix. INTEGRATION moves 

vehicles along the network in accordance with embedded preset traffic assignment models and the 

Rakha-Pasumarthy-Adjerid (RPA) car-following model while considering traffic control devices 

and gap acceptance. A more detailed description of INTEGRATION is provided in the literature  

(51). 

2.7 Simulation Setup 

This test aims to compare the system-level network performances of the proposed controller for 

mixed flow traffic and the individual controllers for specific vehicle types (including ICEV and 

BEV). Figure 2 shows the layout of the arterial corridor with three signalized intersections. The 

distance between any two neighboring intersections is 500 meters. The traffic stream parameters 

are a free flow speed of 40 mph, a speed at a capacity of 30 mph, a saturation flow rate of 1600 

veh/h/lane, and a jam density of 160 veh/km/lane. The total simulation time is 75 minutes, the 

vehicles (OD pairs) are generated for the first 60 minutes and the last 15 minutes are used to clear 

out all vehicles moving inside the network. The cycle length for each signal is 60 seconds, and the 

offset value for each signal is set to zero. The traffic signal timings of through traffic in the main 

direction are 30 seconds, 3 seconds, and 27 seconds for green, yellow, and red, respectively. The 

entire arterial corridor is within the control region for vehicle trajectory optimization. Three levels 

of traffic demand volumes are considered in the test using the volume over capacity values of 0.1, 

0.5, and 0.85, respectively. Here, we consider the same percentage of ICEVs (2018 Toyota Camry 

LE 2.5) and BEVs (2013 Nissan Leaf) in the mixed traffic flow. Three test scenarios are compared 

in the test. Scenario 1 is the base case without vehicle speed control. Vehicle speed control for an 

individual vehicle model is implemented for each vehicle in scenario 2. The proposed vehicle 

speed control for mixed flow is used in scenario 3. 
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Figure 2: Test on an arterial corridor. 

2.8 Test Results 

The comparison plots of fuel, battery energy, traffic delay, and vehicle stops in three scenarios 

under three different levels of traffic conditions (uncongested, medium, and congested) are 

presented in Figures 3 through 6. Figure 3 and Figure 5 indicate that both controllers in S2 and S3 

can effectively reduce fuel consumption and traffic delay under various traffic demand levels 

compared with the base case in S1. The maximum saving can be observed in uncongested traffic 

with a v/c value of 0.1. The controllers in S2 and S3 produce 7.3% and 9.2% fuel savings, with 

8.9% and 8.1% reduction in traffic delay, respectively. Figure 4 and Figure 6 clearly demonstrate 

that both controllers in S2 and S3 can effectively reduce battery energy consumption and vehicle 

stops by an average of 30~40 percent under any traffic conditions compared with the base case in 

S1. Overall, the test results demonstrate the proposed vehicle trajectory optimization for mixed 

flow can effectively reduce fuel consumption, battery energy, traffic delay, and vehicle stops under 

various traffic demand levels when vehicles transverse arterial corridors with signalized 

intersections. 
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Figure 3: The comparison of fuel consumption by three scenarios under various traffic 

demand levels. 

 

 

Figure 4: The comparison of battery energy consumption by three scenarios under various  
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traffic demand levels. 

 

 

Figure 5: The comparison of traffic delay by three scenarios under various traffic demand 

levels. 
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Figure 6: The comparison of vehicle-stop by three scenarios under various traffic demand 

levels. 
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2.9 Investigating the Impact of Speed Guidance on Driver Behavior using a 

Driving Simulator 

This study aims to investigate the impacts of a speed guidance system on driver behavior using a 

driving simulator. The speed guidance system uses the vehicle trajectory optimization method 

developed in section 2.3 to compute the recommended speed and help drivers pass signalized 

intersections with reduced stop-and-go behaviors. 

2.9.1 Setup Test Environment in Driving Simulator 

 
 

Figure 7: Driving simulator. 

 

This study implements the speed guidance system (using the Eco-CACC-I algorithm developed in 

section 2.3) in a full-scale 3D driving simulator (DS) with VR-Design Studio software provided 

by the Forum8 Company (http://www.forum8.co.jp) to study drivers' behavior at signalized 

intersections in the presence of Eco-Speed-Guidance (ESG) system. The hardware of the DS is 

like a real car, including a cockpit, ignition key, automatic transmission, acceleration and brake 

pedals, a steering wheel, a seat belt, wipers, a hazard button, and three surrounding monitors to 

provide a view of the surrounding environment and traffic (for forward, rear, right, and left views) 

(demonstrated in Figure 7). The VR-Design Studio software can visualize the surrounding 
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landscape with 3D buildings, vehicles, trees, etc. and allows the visual examination of alternative 

project options. It also animates the vehicle’s movements in the driving simulation. The software 

can create networks with real-world features such as traffic signals, road markings, and 

intersections. It is also possible to create different scenarios under various traffic and weather 

conditions and offer a realistic driving scene. The simulator system collects data related to the 

vehicle and driver's behavior, such as speed, acceleration, throttle, the vehicle's position, traffic 

signal color, and phase of the traffic signal at a rate per second. The driving simulator directly logs 

all related data.  

To investigate drivers' behavior, we designed a road segment consisting of eight signalized 

intersections and implemented four different scenarios to account for various weather conditions. 

Table 1 and Figure 8 provides an overview of these scenarios. 

Scenario 1, referred to as the base scenario, served as the benchmark in that no specific 

information was provided to participants. It allowed us to assess their driving behavior in the 

presence of the eight signalized intersections without any speed guidance. Scenarios 2-4 included 

recommended speeds for various weather scenarios: sunny weather, rainy weather, and nighttime 

driving, respectively. These recommended speeds aimed to enable participants to pass through the 

signalized intersections smoothly without the need to come to a complete stop, provided they 

followed the Recommended Speed.  

Table 1: Simulated Scenarios' Description 

Scenario Visibility 
Num of 

Lanes 
Grade 

Num of 

Intersections 

Scenario1-Base Scenario 
Sunny 

weather 
1 Lane 0 8 

Scenario 2-ESG 
Sunny 

weather 
1 Lane 0 8 

Scenario 3-ESG Rainy weather 1 Lane 0 8 

Scenario 4-ESG Nighttime 1 Lane 0 8 

 

To isolate the effects of the ESG system and evaluate its impact on driver compliance behavior, 

the road segment consisted of only one lane in each direction. This configuration allowed us to 

analyze the direct influence of the ESG system on driver behavior without other factors affecting 

the results. By developing these distinct scenarios and examining participants' responses within 

each weather condition, we aimed to gain insights into the influence of the ESG system on driver 

behavior and compliance at signalized intersections. 
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(a) (b) 

  
(c) (d) 

Figure 8: Snapshot of Scenarios; a)Scenario 1 (Without ESG – Sunny Weather), b)Scenario 

2 (With ESG - Sunny Weather), c)Scenario 3 (With ESG - Rainy Weather), d)Scenario 4 

(With ESG – Night Vision). 

