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Abstract

Traffic congestion affects traveler mobility and also impacts air quality, which negatively affects public

health. Sustainable mobility could enhance air quality and alleviate congestion. Accordingly, optimizing

utilization of the available infrastructure using advanced traffic signal controllers has become necessary to

mitigate traffic congestion in a world with growing pressure on financial and physical resources. Hence, a

novel real-time adaptive multi-modal decentralized traffic signal controller that integrates connected vehicles

is developed here using a Nash bargaining game-theoretic framework by optimizing total queue length. This

framework has a flexible phasing sequence and free cycle length, and thus can adapt to dynamic changes in

traffic demand. The controller was implemented and evaluated using INTEGRATION microscopic traffic

assignment and simulation software.

The proposed controller was tested and compared to state-of-the-art isolated and coordinated traffic

signal controllers. The proposed controller was tested on an isolated intersection, producing a reduction in

the queue length ranging from 58% to 77%, and a reduction in vehicle emission levels ranging from 6%

to 17%. In arterial testing, the controller was compared to an optimum fixed-time coordinated plan; an

actuated controller; a centralized adaptive phase split controller; a decentralized phase split and cycle length

controller; and a fully coordinated adaptive phase split, cycle length, and offset optimization controller to

evaluate its performance. On the arterial network, the proposed controller produced reductions in the total

delay ranging from 36% to 67%, and a reduction in vehicle emissions ranging from 6% to 13%. Statistical

tests show that the proposed controller produces major improvements over other state-of-the-art centralized

and decentralized controllers.

The developed controller integrates transit signal priority and freight signal priority to maximize flows

in real-time using data collected from vehicles through vehicle-to-infrastructure wireless communications.

Integrating the transit signal priority in the developed controller on an isolated intersection resulted in an

improvement in the average vehicle travel time of 77.5%, average passenger travel time of 76.8%, average

total delay of 56.6%, average stopped delay of 72.7%, average fuel consumption of 14.5%, and average

emissions of 17.6%. In addition, the results of integrating the freight signal priority in the developed con-

troller on an isolated intersection showed improvements in average vehicle travel time of 78.8%, average

total delay of 50%, average stopped delay of 69%, fuel consumption of 13.3%, and emissions of 16%.

In the domain of large scale networks, simulations were conducted in Blacksburg, Virginia, on an road

network composed of 38 signalized intersections. The results showed significant reductions in the intersec-
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tion approaches, with travel time savings of 23.6%, a reduction in the average queue length of 37.6%, a

reduction in the average number of vehicle stops of 23.6%, a reduction in CO2 emissions of 10.4%, and

a reduction in the fuel consumption of 9.8%. The proposed controller was also tested on a road network

in downtown Los Angeles, California, including the most congested downtown area, with 457 signalized

intersections, and the results were compared to the performance of a decentralized phase split and cycle

length controller. The results showed significant average travel time reductions on the intersection links of

35.1%, a reduction in the average queue length of 54.7%, a reduction in the average number of stops of

44%, a reduction in CO2 emissions of 10%, and a reduction in the fuel consumption of 10%. Furthermore,

simulations were conducted at lower traffic flow levels and results showed significant improvements in the

network’s performance, producing reductions in vehicle average total delay of 36.7%, a reduction in the

stopped delay of 90.2%, and a reduction in the average number of stops of 35% compared to a decentralized

phase split and cycle length controller.

The results demonstrate that the proposed decentralized controller reduces traffic congestion, fuel con-

sumption, and vehicle emission levels, and produces major improvements over other state-of-the-art central-

ized and decentralized controllers.
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1 Introduction

Traffic growth constrained by available capacity in urban areas affects traveler mobility, air quality, and

public health [1]. Reducing traffic congestion can improve these conditions while simultaneously decreasing

transportation-related energy use. In 2013, traffic congestion cost Americans $124.2 billion in direct and

indirect losses. This number will increase 50% by 2030, rising to $186.2 billion [2]. In 2013, $78 billion of

this loss resulted from time and fuel wasted in traffic (direct costs) and $45 billion was the sum of indirect

costs. By 2030, the estimated annual cost of traffic in the U.S. and Europe will soar to $293 billion, a rise of

nearly 50% from 2013.

Sustainable mobility can help reduce traffic congestion and vehicle emissions. Accordingly, optimizing

the utilization of the available infrastructure using advanced traffic signal controllers has become increas-

ingly necessary to mitigate traffic congestion in a world with growing pressure on financial and physical

resources. A signalized intersection is designed (controlled) to allow traffic flow to proceed efficiently and

safely by separating conflicting movements in time rather than in space. Traffic signal controllers attempt

to minimize various traffic parameters (e.g., delay, queue length, and energy and emission levels) by opti-

mizing traffic signal control variables that include the cycle length, phase scheme and sequence, phase split,

and offset. Consequently, traffic signal optimization algorithms attempt to identify the optimal values of one

or more traffic signal control variables for specific traffic conditions. Most currently implemented traffic

signal systems fall into one of the following categories: fixed-time plan (FP), actuated (ACT), responsive,

or adaptive [3].

An FP system is developed off-line using historical traffic data to compute traffic signal timings; real-

time traffic data is not considered. Thereafter, the order and duration of all phases remain fixed and do not

adapt to fluctuations in traffic demand. As a result, FP systems are known to age with time, and are primarily

suitable for relatively stable and regular traffic flows.

ACT traffic signal controls, on the other hand, respond to changes in traffic demand patterns using local

actuations. This type of control requires that vehicle detectors be installed at intersection approach stop lines.

The ACT timing plan responds to traffic demand by placing a call to the controller based on the presence or

absence of vehicles approaching or leaving the intersection. Once a call is received, the controller decides

whether to extend or terminate the green phase in response to the actuation source. Note, however, that

while ACT signal control has been proven to perform better than FP traffic signal control, in most cases,

ACT control does not offer any real-time optimization to properly adapt to traffic fluctuations [4].
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Adaptive systems use detector inputs, historical trends, and predictive models to predict traffic arrivals

at intersections. Using these predictions, they determine the best gradual changes in cycle length, splits, and

offsets to optimize an objective function, such as minimizing the delay or the queue length, for intersections

within a predetermined sub-area of a network [5]. Examples in this category are the Split Cycle Offset

Optimization Tool (SCOOT) and the Sydney Coordinated Adaptive Traffic System (SCATS) systems. The

SCOOT system minimizes a performance index that is a function of delay and number of vehicle stops at

all approaches in the network [6]. SCOOT performs effectively in under-saturated traffic conditions, and is

a macroscopic model that does not capture microscopic behavior such as gap acceptance and lane changing

behavior. SCATS monitors the traffic flows and headways at the stop bars [7] based on the volumes and

headways gathered in 1-minute intervals; as a result, green times (splits) are reallocated to the phases of

greatest need. Other examples of adaptive systems are RHODES (Real-Time, Hierarchical, Optimized,

Distributed, and Effective System) [8] and OPAC (Optimized Policies for Adaptive Control) [9], which

optimize an objective function for a specified rolling horizon (using traffic prediction models) and have

pre-defined sub-areas (limited flexibility) in which the signals can be coordinated. RHODES and OPAC are

based on dynamic programming that requires a state transition probability model for the traffic environment,

which is difficult to obtain.

One of the main disadvantages of ACT and adaptive traffic control approaches is that their operation is

constrained by maximum and minimum values for cycle lengths, splits, and offsets. They also have to go

through a pre-defined sequence of phases. In addition, some of today’s most sophisticated traffic control

systems use hierarchies that either partially or completely centralize the decisions, making the systems more

vulnerable to failures in one of the master controllers. In such events, the entire area of influence of the

master traffic signal, which may include several intersections, will be compromised by a single failure.

Hierarchies also make systems more difficult to scale up, as centralized computers will need to interconnect

all intersections within pre-defined subareas, creating limitations and additional requirements as the network

is expanded [10].

Traffic flow is highly dependent on factors such as time-of-day, day-of-the-week, weather, and unpre-

dictable events, which can include incidents, special events, work zones [11], etc. Consequently, improve-

ments to traffic control strategies could be made if the control system were able to not only respond to the

actual conditions found in the field, but to also adapt their actions to transient conditions.

The objective of this research is to develop a novel adaptive traffic signal controller with the following

features to reduce traffic congestion and vehicle emissions by addressing the limitations of existing state-of-
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the practice and state-of-the-art adaptive traffic signal controllers: has the ability to adapt the signal timing

based on observed traffic state without using historical data; is decentralized, which will increase both the

scalability and robustness of the system, and control a large urban traffic network through a number of

control agents to avoid the issue of a single point failure in the centralized systems; is model free—doesn’t

need an explicit model of the environment; has a free cycle length with a flexible phasing sequence; and is

designed and evaluated on traffic scenarios that closely represent those found in the real world, which will

ensure that the algorithm is not only capable of solving simple traffic problems, but is also applicable to

real-life situations.

Game theory is considered a suitable approach with the potential to adapt to traffic fluctuations and ran-

domness of traffic systems, and therefore alleviate traffic congestion more effectively than the more com-

monly used FP and ACT systems [12]. Game theory studies the interactive cooperation between intelligent

rational decision makers, and has been widely used in economic, military, and communication applications.

Game theory has also been applied to model traveler route choice behavior [13] and in route guidance [14].

Bargaining theory is related to cooperative games through the concept of Nash bargaining (NB). A bar-

gaining situation is defined as a situation in which multiple players with specific objectives cooperate and

benefit by reaching a mutually agreeable outcome. The bargaining process is the procedure that bargainers

follow to reach an agreement (outcome), and the bargaining outcome is the result of the bargaining process

[15, 16]. The NB solution has been applied in a number of applications, including multimedia resource

management [17], allocating multi-user channels to networks [18], a wireless cooperative relaying network

[19], investment, wages and employment [20, 21], and for downlink beamforming in an interference channel

[22].