 

2.9.2 Develop Speed Guidance System in Driving Simulator 

To test the performance of the speed guidance system in a corridor with multiple traffic signals, 

an arterial corridor with eight signalized intersections is simulated in the driving simulator 

environment. The distances between two neighboring intersections from left to right are 400, 300, 

500, 400, 300, 500, 400 meters. This arterial corridor is also simulated and tested using the 

microscopic simulation software, INTEGRATION, to validate the performance of the speed 

controller for ICEVs and BEVs. In the simulation test, the traffic stream parameters are a free-

flow speed of 40 mph, a speed at a capacity of 30 mph, a saturation flow rate of 1600 veh/h/lane, 

and a jam density of 160 veh/km/lane. The total simulation time is 75 minutes, the vehicles (OD 

pairs) are generated for the first 60 minutes and the last 15 minutes are used to clear out all vehicles 

moving inside of the network. The cycle length and phase splits of all intersections are 60 seconds 

and 50%, respectively, and the offsets of all signals are set as 0. The overall energy reductions for 

ICEVs and BEVs are about 3~10% and 10~30% respectively in the arterial network under various 

traffic demand levels. The test results from simulation software can be compared with the test 

results from driving simulator later.  

The proposed vehicle trajectory optimization for mixed flow in section 2.1 is used to 

develop a speed guidance system in the driving simulator environment. An EcoDrive DLL file 
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generates a speed guidance system using the Delphi programming language. In the driving 

simulator test, the test vehicle is connected to the speed guidance system through the DLL file. 

The vehicle’s speed, location, signal phase, and timing are transferred into the DLL file in real-

time to compute the speed guidance. Two types of speed guidance options are designed for 

algorithm: 1) recommended speed value; and 2) color-coded speed guidance (“1” speed up, “-1” 

speed down, “0” maintain current speed). In the driving simulation test, color-coded speed 

guidance was considered. 

The participants began driving in the base scenario, which served as a point of comparison 

for their driving behavior in relation to the other scenarios. Subsequently, participants experienced 

various scenarios with ESG provided throughout the entire network, including all eight 

intersections. In each scenario, participants received “Speed Guidance” through a color code 

system. In the Speed Guidance scenarios, a “Green Arrow” indicated the need to accelerate, while 

a “Red Arrow” signaled the need to decelerate (Figure 9). Participants were instructed to drive at 

a constant speed limit of 30 mph and adjust their speed according to the information provided via 

ESG to pass through the signalized intersections without stopping. The objective of the study was 

to assess the ’participants’ ability to follow the ESG. 

 

  
Figure 9: Color code type of eco speed guidance 

 

Before conducting the study, we obtained approval from the Institutional Review Board (IRB) to 

ensure compliance with ethical guidelines. To recruit participants, we employed various methods, 

including distributing flyers within the Morgan State University (MSU) campus and sending email 

invitations. A total of 15 participants from MSU were recruited for the driving experiments. The 

email and flyer’s invitations provided detailed information about the study, including the study 

requirements, contact information, and an explanation of the monetary compensation offered for 

participating in the simulator-based driving experiments. Prospective participants underwent a 

screening process to assess their eligibility, and those who met the criteria were scheduled for the 

simulator sessions. To be eligible for participation, individuals were required to possess a valid 

driver's license. Participants received compensation of $10 per hour for their involvement in the 

study, reflecting their time spent driving in the simulator environment. 
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In the driving simulator, a speed limit of 30 mph was implemented for all participants. They were 

instructed to maintain a speed of 30 mph and adjust their speed in response to the ESG provided 

in Scenarios 2-4, aiming to pass through the signalized intersections without coming to a stop. The 

primary objective of the study was to assess participants' ability to follow the ESG rather than their 

willingness to do so. Before starting the driving experiments, participants were informed about the 

importance of following the ESG during the investigation to successfully navigate the intersections 

without stopping. However, there was no mandatory instruction compelling them to strictly follow 

the guidance. While some participants were able to promptly follow the provided ESG, others 

required more time to adjust their speed and align with the speed guidance. All participants 

completed each of the four scenarios outlined in Table 1, which included scenarios without any 

information (Base) and with ESG in a random order to eliminate the learning effect. 

To gather additional information, participants were asked to complete two survey 

questionnaires: a pre-driving survey and a post-driving survey. The pre-driving survey collected 

demographic information such as age, gender, ethnicity or race, employment status, educational 

status, income level, household size (Table 2), and familiarity with "Eco Speed Guidance/Eco 

Driving Guidance" (Figure 10). Participants completed the pre-driving survey before engaging in 

the driving simulator experience. Following the driving experiment, the post-driving survey was 

administered to gather feedback on their driving experience in the different scenarios (Figure 11).  

 

Table 2: Participants' Sociodemographic Characteristics 

Variable Categories Frequency Percent 

Gender 
Female 7 46.7 

Male 8 53.3 

Age 

18-25 4 26.7 

26-35 4 26.7 

36-45 5 33.3 

46-55 2 13.3 

 Educational Status 

Undergraduate 4 26.7 

Graduate 7 46.7 

Postgraduate 4 26.7 

Work Status 
Part-time 4 26.7 

Full-time 11 73.3 

Income 

Less than $20 k 1 6.7 

$20k-$30k 4 26.7 

$30k-$50k 0 0 

$50k-$75k 4 26.7 

$75k-$100k 3 20 

More than $100k 3 20 

Household size 
only me 5 33.3 

2 4 26.7 



21 

 

3 3 20 

4 or more 3 20 

Race or Ethnicity 

African American 5 33.3 

White 9 60 

Asian 1 6.7 

 

Descriptive statistics were gathered from the data obtained through the Pre-Driving Survey 

questionnaire, which provided insights into the characteristics of the fifteen participants who 

participated in the driving experience. Among the participants, 53.3% were male, and 46.7% were 

female. The age range of the participants spanned from 18 to 55 years old, with 33.3% falling 

within the age group of 36 to 45 years (Table 2). 

3 ANALYSIS AND RESULTS  

3.1 Compliance Rate 

Many studies use statistical analysis to develop policies to improve traffic safety, investigate and 

forecast travel behavior, and pinpoint deficiencies in transportation policy (52–56). A statistical 

analysis was conducted to evaluate the percentage of drivers who successfully passed intersections 

based on following the ESG, as well as to assess the effectiveness of the ESG under different 

weather conditions affecting visibility. This suggests a preference for following the ESG when 

visibility is reduced during nighttime conditions, highlighting the effectiveness of the ESG in such 

circumstances. To take into consideration the inherent challenge of following the ESG accurately, 

the authors defined compliance as a participant’s speed being within 5 mph of the recommended 

speed (i.e., recommended speed +/- 5 mph). If participants pass more than seven intersections 

based on their adherence to the ESG, we consider that they have successfully passed the 

intersections for the purpose of this analysis. The criterion for passing intersections in this study 

is defined as successfully passing at least seven out of the eight intersections by following the 

ESG without stopping at red lights.  

Table 3 presents the outcomes of an experiment examining the impact of ESG on 

participants’ behavior while passing through intersections under different weather conditions. In 

Scenario 1 (Without ESG - Sunny Weather) the result shows none of the participants were able to 

pass more than seven intersections. For this scenario the average number of intersections 

successfully passed by all participants was only 4.9%. Additionally, in Scenario 2 (With ESG – 

Sunny Weather), a high percentage (73%) of participants followed the guidance, leading to 73% 

of them successfully passing more than seven intersections. The average number of intersections 

passed by all participants significantly increased to 6.9%, showcasing the substantial improvement 

achieved with the implementation of ESG. Moreover, in Scenario 3 (With ESG – Rainy Weather), 

a similar percentage (73%) followed the guidance. However, the success rate in passing more than 

seven intersections slightly decreased to 60% compared to the sunny weather scenario. For this 

scenario the average number of intersections passed by all participants was 6.8%. In Scenario 4 

(With ESG – Night Vision) the result shows an even higher percentage (80%) of participants 

followed the guidance. However, the success rate in passing more than seven intersections 
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dropped to 40%, representing the lowest success rate among the presented scenarios. The average 

number of intersections passed by all participants in this scenario was 6.3%. Overall, the highest 

average number of passing intersections was observed in Scenario 2 (With ESG - Sunny Weather), 

showcasing the effectiveness of ESG in enhancing intersection navigation. Conversely, Scenario 

1 (Without ESG - Sunny Weather) demonstrated the lowest average success rate, underscoring the 

significance of ESG in promoting safer and more efficient traffic flow. 

 

Table 3: Percentage of All Participants Who Follow ESG and Passed Intersections 

Scenario  Follow ESG 
Passing >= 7 

Intersections 
Avg Passing 

Scenario 1 (Without 

ESG – Sunny 

Weather) 

Without ESG 0% 4.9 

Scenario 2 (With 

ESG – Sunny 

Weather) 

73% 73% 6.9 

Scenario 3 (With 

ESG– Rainy 

Weather) 

73% 60% 6.8 

Scenario 4 (With 

ESG – Night Vision) 
80% 40% 6.3 

 

3.2 ANOVA 

3.2.1 Following Eco Speed Guidance and Passing Intersections Analysis  

An analysis of variance (ANOVA) was used to determine the proportion of drivers who 

follow the ESG and passed intersections based on different scenarios. Table 4 presents the findings 

of a study evaluating participants' adherence to ESG in three different scenarios. In the "Following 

Percentage" column, the "Rate" column shows the percentage of participants following ESG 

across scenarios for each category. In Scenario 2 (With ESG - Sunny Weather) and Scenario 3 

(With ESG - Rainy Weather), younger participants aged 18-35 demonstrated a higher following 

rate to ESG compared to those above 36. However, in Scenario 4 (With ESG - Night), participants 

aged 26-45 displayed a higher following rate of ESG among other age groups. Consistently across 

all three scenarios, male participants and participants with a graduate education level demonstrated 

higher following rate compared to others. 

In the "Passing Intersection Percentage" column, the "Rate" column shows the 

percentage of participants who passed more than seven intersections across scenarios for each 

category. In Scenario 2 (With ESG - Sunny Weather) and Scenario 3 (With ESG - Rainy Weather), 

younger participants aged 18-35 and participants with graduate level demonstrated higher passing 

rate compared to others. However, in Scenario 4 (With ESG - Night), participants aged 36-45 

displayed a higher passing rate among other age groups. In all education subcategories, 

participants showed similar performance of passing rate within each category. Consistently across 

all three scenarios, female participants demonstrated higher passing rate compared to others. The 
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ANOVA results show there is no significancy different between passing intersection and 

following ESG among different scenarios. 

 

Table 4: ANOVA Results for Following ESG and Passing Intersection 

Scenario 

Name 

Variable Category Following ESG Passing Intersection 

   Percent F Sig. Percent F Sig. 

Scenario 

2 (With 

ESG – 

Sunny 

Weather) 

Age 18-25 36% 0.11 0.89  27% 1.75 0.19 

26-35 36% 27% 

36-45 18% 18% 

46-55 9% 18% 

Gender Male 55% 45% 

Female 45% 55% 

Education Undergrad 36% 27% 

Graduate 55% 55% 

Postgraduate 9% 18% 

Scenario 

3 (With 

ESG – 

Rainy 

Weather) 

Age 18-25 36% 33% 

26-35 36% 33% 

36-45 18% 22% 

46-55 9% 11% 

Gender Male 55% 33% 

Female 45% 67% 

Education Undergrad 36% 33% 

Graduate 55% 44% 

Postgraduate 9% 22% 

Scenario 

4 (With 

ESG – 

Night 

Vision) 

Age 18-25 25% 33% 

26-35 33% 0 

36-45 33% 50% 

46-55 8% 17% 

Gender Male 58% 33% 

Female 42% 67% 

Education Undergrad 25% 33% 

Graduate 50% 33% 

Postgraduate 25% 33% 

 

3.3 Regression Analysis 

3.3.1 Following ESG and Passing Intersections for All Three Scenarios 

To identify the relationship between the ESG following percentage and passing 

intersection as a dependent variable and the sociodemographic of participants as independent 

variables, binary logistic regression analyses were performed on dataset. As shown in Table 5, the 
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regression results for the following ESG and passing intersections as dependent variables with 

age, gender, and education as independent variables in all three scenarios, are as follows: 

 

Table 5: Regression Results for Following ESG and Passing Intersections 

Scenario Variable Coefficient Standard Error Sig. 