To mitigate traffic congestion at signalized intersections, a novel de-centralized traffic signal optimiza-

tion controller is developed considering a flexible phasing sequence and free cycle length (offering a new,

less restrictive perspective to accommodate changes in traffic conditions) using a NB game-theoretic frame-

work (DNB controller). While it is desirable to compare the developed DNB controller to the state-of-the-

practice systems, it is difficult to identify a benchmark with available operational details due to intellectual

property restrictions, given that the algorithmic details are proprietary. However, it is possible to compare

the DNB controller’s performance to the operation of an optimum FP controller, an ACT controller, a cen-

tralized adaptive phase split (PS) controller, a decentralized phase split and cycle length (PSC) controller [4],

and a fully coordinated adaptive phase split-cycle length and offset (PSCO) optimization controller [23, 24]

in order to evaluate the proposed DNB controller’s performance.
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To evaluate the performance of the DNB controller, each of the following was calculated per movement

for a signalized intersection: average travel time, average stopped delay, average queue length, average

vehicle speed, average vehicle throughput, average fuel consumption, and average emission levels.

The proposed controller was implemented and evaluated in INTEGRATION microscopic traffic assign-

ment and simulation software [25–27]. INTEGRATION is a microsopic model that replicates vehicle longi-

tudinal motion using the Rakha-Pasumarthy-Adjerid collision-free car-following model, also known as the

RPA model [28]. The RPA model captures vehicle steady-state car-following behavior using the Van Aerde

model [29, 30]. Movement from one steady state to another is constrained by a vehicle dynamics model

described in [31, 32]. Vehicle lateral motion is modeled using lane-changing models described in [27].

The model estimates of vehicle delay are validated in [33], while vehicle stop estimation procedures are

described and validated in [34]. Vehicle fuel consumption and emissions are modeled using the VT-Micro

model [35–37].

Then, the proposed controller was compared to FP and ACT controllers to evaluate its performance at

different traffic demand levels. In addition, the DNB controller was implemented and evaluated on an ar-

terial network with six intersections, and was compared to FP, PS, PSC, and PSCO controllers to evaluate

its performance. Analysis of variance (ANOVA), Tukey, and pairwise comparison tests were conducted

to examine the statistically significant difference of the proposed controller. Moreover, the proposed con-

troller was implemented and evaluated on large scale networks with 38 and 457 intersections. The research

methodology is shown in Figure 1.
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Develop a novel de-centralized traffic signal controller us-

ing an (NB) game theocratic framework (DNB controller)

Simulate the DNB controller on an isolated signalized intersection at different flow ratios

Evaluate the performance of DNB controller against

FP and ACT on an isolated signalized intersection

Integrate the developed DNB controller with transit signal priority and freight signal priority

Simulate the DNB controller on an arterial network

Evaluate the performance of DNB against FP, PS, PSC, PSCO

Study the statistical significance of the findings

Simulate the DNB controller on large scale networks

Evaluate the performance of DNB against PSC, PSCO

Figure 1: Research methodology

2 Literature Review

A signalized intersection is designed (controlled) to allow traffic flow to proceed efficiently and safely by

separating conflicting movements in time rather than in space. Traffic signal controllers attempt to minimize

various traffic parameters (e.g., delay, queue length, and energy and emission levels), by optimizing traffic

signal parameters, including the cycle length, phase scheme, phase split, and offset. Consequently, traffic

signal optimization algorithms attempt to identify the optimal values of one or more traffic signal parameters

for specific traffic conditions.

Traffic signal timing parameters could be identified as being in one of two categories: local intersection

timing parameters and coordinated operation timing parameters [38]. The phase minimum or yellow change

times are examples of local intersection timing parameters. The intersection cycle length, offset, and split

are examples of coordination timing parameters. Timing traffic signals in corridors is a multi-objective

problem, in which optimizing the solution to one variable can often work to the detriment of another. For
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example, optimizing the timings relative to the arterial green band can cause excessive delay on side streets.

Conversely, optimizing solely on the basis of network delay does not ensure an adequate green band on the

arterial.

The traffic signal controller can be categorized as centralized or decentralized, where decentralized

systems offer many advantages over centralized control systems [39]. Decentralized systems are computa-

tionally less demanding, as they only require and maintain the relevant information from the surrounding

intersections/controllers. Robustness is guaranteed in a decentralized control system, because if one or more

controllers fail, the remaining controllers can take over some of their tasks. Decentralized systems are scal-

able and easy to expand by inserting new controllers into the system. Decentralized systems are also often

inexpensive to establish and operate, as there is no essential need for a reliable and direct communication

network between a central computer and the local controllers in the field.