     

Following  ESG 

age -3.1254 1.475 0.034 

gender 2.2261 1.396 0.111 

education -4.6858 1.804 0.009 

     

Passing Intersections 

age 0.5187 0.574 0.366 

gender -1.6142 0.755 0.033 

education 0.2010 0.803 0.802 

 

According to Table 5, there is a negative relationship between age and the following of ESG; 

younger drivers tend to follow ESG more than older drivers. Furthermore, there is a negative 

relationship between education and following ESG; drivers with an undergraduate degree are more 

likely to follow ESG. It is important to note that the statistical significance of the coefficients is 

determined by the p-values. A p-value that is less than the critical value (0.05) indicates a 

statistically significant effect. In this case, age and education have statistically significant effects 

on the likelihood of following the recommended speed. Moreover, binary logistic regression 

analysis was performed on the combined data to determine the relationship between the proportion 

of participants who pass at least seven intersections while the traffic light is green and the 

’participants’ sociodemographic characteristics as independent variables. According to the 

findings presented in Table 5, there is a negative relationship between gender and the likelihood 

of passing at least seven intersections while the traffic signal is green. Female drivers are more 

likely to surpass this threshold compared to male drivers.  

3.4 Survey Analysis  

3.4.1 Pre-Survey 

In the pre-survey, the result of the question “Are you familiar with ‘Speed-Control Guidance/Eco 

Driving Guidance?” provides insight into participants’ familiarity and knowledge about speed-

control guidance or eco-driving guidance. The graph shows the distribution of responses among 

the participants: 
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Figure 10: Familiarity rate of Speed Control Guidance/ECO Driving Guidance 

 

Figure 10 indicated that 47% of the participants responded “Yes” and showed that they have a 

good knowledge of speed-control guidance/eco-driving guidance. Moreover, 33% of the 

participants responded “Yes” and mentioned that they know only a little about speed-control 

guidance/eco-driving guidance. Additionally, 13% of the participants responded that they have 

heard about speed-control guidance/eco-driving guidance but do not know much about it. On the 

other hand, 7% of the participants stated that they had never heard of speed-control guidance/eco-

driving guidance.  

3.4.2 Post Survey 

The following figures show the descriptive analysis of post-driving surveys.  Figure 11 (a) shows 

participants’ perceptions and opinions regarding the usefulness of ESG. The results reveal that 

13% of participants found it useless, 7% expressed it as unhelpful, and approximately 33% had a 

neutral stance. In comparison, 20% of participants found the ESG to be helpful, while 27% found 

it extremely helpful. Figure 11 (b) shows the easiness of following the ESG, and that 20% of 

participants strongly disagreed, indicating that they found it challenging or even impossible to 

follow the speed guidance. Interestingly, no participants disagreed or strongly agreed, suggesting 

a lack of consensus on the matter. Approximately 53% of participants expressed a neutral stance, 

while 27% of participants agreed that it was easy to follow the speed guidance. This subset of 

participants found it manageable to comply with the speed guidance.  

47%

33%

13%

7%

Yes, and have a good knowledge of it. Yes, but know a little about it.

Have heard of it, but don't know much. Never heard of it.
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a) Rate the usefulness of the speed information you 
were provided? [On a scale of 1 (Useless) 

 to 5 (Extremely Helpful)] 

b) It was easy to follow the speed guidance. [On a scale 
of 1 (Strongly Disagree) to 5 (StronglyAgree)] 

  

c) Which scenario do you prefer the best?  a) Driving in which scenario was more challenging 
for you? 

Figure 11: a) Usefulness of ESG b) Easiness of following ESG c) Preference of Type of 

Scenarios d) Comparison of Perceived Driving Challenge Between Scenarios 

 

Figure 11 (c) displays the preferences of participants regarding the four different scenarios. Among 

the participants, 33% preferred scenario with no information provided, which represents the base 

scenario without any ESG for its autonomy and control. A majority of 53% of participants 

expressed a preference for scenario with ESG in sunny weather. The guidance system provided 

benefits such as maintaining a consistent speed and reducing the need for manual speed 

13%

7%

33%20%

27%

Useless Not Very Helpful
Neutral Helpful
Extremely Helpful

20%

0%

53%

27%

0%

Strongly Disagree Disagree
Neutral Agree
Strongly Agree

33%

53%

7%

7%

Base scenario

Scenario with ESG in Sunny Weather

Scenario with ESG in Rainy Weather

Scenario with ESG at Night

7%0%

60%

33%

Base scenario

Scenario with ESG in Sunny Weather

Scenario with ESG in Rainy Weather

Scenario with ESG at Night
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adjustments. A smaller percentage of participants, 7% each, preferred scenario with ESG in rainy 

weather and scenario with ESG at night. This indicates that some participants found the presence 

of ESG beneficial even in challenging weather conditions or during nighttime driving. Figure 11 

(d) indicates that only 7% of participants found scenario with no information provided most 

challenging, indicating driving without ESG in sunny weather was more challenging for a small 

portion of the participants. None of the participants selected scenario with ESG in sunny weather 

as the most challenging, suggesting ESG in sunny weather made the driving experience less 

challenging. In contrast, a significant majority of participants, 60%, reported that scenario with 

ESG in rainy weather was the most challenging. This suggests that driving with ESG in rainy 

weather posed a higher level of difficulty for most of the participants. Additionally, 33% of 

participants found scenario with ESG at night, involving ESG during nighttime driving, to be the 

most challenging. These findings demonstrate that rainy weather conditions and nighttime driving 

presented notable challenges for a considerable number of participants. On the other hand, ESG in 

sunny weather alleviates perceived challenges. 

Taken together, the findings obtained from Figure 11 (c) and Figure 11 (d) highlight the 

significant influence of weather conditions, particularly visibility, on participants’ preferences and 

perceived challenges in driving scenarios. Sunny weather with good visibility, combined with 

ESG, was generally preferred, and mitigated perceived difficulties. On the other hand, rainy 

weather, and nighttime driving, characterized by reduced visibility, posed challenges that even the 

presence of guidance systems could not fully overcome. 

 

4 DISCUSSION 

Previous studies have extensively investigated methods for optimizing speed control to mitigate 

emissions, categorizing them based on emission reduction effects, speed control in mixed traffic, 

eco-driving implementation, and the relationship to CAVs. In line with previous findings, our 

study indicated that male participants exhibit a greater tendency to follow ESG, while older drivers 

face challenges.  