Traffic simulation is the modeling of vehicle traffic systems for the purpose of investigating or planning

transportation systems. These simulations offer a safe and convenient environment to investigate possible

modifications to transportation systems. Traffic simulation models as a whole can be divided into two

broad approaches—microscopic and macroscopic—with the mesoscopic approach being a hybrid of the two.

Microscopic simulation relies on individual driver behavior. Each vehicle within the simulation environment

is updated discretely using car-following behavior to model the interaction of a vehicle and the preceding

vehicle while traveling, considering behaviors such as gap acceptance and lane changing behavior. Instead of

modeling individual vehicle behavior, macroscopic traffic simulation models rely on traffic flows, densities,

and speed to model transportation systems. While macroscopic traffic flow models describe the behavior

of a stream of vehicles along a roadway stretch, microscopic car-following models describe the behavior of

a pair of vehicles within a traffic stream. Mesoscopic traffic simulation models combine elements of both

macroscopic and microscopic traffic simulation. They typically model individual vehicles (a microscopic

approach); however, the actions of these vehicles are based on overall averages (a macroscopic approach).

Most currently implemented traffic signal systems fall into one of the following categories: FP con-

trollers, actuated controllers, or adaptive controllers.

Fixed-time Plan

An FP controller is developed off-line using historical traffic data to compute traffic signal timings; real-

time traffic data is not considered. Thereafter, the order and duration of all phases remain fixed and do not

adapt to fluctuations in traffic demand. As a result, these plans are known to age with time. As such, they are

suitable for relatively stable and regular traffic flows. The traffic system is a dynamic system; one particular
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predefined traffic signal plan cannot efficiently fit all real-time traffic conditions [40]. Examples of software

that compute fixed-time signal timing include TRANSYT-7F and PASSER. TRANSYT-7F (TRAffic Net-

work StudY) is a macroscopic deterministic optimization and simulation model that considers platoons of

vehicles instead of individual vehicles. The model attempts to minimize a disutility index based on delay,

stops, and queue lengths [41]. This approach has been found to only be appropriate for under-saturated

conditions [42].

PASSER (Progression Analysis and Signal System Evaluation Routine) is an arterial-based, bandwidth

optimizer (i.e., it maximizes the green band to move the anticipated platoon of vehicles through the arterial

signal system without stopping) that computes phase sequences, cycle lengths, and offsets for a maximum

of 20 intersections in a single run [42]. PASSER works within a given cycle length and split to find offsets

that maximize an arterial green band.

Actuated Control

ACT traffic signal control, on the other hand, responds to changes in traffic demand patterns by imple-

menting a window of green time (minimum green to maximum green) as opposed to the fixed green time in

an FP system. This type of control requires that vehicle detectors be installed at approach stop lines to the

intersection. The ACT timing plan responds to traffic demand by placing a call to the controller regarding

the presence or absence of vehicles approaching or leaving the intersection, respectively. Once a call is

received, the controller decides whether to extend or terminate the green phase in response to the actuation

source.

ACT control schemes have maximum green times equal to FP control systems. When traffic flows are

consistently high, ACT control operates as FP control. ACT control can also be operated as semi-ACT

control, where detectors are only placed on minor streets, and is best suited for locations where local minor

streets intersect with arterials. Note, however, that while ACT signal control has been proven to perform

better than FP traffic signal control in most cases, ACT traffic signal control does not offer any real-time

optimization to properly adapt to traffic fluctuations. Consequently, ACT signal control is less sensitive to

the traffic demand (i.e., number of vehicles) calling for the actuation and might result in very long queues in

grid-like networks [4].

Adaptive Controllers

Adaptive traffic signal systems use detector inputs, historical trends, and predictive models to predict

traffic arrivals at intersections. Adaptive systems have the potential to efficiently alleviate traffic congestion

by adjusting the signal timing parameters in response to traffic fluctuations [3]. Using these predictions, they
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determine the best gradual changes in cycle length, splits, and offsets to optimize an objective function, such

as minimizing the delay or the queue length, for intersections within a predetermined sub-area of a network

[5].

State-of the-Practice:

• Centralized and off-line: A library of pre-stored signal control plans are implemented. These plans

are developed off-line on the basis of historical traffic data, such as morning peak, off-peak, afternoon

peak, evening period, midnight period, and the day of week (e.g., weekday vs. weekend, Monday

vs. Friday, etc.). Examples in this category include TR2 (Traffic Responsive Control Mode 2) [43],

and UTCS-1 (Urban Traffic Control System-First Generation) [44]. Pre-timed plans age with time as

traffic flows change. The optimization of the signal timings is conducted off-line, so it is incapable of

handling stochastic variations in traffic patterns from day to day.