In this study, we focused on the effectiveness of ESG and participants’ tendency to follow 

ESG and pass more than seven intersections while the traffic signal was green. The ANOVA and 

regression analysis were performed to evaluate driver’s behavior in different scenarios. It can be 

inferred from our study that sociodemographic factors contribute to the effectiveness of ESG. The 

results indicate that female drivers exhibit lower compliance with speed guidance compared to 

male drivers. Surprisingly, despite their lower compliance, female drivers outperform male drivers 

in passing more than seven intersections. Furthermore, older drivers face challenges in following 

the ESG, highlighting the need for improved methods of disseminating information to facilitate 

better adherence among this demographic. Conversely, participants with a graduate degree exhibit 

superior performance in both following speed guidance and passing intersections, underscoring 

the positive influence of higher education on driving behavior. These findings shed light on the 

unique characteristics and challenges faced by different driver groups, emphasizing the importance 

of considering individual differences in road safety and traffic management strategies. Upon 

analyzing the survey’s responses, it was revealed that approximately 47% of participants expressed 

the usefulness of a speed advisory, while a similar percentage stated that following the 
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recommended speed was an easy task for them. These insights shed light on the perceptions and 

experiences of participants regarding the ESG’s speed-related features.  

The contribution of this study is as follows: Firstly, this study utilizes statistical analysis to 

identify potential relationships between different scenarios. Secondly, it examines the relationships 

between visibility, tendency to follow ESG, and success in passing more than seven intersections. 

 

5 SUMMARY AND CONCLUSION  

Previous studies have shown that the optimal speed trajectories for vehicles with different engine 

types (e.g., gasoline versus electric vehicles) are very different under certain conditions. This study 

aimed to address these problems by developing a general eco-driving system that optimizes speed 

control for vehicles with different engine types at signalized intersections. The proposed algorithm 

solely focuses on mixed traffic flows comprised of ICEVs and BEVs to develop a general approach. 

The proposed vehicle controller was implemented into microscopic traffic simulation software 

(INTEGRATION) to validate the system-wide impacts of using the proposed system on traffic 

mobility and energy consumption under a mixed combination of vehicle types and various traffic 

conditions. A case study that models an arterial corridor with three signalized intersections was 

used to investigate the performance of the proposed controller under various traffic demand levels. 

The test results demonstrate that the proposed controller for mixed flow traffic outperforms the 

vehicle speed controller for individual vehicle models and produces the most savings in fuel 

consumption, battery electric energy, and traffic delay. Lastly, the proposed algorithm is used to 

develop a speed guidance system providing two options of output: 1) recommended speed value, 

and 2) color-coded speed guidance. The developed speed guidance system is coded into a DLL 

file by the Delphi coding program and can be directly used in driving simulators to test human 

responses to two options of driving guidance and the corresponding performances. This study 

utilized a full-scale driving simulator to assess drivers’ performance to follow and comply with 

ESG in different weather and visibility conditions. This study investigated the impact of ESG on 

successfully passing at least seven out of eight intersections without needing to stop at red signal. 

The primary achievement of this study was determining the effectiveness of ESG for multiple 

intersections, which remained activated from the beginning of the road until the completion of the 

scenario. A sample of 15 participants took part in driving simulator experiments in different 

scenarios. To evaluate drivers’ performance to follow ESG, four scenarios were designed with 

different visibility. 

The results of the scenario with ESG that takes place under sunny weather conditions with 

good visibility indicate that male drivers tended to follow the ESG more than female drivers but 

had lower success in passing seven intersections. Furthermore, the study reveals that younger 

participants showed better adherence to follow speed recommendations. Additionally, graduates 

and full-time participants exhibit a higher tendency to follow speed guidance and demonstrate a 

higher success rate in passing at least seven intersections. Notably, participants with an income 

range between $20,000 and $30,000 display a higher propensity to follow ESG, and those with an 

income range between $20,000 to $75,000 achieve a higher success rate in passing more than 
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seven intersections. The results of the scenario with ESG that was designed for rainy weather 

conditions with low visibility show that the probability of following ESG is higher in male drivers 

than female drivers but has lower success in passing more than seven intersections without 

stopping behind the intersections. The younger age group, people with a graduate degree, and 

participants with full-time jobs performed better. Participants with a lower income were successful 

in following ESG. Consequently, lower-income participants and those with an income ranging 

between $75,000 to $100,000 passed more than seven intersections based on the decision to follow 

ESG. The results of the nighttime vision scenario with low visibility indicated that male drivers 

followed ESG better than female drivers but had a lower success rate in passing more than seven 

intersections. The results also showed that middle-aged groups performed better to follow the ESG, 

and only 36-to-45-year-old participants can better pass more than seven intersections. Individuals 

with full-time jobs and graduates level complied with speed guidance and could better pass 

intersections while the traffic signal was green. Additionally, participants with an income range 

between $20,000 to $75,000 were more successful in following the ESG. On the other hand, those 

with all income ranges, excluding $50,000 to $75,000, can pass seven intersections without 

stopping at the intersection. Overall, the presence of ESG has a positive impact on participants' 

behavior, leading to a higher percentage of them passing more than seven intersections. However, 

the effectiveness of ESG may vary depending on weather conditions, with higher success rates 

observed in sunny and rainy weather compared to night conditions. Although the developed 

approach should be compatible with HEVs, further testing of mixed traffic flow incorporating 

ICEVs, BEVs, and HEVs will be considered in future research. We will also consider expanding 

the simulation test to include a large-scale traffic network and validate system-level performances 

under different combinations of mixed flow traffic, various traffic demand levels, and different 

rates of the market penetration of controlled vehicles. 

One limitation observed in this study which is common to all driving simulator studies is 

that the simulator experience differs from real-world driving. To improve the reliability of 

conclusions concerning the effectiveness of the ESG, it is advised to implement color-coded speed 

recommendations in real-world driving scenarios. 

Additionally, this study focused solely on straight roads, neglecting scenarios involving 

right or left turns. To draw more comprehensive conclusions regarding the effectiveness of the 

color-code ESG design, future research should encompass various scenarios with both right and 

left turns at intersections. This will enable a more accurate assessment of driver behavior under 

different turning conditions, providing a more robust evaluation of the color-code ESG design's 

efficacy. Furthermore, one limitation of the current simulator used in this study is the absence of 

actuated traffic lights. As potential research for future studies, incorporating actuated traffic lights 

into the simulator could address this limitation and enhance the simulation's realism and 

applicability. 
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Authors  
Year 

Goal Data Methodology Results 

Demir et al.(1) 
(2014) 

( 
 
 

• Review on green road freight 

transportation 59 papers 

• Literature Review 

• Descriptive Statistics 

• Most studies focused on vehicle load and speed  

• Showed an importance of travel at a speed that 

helps to reduce fuel consumption  

Wang et al. (2) 
(2019) 

• optimize traffic signal according to the 

real-time traffic flow 

• All CVs form a platoon to maintain the 

best space and run at the recommended 

speed 

The proposed model 

tested on simulations of 

road network imitating the 

real world. 