• Centralized and on-line: Controllers in this category are implemented using on-line optimization

methods to dynamically adjust the signal timings (offsets, cycle time and splits) by utilizing on-

line surveillance information systems. Examples in this category include the SCOOT and SCATS

systems. SCOOT was developed in the UK in 1982. It minimizes a performance index that is a

function of delay and number of vehicle stops at all approaches in the network [6]. SCOOT performs

effectively in under-saturated traffic conditions, and is a macroscopic model that does not capture

microscopic behavior, such as gap acceptance and lane changing behavior. SCATS was developed in

Australia in 1963, It monitors the traffic flows and headways at the stop bars [7] based on the volumes

and headways gathered in one-minute intervals. Green times (splits) are reallocated to the phases

of greatest need (i.e., in a hierarchical system). Traffic progression along corridors is achieved in a

centralized fashion that relies on communication often not scalable to expand the size of the network,

is relatively complex to operate with many parameters to be adjusted by a human operator, and is

expensive.

• De-centralized and on-line: Controllers in this category are decentralized, computationally less de-

manding, robust, scalable, inexpensive, and use dynamic programming that captures the stochastic

nature and dynamics of the traffic system. Examples in this category are RHODES [8] and OPAC [9].

OPAC was the first to recognize the need to migrate from parametric models, which optimize param-

eters such as cycle time, splits, and offsets, to non-parametric models, in which the decision to switch

between phases is based on actual arrival data at the intersection. OPAC uses two levels of control in
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a decentralized fashion: a local level and a network level. At the local control level, OPAC determines

the next phase at the intersection. At the network control level, OPAC provides progression. RHODES

optimizes an objective function for a specified rolling horizon (using traffic prediction models) and

has pre-defined sub-areas (limited flexibility) in which the signals can be coordinated. RHODES and

OPAC are based on dynamic programming that require a state transition probability model for the

traffic environment, which is difficult to obtain. The number of states that could represent wide traffic

conditions is typically massive. Therefore, dynamic programming algorithms are computationally

intractable [45].

Although existing adaptive traffic systems offer improvements in performance over FP and ACT con-

trollers, they still suffer from combinations of the following limitations:

• Operation is constrained by maximum and minimum values for cycle lengths, splits, and offsets.

• Centralization limits the scalability and robustness of the overall system in cases of communication

failure.

• They are expensive to install and maintain [46].

• Complexity of the system increases exponentially with the number of intersections [10].

• They require an accurate traffic modeling framework.

State-of the-Art:

Different intelligent techniques have been investigated in the domain of traffic signal optimization do-

main, and are still under continuous research and development.

• Genetic Algorithm: The genetic algorithm is known to be an algorithm for locating the best optimal

solution throughout the evolutionary process of the possible solutions [47]. The problem is modeled

as an imitated biological environment, where all the possible solutions are treated as individual chro-

mosomes in a population [48]. The concept of a genetic algorithm allows the population of solutions

to compete and survive throughout the evolution, and only the fit and strong solutions will survive

at the end of the evolution process [49]. In genetic-algorithm-based optimization traffic signal tim-

ing management, a chromosome contains the intersection’s signal timing parameters, such as cycle

length, green split, phase sequence, and offset, as these are the parameters which tend to be optimized

[50], [51]. Chin et al. [52] proposed a fitness function to evaluate the individual chromosomes based

on traffic delay and fluency on two intersections with a single lane on each link. They used a selection

algorithm that combined a ranking and elitist selection method.
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Vogel et al. [53], applied an approach that evolved three chromosomes (phase, phase order, green),

to encode the various parameters necessary to define the traffic signal plan for an isolated intersec-

tion. Phase chromosomes encode which flow directions belong to each phase, where the number of

chromosomes used depends on the number of phases, which can range from 2 to the number of flow

directions. Phase order chromosomes encode the order in which the phases of the signal plan occur.

Green time chromosomes contain the amount of green time that should be allocated for each phase.

Genetic algorithms can solve simple networks and deal with static traffic volumes. However, as the

networks increase in size, the search space involved in finding effective signal plans will increase

significantly, and a large amount of centralized computing power is required. Genetic algorithms are

a biomimetic method for global optimization, and are not apt to be trapped in local optima because

of their characteristics of random search and implicit parallel computing. However, encountering a

large-scale problem, this method will spend an inordinate amount of time to converge to the optima,

which is disadvantageous for on-line optimization of area traffic coordinated control. Moreover, the

convergence rate is sensitive to the parameters selected, which depend on practical problems to be

solved. Thus, the application of the genetic algorithm to area traffic coordinated control is limited

[54]. In addition, it is not certain that the local solution obtained is also the global optimum [55].

• Fuzzy Logic: The idea of fuzzy logic was first proposed by Zadeh [56], who posited that truth val-

ues of variables can take on a continuous value in the range of ]0; 1[, as opposed to the traditional

binary truth values of 0 or 1. Decisions in fuzzy logic are usually made using a rule base, which

can be developed using expert knowledge, trial-and-error, or an automatic method such as a genetic

algorithm.

A fuzzy traffic signal controller uses linguistic rules in the following form: if variable1 is value1 then

output (e.g., if the approaching traffic volume is large and the queuing traffic volume is small, then

the green signal is long). The performance of the controller greatly relies on the effectiveness of the

rules developed and it can be difficult to determine if the rules being used are efficient.

The first application of fuzzy logic in the traffic signal control domain was proposed by Pappis [57]

for an isolated intersection. This approach consisted of three input variables: time (very short, short,

medium, long, and very long), recent arrivals at the green phase (none, few, medium, many, too many)

and queue length at the red phase (very small, small, small plus, long, very long). The rule base, which

was developed by trial-and-error in this case, produces a single output from these inputs, which is the
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extension time for the current phase. As opposed to using the extension principle, Chiu and Chand

[58], designed a controller which adjusts phase split, offset, and cycle length, where the rule base

remains static and does not adapt along with changing traffic parameters, which can lead to degraded

performance over time, as the system does not generate a predictive model of traffic.

Membership functions are the building blocks of fuzzy set theory (i.e., fuzziness in a fuzzy set is deter-

mined by its membership function). Accordingly, the shapes of membership functions are important

for a particular problem since they have an effect on a fuzzy inference system. The concepts large,

small, and long are fuzzy sets. That is, they are not precise, and elements belonging to one set may

partially belong to some other set too. For example, a measurement of five vehicles is small to some

degree and also large to some other degree. Most fuzzy traffic signal controllers are not adjustable.

In other words, the parameters of the fuzzy controller remain the same in changing traffic situations.

Most researchers work at control at an isolated intersection. A traffic coordinated control system is

a complex large-scale system with many interacting factors, and it is more appropriate to use fuzzy

control methods for traffic signal control of the isolated intersection [54].

• Machine Learning: The neural-network-based control signal depends on a set of weighted coeffi-

cients, which must be estimated. Once these weights are properly specified, the control signal takes

state information on traffic conditions at any given time and produces optimal instantaneous signal

light timings. Spall et al. [59], presented an approach for optimal light timing based on a neural

network serving as the basis for the control law, with the weight estimation occurring in closed loop

mode via the simultaneous perturbation stochastic approximation algorithm, by which the neural net-

work controller weights are estimated (trained) at least once a day. This approach was illustrated by

simulation on a six-intersection network with moderate congestion. This model had two shortcom-

ings. First, the approach involved the use of heuristics to manually identify the general traffic patterns

(morning and evening peaks) and the assignment of time periods for each pattern. The robustness

of the system may come into question if the fluctuations of the traffic volume in the traffic network

are not periodic. Second, a neural network is assigned to each time period, and the weights of the

neural network are updated only during the duration of the time period. This implies that the weight

update is done only on a daily basis whenever the same traffic pattern and time period arises. As such,

the traffic controllers may not be able to respond well to changes in the traffic network within the

same time period. The neural network has to be re-updated time and again to take into consideration
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changes in the long-term dynamics of the traffic network even after the convergence. Srinivasan et al.

[60], strove to avoid the limitations of [59] by developing a distributed unsupervised traffic responsive

signal controller using a neurofuzzy algorithm.

Various approaches have been proposed for designing real-time traffic signal controllers using neural

networks. Most of these works are based on the distributed approach, where an agent is assigned

to update the traffic signals of a single intersection based on the traffic flow in all the approaches

of that intersection. The effectiveness of the proposed neural controller for controlling a large-scale

traffic network with multiple intersections cannot be established. Neural networks adapt very slowly

to changing traffic parameters, where online learning has to take place continuously once the agent-

based traffic signal controllers are implemented into the traffic network. Some works require multiple

models to be maintained for various times within a day. The inner-workings of neural networks are

often hard for humans to understand.

Reinforcement learning (RL) is inspired by behavioral psychology. It is a machine learning approach

which allows agents to interact with the environment, attempting to learn the optimal behavior based

on the feedback received from interactions. The feedback may be available right after the action,

or several time steps later, which makes the learning more challenging [61]. This typically involves

breaking the environment into states, from which each agent can select a possible action. The reward

gained from taking an action within a state determines the level of reinforcement, which in turn affects

the likelihood that the agent will select that action when it is next in that state. RL is based on the idea

that if an action has good consequences, then the tendency to produce that action is strengthened [62].

Wiering [63] utilized model-based RL with state transition models and state transition probabilities

to control traffic-light agents to minimize vehicle waiting time in a small grid network. In that study,

agents correspond to the traffic signals but the learning task is designed such that the state representa-

tion is a function of the waiting time for individual vehicles (i.e., vehicle-based state representation)

aggregated over all vehicles around the intersection. The network is discretized into a number of

lanes and each lane is discretized into possible places for cars, which are referred to as cells. As a

result, the number of states grows with the number of lanes and the number of vehicles occupying

each cell in a lane. Therefore, the number of states grows intractably with the network size and traffic

volume, which makes it impractical to implement in medium or large-scale traffic networks. Even

for relatively small networks, the number of states will increase exponentially with the increase in the
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number of vehicles, resulting in slow convergence speed. Abdulhai et al.[64], applied a model-free

Q-learning technique to a simple two-phase isolated traffic signal in a two-dimensional road network.