• Join Control Model 

• To evaluate the performance of the 

proposed model, VISSIM/MATLAB 

simulation used 

• To verify the feasibility of the model, 

classical MAXBAND model selected 

• The proposed model reduced the stop time and 

stops of coordinate phase by up to 53.69% and 

41.15%. The signal delays at the intersection for 

each vehicle reduced by 13.19%.  

• The CV passed the intersection with no stops. 

Conlon et al.(3) 
(2019) 
 

• Find Greenhouse Gas Emission Impact of 

Autonomous Vehicle Introduction in an 

Urban Network 

Used the Chicago 

downtown network and 

CMAP’s regional origin-

destination trip table as 

the baseline 

• An integrated traffic microsimulation 

and emission model  

• AVs show potential to reduce total CO2 

emissions at a network scale, approaching 4% 

reduction at full autonomy 

Lu et al.(4) 
(2019) 
 

• A speed control system at successive 

signalized intersections under connected 

vehicles environment is proposed for 

reducing fuel consumption and CO2 

emissions. 

A real-time simulation 

framework result 

• Use a kinematic wave model  

• Choose different signal timing plan to 

examine the effectiveness of our speed 

control algorithm. 

• The proposed speed control method could 

reduce fuel consumption by more than 18% and 

travel time by 9% in medium density traffic 

flow—the most effective in the study.  

 

Ahangari et al.(5) 
(2019) 
 

• Using a driving simulator to investigate 

drivers’ response and compliance to Eco-

speed control systems in the vicinity of a 

signalized intersection and the 

effectiveness of such a system in reducing 

emissions.  

58 participants 

• Descriptive and statistical analyses 

including Generalized Linear Models 

(GLM) and t-tests 

 

• Men and younger drivers are more likely to 

follow the recommended speed.  

• The emissions calculations indicate that an Eco-

speed control system decreases the emissions 

level 9.1% more than countdown timing systems 

do 
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• The emissions level is lower in the countdown 

timing system compared to conventional traffic 

signals. 

Gamage et al.(6) 
(2016) 
 

• To presents a novel eco-speed control 

algorithm to assist fuel-efficient driving at 

signalized intersections. The proposed 

algorithm employs Q-learning, a self-

learning intelligent agent to optimize the 

driving speed to minimise the resulting 

fuel consumption. 

---- 
• AIMSUN microscopic simulation. 

• The eco-speed control algorithm demonstrates 

that the fuel consumption can be reduced up to 

18% and a significant reduction in the vehicle 

idling time as well. 

Chen et al.(7) 
 (2019) 
 

• To propose an adaptive speed controller 

for the electromagnetic direct drive 

vehicle robot driver to achieve the 

accurate tracking of desired speed. 

Experiments are 
conducted using a Ford 
FOCUS car. 
 

• Experimental result 

• The proposed control method can accurately 

track the target speed and adhere to changes in 

speed caused by interferences under different 

test conditions. It also has small mileage 

deviation 

Xu et al. (8) 
(2019) 
 

• To improve fuel economy, a double-layer 

speed optimization method with real-

time computation that considers traffic 

signal information collected via vehicle-

to-infrastructure communication and 

traffic conditions was proposed 

Conduct numerous field 
tests using a test bed and 
an experimental vehicle 
platform. 

• In the first layer, a Dijkstra algorithm is 

used to optimize the average ecospeed 

between adjacent intersections with 

full-horizon traffic signal information. In 

the second layer, an optimal control 

method to plan a real-time speed profile 

with average speed constraints was used 

• By computing optimal solutions in real time, the 

proposed double-layer speed optimization 

method has the potential to improve fuel 

economy and decrease trip time. 

Lim et al.(9) 
(2017) 
 

• To propose a distance-based eco-driving 

method using a two-stage hierarchy for 

long-term optimization with local 

adaptation 

Simulation test 
• Quadratic programming method 

• The QP method is applied to simplify the time 

intervals of each distance step and cost function. 
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Nasri et al.(10) 
(2018) 
 

• To reduce the cost of emissions, fuel 

consumption and travel time among of 

Autonomous trucks (Ats) by optimizing 

the routes and the speeds  

Computational experiment 

• Compare the two linear models: the 

discrete speed and discrete recourse 

model, and the discrete speed and 

continuous recourse model.  

• The discretized recourse model, yielding an 

average cost reduction of 4.95%.  

• The continuous recourse model yielded average 

cost savings of 7.48%. 

Chen et al.(11) 
(2019) 
 

• To propose a strategy that simultaneously 

finds the optimal driving speed with the 

energy source power split for the drive 

mission specified in terms of the road 

geometry and travel time. 

Simulation test 
• An indirect optimal control method 

Comparative results 

• It simultaneously solves the optimal speed 

profile and the power split in terms of fuel 

efficiency 

• Increase the performance of battery durability 

for a hybrid vehicle 

Khooban et.al(12) 
(2019) 
 

• To proposes a new fuzzy Proportional 

Derivative + Integral (PD+I) controller 

based on a non-integer system for the 

robust speed control of highly nonlinear 

hybrid electric vehicles 

• Experimental Data 

• The Supplemental Federal 

Test Procedure 

 

• To prove the effectiveness of the 

suggested novel smart controller, a valid 

comparison is conducted between the 

results of the proposed method and 

recent studies on the same topic like the 

Model Predictive Control and the 

conventional online fuzzy PD+I (OFPD+ I) 

controllers. 

• The proposed controller can track a desired 

reference signal with lower deviation  

• The performance of the suggested method is 

more robust in comparison with the prior-art 

controllers for all the case studies 

Liang et al.(13) 
(2019) 
 

• Using connected vehicle (CV) information 

to identify optimum signal timing and 

phasing plans while also providing speed 

guidance to both autonomous (AVs) 

• Using human driven speed guidance-

enabled vehicles (SGVs) to minimize total 

number of stopping maneuvers.  

 

Simulation test 

• A joint traffic signal optimization 

algorithm 

• Both realistic acceleration/deceleration 

behaviors and human drivers’ reaction 

times are explicitly considered in the 

speed guidance design process. 

• Average delay and number of stops decrease 

with higher CV penetration rate. The number of 

stops decreases as the ratio of both AVs and 

SGVs increases. While AVs are about 10% more 

efficient than SGVs, human-driven vehicles still 

provide a benefit even when they do not fully 

comply with speed guidance information 

Lee et al.(14) 
(2021) 
 

• Combine a conventional speed 

optimization planner and reinforcement 

learning to propose a real-time intelligent 

•  Considered intersection-

approaching scenarios 

where there is one traffic 

• A deep reinforcement learning (DRL) 

algorithm that can learn the optimal 

policy through iteratively interacting 

•  Results show that the learned optimal policy 

enables the proposed intelligent speed 

optimization planner to properly adjust the 
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speed optimization planner for connected 

and automated vehicles 

 

light with different signal 

phase and timing setup. 

 

with different driving scenarios without 

increasing the limited connectivity and 

sensing range. 

parameters in a piecewise constant manner, 

leading to additional energy savings without 

increasing total travel time compared to the 

conventional speed optimization planner. 

Cheng et al.(15) 
(2013) 

• To combine a precise fuel consumption 

model with a robust optimization module. 

develop an eco-driving assistance system 
Vehicle Variables 

• A dynamic programming technique 

• Experimental test 

• The accuracy of the model is improved through 

piecewise modeling technique 

Kramer et al.(16) 
(2015) 
 

• To investigate the resolution of difficult 

vehicle routing variants with speed and 

departure time optimization. 

• The method tested on the 

instances of Demir et al. 

(2012) and Kramer et al. 

(2015), containing 

between 10 and 200 

customers 

• A simple polynomial algorithm 

• Computational experiments 

• The experimental results with this heuristic 

showed that delayed departure times from the 

depot can lead to very significant savings: up to 

8.36% operational costs for the considered 

benchmark sets. 

Pourmehrab et al. 
(17) 
(2017) 
 

• To develop and simulate an Intelligent 

Intersection Control System (IICS) that can 

optimize signal control with  AV 

trajectories in an undersaturated traffic 

flow of AV and conventional vehicles 

• 3000 simulation 

experiments. 

 

• Simulation experiment. 

• Simulations in VISSIM 

• Comparison of the algorithm to operations with 

conventional actuated control shows 38 – 52% 

reduction in average travel time compared to 

conventional signal control. 

Shen et al.(18) 
(2018) 
 

• To built optimization algorithm to 

calculate trajectories of powertrain 

control, as well as vehicle speed, that 

minimizes fuel consumption in a 

computationally efficient manner. 

• Simulation test on two 

different real-world 

highways. 

 

• optimization algorithm 

• Pontryagin’s minimum principle (PMP) 

• Simulation results show that the proposed 

optimization algorithm achieves a relative fuel 

saving of at least 8% compared to the baseline 

Talati et al.(19) 
(2021) 
 

• To propose a model which can determine 

the acceptable and safe speed range for 

the self-driving vehicle 

• Data from a camera sensor 

that captures video 

streams or images of the 

street  

• Comparative analysis 

• Speed controller analysis 

• The proposed scheme is more latency and 

accurate than traditional schemes. 
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• Sensors such as Lidar be 

employed to transmit the 

data  

Xu et al.(20) 
(2021) 
 

• To develop a completely model-free 

reinforcement learning approach for 

optimal speed control of gasoline engines. 

• A 4-cylinder gasoline 

engine is used for 

validating the proposed 

scheme and observing the 

dynamical behavior of the 

engine system 

• Simulation and Experimental result 

• The learning mechanism is effective even when 

no model information is used in the learning 

algorithm 

Lu et al.(21) 
(2016) 
 

• A comparative study on speed control 

effect of speed limit facilities on the 

expressway based on speed surveys, 

development of evaluation system, 

evaluation of speed control effect and 

verification on the speed control effect of 

improving measures. 

• The Beijing-Hong Kong-

Macao expressway was 

selected as a sample site 

for on-site speed surveys. 

The speed of cars and large 

size vehicles were 

collected. 

 

• Comparative Study 

• The speed limit effect of portal frame is the best, 

and the speed limit effect of deceleration 

marking is the worst.  

 

Asghari et al.(22) 
 (2020) 
 

• organization of recent literature to 

provide a reference point for future 

research on new aspects of Green-VRPs. 

• 313 papers • Systematic Literature Review 

• The majority of PRPs examined vehicle weight, 

speed, and travel time as effective factors on 

greenhouse emissions. 

Vahidi et al.(23) 
(2018) 
 

• To emphasize the potential of CAV energy 

saving based on the first principles of 

movement, optimal control theory and a 

review of the literature on eco-driving 

• 198 Papers • Literature Review 

• Automation helps vehicles adjust their 

movements more accurately in advance of 

future events including slow traffic, traffic signal, 

movement of other vehicles, and save energy. 

• Increase energy efficiency of a group of vehicles 

by moving in a coordinated manner.  

Mahbub et al.(24) 
(2021) 
 

• To investigate the interaction between 

CAV and human-driven vehicle (HDV) 

dynamics, and provide a rigorous control 

framework that enables platoon 

• Considered a CAV followed 

by one or multiple HDVs 

traveling in a single-lane 

roadway 

• numerical analysis 

• Presented a framework for platoon formation 

under a mixed traffic environment where a 

leading CAV derives and implements its control 
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formation with the HDVs by only 

controlling the CAVs within the network. 

input to force the following HDVs to form a 

platoon 

• Numerical example showed he validate of 

proposed research 

Garg et al.(25) 
(2021) 
 

• To investigates the impact of CAVs on 

traffic efficiency in realistic 

communication and road network 

scenarios 

• A large-scale road network 

in Ireland with real traffic 

data  

• IDM car-following model 

• The field-tested CACC and ACC models 

• SUMO is used for modeling the lane 

changing behavior 

• Results show that CAVs can significantly improve 

traffic efficiency in congested traffic scenarios at 

high penetration rates.  

• Simulation results showed that high penetration 

rates of CAVs provide significant improvement in 

traffic performance 

Ko et al.(26) 
(2020) 
 

• To propose speed harmonization and 

merge control, taking advantage of CAVs 

to alleviate traffic congestion at a 

highway bottleneck area. 

• Simulation test 

• The CAVs decide which CAV to pass first 

in each lane using the trained Q-network 

without communication among them. 

• Reinforcement learning algorithm called 

deep Q network to train behaviors of 

CAVs. 

• The proposed approach improves the mixed 

traffic flow by increasing the throughput up to 

30% and reducing the fuel consumption up to 

20%, when compared to the late merge control 

without speed harmonization. 

Xu et al.(27) 
(2019) 
 

• Implement Cooperative Method of Traffic 

Signal Optimization and Speed Control of 

Connected Vehicles at Isolated 

Intersections and improve transportation 

efficiency and decrease CAV fuel 

consumption.  

 

• Simulation Studies 

• Numerical Experiment 

• The former calculates the optimal traffic 

signal timing and vehicles’ arrival time to 

minimize the total travel time of all 

vehicles; the latter optimizes the engine 

power and brake force to minimize the 

fuel consumption of individual vehicles. 

The enumeration method and the 

pseudo spectral method are applied in 

roadside and onboard optimization, 

respectively. 