According to the state information that includes the queue lengths on the four approaches, the agent

chooses to either remain in the current phase or to change it, with the goal of minimizing the average

number of waiting vehicles in all approaches. In the uniform and constant profile cases, Q-learning

either slightly outperformed or was equal to the pre-timed control.

Salkham et al. [65] applied a Q-learning strategy that allowed an agent to exchange rewards with its

neighbors on 64 signalized intersections. The state-action space was simple and very time coarse.

Each agent decided the phase splits every two cycles, which did not capture the rapid dynamics of

congestion—coordination between the agents’ actions was missing.

Studies have considered the use of RL algorithms for traffic control, but they are very limited in terms

of network complexity and traffic loadings, so that realistic scenarios, over saturated conditions, and

transitions from under saturation to over saturation (and vice versa) have not been fully explored.

Many questions remain about the adequate management of RL agents when traffic demands are not

balanced (in terms of volume, number of lanes, and link length), when the demand changes over time,

and when the volumes exceed the capacity of the network so that the signal control should prevent

queue overflows. The advantage of reinforcement learning is that it is not necessary to establish a

mathematical model for the external environment. However, there is also a disadvantage in that it

converges slowly.

• Feedback Control: Ekbatani et al. [66, 67], developed a strategy that exploits the network funda-

mental diagram for urban networks to improve mobility in saturated traffic conditions via application

of gating measures, based on simple feedback control structure (PI controller). The idea is to hold

traffic back (via prolonged red phases at traffic signals) upstream of the links to be protected from

over-saturation, whereby the level or duration of gating may depend on real-time measurements from

the protected links, which may result in a long queue and delays at the gate. Gating at the border of

the network may not be applicable if there are no proper links to store the gated vehicles (queuing),

or if there are an insufficient number of signalized junctions.

The linear quadratic controller (LQR) controller is a well-known controller for minimizing cost func-

tions. The LQR controller has been tested and proven to be effective [68, 69]. Konstantinos et al.

[70] addressed the problem of real-time traffic signal control using an LQR controller that minimized
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and balanced the relative occupancies of the network links using a simplified continuity equation.

The proposed strategy didn’t capture driver behavior or the car-following behavior that modeled the

interaction of a vehicle and the preceding vehicle. Neither did this strategy evaluate the performance

of the system with the changing traffic volume.

• Game Theory: Game theory studies the interactive cooperation between intelligent rational decision

makers, and has been widely used in economic, military, and communication applications. Game the-

ory has also been applied to model traveler route choice behavior [13] and in-route guidance [14].The

literature indicates that investigation of game-theoretic traffic signal control is very limited. Bargain-

ing theory is related to cooperative games through the concept of Nash bargaining (NB). A bargaining

situation is defined as a situation in which multiple players with specific objectives cooperate and ben-

efit by reaching a mutually agreeable outcome. The bargaining process is the procedure that bargainers

follow to reach an agreement (outcome), and the bargaining outcome is the result of the bargaining

process [15, 16]. The NB solution has been applied in a number of applications, including multimedia

resource management [17], allocating multi-user channels to networks [18], a wireless cooperative re-

laying network [19], investment, wages and employment [20, 21], and for downlink beamforming in

an interference channel [22].

Summary

This section outlines a number of approaches that have been applied to the domain of traffic signal

control. The reviewed literature showed that many methodologies have been proposed to date. It also

revealed that the field operations of traffic signals in congested networks and saturated traffic conditions are

still under development and that there is still room for new developments.

Various computational intelligence-based approaches have been proposed for designing real-time traffic

signal controllers, such as fuzzy sets, genetic algorithm and reinforcement learning, and neural networks.

Most of these approaches have implemented and tested the controller on an isolated intersection where the

effectiveness of the proposed controllers for controlling a large-scale traffic network with multiple intersec-

tions cannot be established. Improved optimization approaches are constantly being developed. There are

currently no commercially available off-the-shelf tools to address these problems, and even the literature

offers little structured guidance to accomplish this task.

Accordingly, this research attempts to develop a novel traffic signal controller that meets a number

of requirements. First, the controller should be able to adapt signal plans based on observed traffic state
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without using historical data, which tends to be inaccurate, resulting in inefficient signal plans. Second, the

developed control system should be decentralized, which will increase both the scalability and robustness of

the system in order to avoid the problems inherent with complex centralized communication. Decentralized

systems are often inexpensive to establish and operate, as there is no essential need for a reliable and direct

communication network between a central computer and the local controllers in the field. In addition,

the developed controller should integrate transit signal priority (TSP) and freight signal priority (FSP) to

maximize flows in real-time. Finally, the controller should be designed and evaluated on traffic scenarios that

closely represent those found in the real-world, which will ensure that the controller is not only capable of

solving simple traffic problems, but is also applicable to real-life situations. This controller should increase

the traffic handling capacity of roads, and reduce fuel consumption, thereby decreasing air pollution.
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3 Developed Traffic Signal Controller (DNB)

This section presents the developed traffic signal timing controller to alleviate congestion at signalized in-

tersections using an NB game-theoretic framework.