• The cooperative method can effectively adjust 

the traffic signal timing according to the real-

time traffic condition and simultaneously 

produce optimal vehicle trajectory/speed 

profiles, which results in the improved 

transportation efficiency and vehicle fuel 

economy.  

Tajalli et al.(28) 
(2018) 
 

• To develop distributed optimization and 

coordination algorithms suitable for 

Dynamic Speed Optimization (DSO) 

• Tested the developed 

methodology in networks 

with eight, twenty, and 

• Scalable and real-time algorithm 

 

• The developed methodology reduced the travel 

time by up to 14.8% and speed variation by 9.7–
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problem that can find near-optimal 

solutions in real-time and are scalable to 

transportation networks of various sizes. 

forty intersections under 

four different demand 

patterns.  

13.4% over different demand patterns compared 

to a no-speed harmonization strategy. 

 

Nemeth et al.(29) 
(2013) 
 

• To design vehicle speed based on signals 

obtained from the road and traffic to save 

energy and reduce fuel consumption 

while not significantly increasing travel 

time  

• Used a simulator to 

compare two cruise 

control systems 

• Longitudinal control system 

• Reduce unnecessary stop-and-go traffic, thereby 

reducing emissions. 

• About 17% saved in longitudinal force compared 

to the conventional cruise control system. 

Seeber et al.(30) 
(2019) 
 

• Using a learning scheme to solve the 

problem of tracking the prescribed speed 

profile. 

• Road-to-Rig (R2R) test bed 

of the company KS 

Engineers was used 

• Experimental test 

• After very few iterations, both tolerance 

violations and sudden changes of the pedal 

position are eliminated, yielding significantly 

improved driving behavior 

Roy et al.(31) 
(2020) 
 

• To propose a way to understand the 

traffic state of smaller spatial regions at 

intersections using traffic graphs. 

• Introduced a large dataset 

called EyeonTraffic (EoT) 

containing 3 hours of aerial 

videos collected at 3 busy 

intersections in 

Ahmedabad, India 

• Train a spatio-temporal deep network 

• Their experiments on the EoT dataset show that 

the traffic graphs can help in correctly identifying 

congestion-prone behavior in different spatial 

regions of an intersection. 

Xu et al. (32) 
(2021) 

• To proposes a robust optimal speed 

control approach based on hierarchical 

architecture for AEV 

• Simulations of the 

proposed longitudinal 

decision-making DMEPPO 

method and the LMI 

robust speed tracking 

method 

• Combining deep reinforcement learning 

(DRL) and robust control. 

• Simulation experiment 

• The proposed robust optimal speed control 

scheme based on hierarchical architecture for 

AEV is feasible and effective 

Xu et al.(57) 
(2017) 
 

• To propose a horizontal alignment design 

method for mountain highways that 

considers the typical driving patterns 

when human drivers select their target 

trajectory and speed. 

• Provided five direction 

control patterns and four 

speed control patterns to 

designers 

• Mathematical programming method. 

• Propose a new alignment design method 

which can take into account typical 

handling patterns (driving styles) of 

• The proposed method is especially suitable for 

the horizontal alignment design of low/medium 

speed highways that traverse rugged terrain.  
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human drivers and pay special attention 

to dangerous driving behaviors. 

Veysi et al.(33) 
(2020) 
 

• To propose controller evaluates the 

stabilization of the EV speed with robust 

disturbance rejection approach 

throughout both transient and steady 

states and in the presence of external 

disturbances and parametric 

uncertainties. 

 

• EV’s battery voltage, as 

control input, and EV 

speed, as system output, 

are constrained. 

• Simulations in five steps 

are conducted on an EV 

equipped with a brushed 

direct current (BDC) motor 

as a case study in MATLAB 

simulation environment.  

• A stable fuzzy controller in the form of 

linear matrix inequalities (LMIs)  

• Takagi–Sugeno (T-S) fuzzy model and the 

parallel distributed compensation (PDC) 

fuzzy controller. 

 

• The simulation results obtained from MATLAB 

and the Real Time Digital Simulation (RTDS) 

confirm the energy-efficient and robust 

performance of the proposed controller in quick 

stabilization of the EV speed in the presence of 

all structured and unstructured uncertainties. 

 

Gamage et al.(34) 
(2016) 
 

• To propose a Q-learning based vehicle 

speed control algorithm to minimize the 

fuel consumption in the vicinity of an 

isolated signal intersection. 

 

• Simulation test 

• Q-learning (a self-learning) speed 

control algorithm 

• Using the Aimsun microsimulation 

platform 

• A comprehensive parametric analysis 

• The algorithm can reduce the vehicle’s fuel 

consumption by 15.78% by adopting the 

suggested driving speeds. 

Wan et al.(35) 
(2016) 
 

• Connected Vehicles (CV) equipped with a 

Speed Advisory System (SAS) can obtain 

and utilize upcoming traffic signal 

information to manage their speed in 

advance, lower fuel consumption, and 

improve ride comfort by reducing idling at 

red lights. 

•  21 carefully arranged 

microsimulation case 

studies, that connected 

vehicles equipped with a 

speed advisory system 

 

 

• Used the microscopic traffic simulation 

tool Paramics which is able to simulate a 

large number of vehicles in a complex 

traffic network.  

 

• SAS-equipped vehicles not only improve their 

own fuel economy, but also benefit other 

conventional vehicles and the fleet fuel 

consumption decreases with the increment of 

percentage of SAS-equipped vehicles. 

 

Wu et al.(58) 
(2013) 
 

• Using 10-year crash data from 28 

intersections in Nebraska to estimate a 

random parameters negative binomial 

• 10-year crash data from 28 

intersections in Nebraska 

• A random parameters negative binomial 

model and a nested logit model  

 

• Speed-limit reductions in conjunction with 

signal-warning flashers appear to be an effective 

safety countermeasure, but only clearly so if the 

speed-limit reduction is at least 10 mph. 
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model of crash frequency and a nested 

logit model of crash-injury severity. 

Dhamaniya et al.(59) 
(2013) 
 

• To develop the speed prediction model 

for different categories of vehicles, which 

is required to predict the actual speed for 

such traffic conditions for better planning 

and design of the roadway system 

• Field data were collected 

on different sections of 

urban arterials in New 

Delhi, Jaipur and 

Chandigarh by video 

recording method.  

• Statistical Analysis 

• These speeds were found to be in good 

agreement with observed speeds in the field.  

• The t-test also indicated that there was no 

significant difference between predicted speeds 

and observed speed data.  

• These equations are useful in predicting the 

speed of a vehicle at a given volume or 

composition of traffic stream which is crucial in 

estimation of Passenger Car Unit (PCU) factors.  
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