3.1 NB Solution for Two Players

A bargaining situation is defined as a situation in which multiple players with specific objectives cooperate

and benefit by reaching a mutually agreeable outcome (agreement). In bargaining theory, there are two

concepts: the bargaining process and the bargaining outcome. The bargaining process is the procedure

that bargainers follow to reach an agreement (outcome) [71, 72]. Nash adopted an axiomatic approach that

abstracts the bargaining process and considers only the bargaining outcome [15]. The bargaining problem

consists of three basic elements: players, strategies, and utilities (rewards). Bargaining between two players

is illustrated in the bi-matrix shown in Table 1. Each player, P1 and P2, has a set of possible actions A1 and

A2, whose outcome preferences are given by the utility functions u and v, respectively, as they take relevant

actions.

Table 1: Two Players Matrix Game

P2

A1 A2

P 1

A1 u1, v1 u2, v2

A2 u3, v3 u4, v4

The space (S), shown in Figure 2, is the set of all possible utilities that the two players can achieve;

the vertices of the area are the utilities where each player chooses their pure strategy. The disagreement

or the threat point d = (d1, d2) corresponds to the minimum utilities that the players want to achieve. The

disagreement point is a benchmark, and its selection affects the bargaining solution. Each player attempts to

choose their disagreement point in order to maximize their bargaining position. Subsequently, a bargaining

problem is defined as the pair (S,d) where S ∈ R2 and d ∈ S such that S is a convex and compact set, and

there exists some s ∈ S such that s > d. Nash stated the following four axioms that identify properties that

the bargaining solution must satisfy:

• Pareto efficiency: at the bargaining outcome, no player can improve without decreasing the other
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Figure 2: Utility region.

player’s utility, i.e., no point (u, v) ∈ S exists such that u > u∗ and v ≥ v∗or u ≥ u∗and v > v∗.

• Symmetry: the bargaining solution would not discriminate among the players if these players were

indistinguishable; i.e., if d1 = d2 and S is symmetric around u = v, then u∗ = v∗.

• Invariance to equivalent utility representation: the bargaining outcome varies linearly if the utilities

are scaled using an affine transformation.

• Independence of irrelevant alternatives: if the solution to the bargaining problem lies in a subset S′of

S, then the outcome does not change if bargaining is performed on S′ instead of S.

Nash’s theorem states that there exists a unique solution satisfying the four axioms, and this solution is the

pair of utilities (u∗, v∗) that solves the following optimization problem:

max
u,v

(u− d1)(v − d2), (1)

s.t.(u, v) ∈ S, (u, v) ≥ (d1, d2)

The NB solution (u∗, v∗) of this optimization problem can be calculated as the point in the bargaining set

that maximizes the product of the players’ utility gains relative to a fixed disagreement point.

3.2 NB Solution for Multi-players

This section describes the game model and the NB solution for multi-players (N), and shows how the model

is adapted (from Section 3.1) and applied to control a multi-phase signalized intersection (DNB controller).

First, we use phasing scheme for a four-legged intersection [73], assuming we have four players (N = 4), to

represent the intersection phases as shown in Figure 3, with protected, leading main street left-turn phases.

In the game model, the four phases represent the players P1, P2, P3, and P4 of a four player cooperation

game. For each player (phase), there are two possible actions: maintain (A1) or change (A2). These actions
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Figure 3: Phasing scheme.

represent the state of the traffic signal [74]. Specifically, maintain indicates that the state of the signal will

not change (i.e., if it is green, it will remain green; if it is red, it will remain red.). Change means the state

of the signal will change (i.e., if it is green, it will switch to yellow and then red; if it is red, it will become

green) in the simulated time interval. The combinations of phases offer four possibilities, where only one

player holds the green indication and all others hold red indications.

In the simulation, INTEGRATION traffic simulation software monitors the vehicle speeds and the ve-

hicle flow approaching the intersection and continuously updates them for each lane connected to the sig-

nalized intersection. If the vehicle (v) speed (stv) is less than a certain threshold speed (sTh) at time (t), the

vehicle is assigned to the queue, and the current queue length associated with the corresponding lane (l) is

updated. Once the vehicle’s speed exceeds (sTh), the queue length is updated (i.e., shortened by the number

of vehicles leaving the queue) and formulated mathematically as

qtl =
∑
v∈vtl

qtv (2)

qtv =



1 if st−1v > sTh & stv ≤ sTh

−1 if st−1v ≤ sTh & stv > sTh

0

 if st−1v ≤ sTh & stv ≤ sTh

if st−1v > sTh & stv > sTh

(3)

where qtl is the number of queued vehicles in lane l at time t.

The utilities (rewards) for each player (phase) in the game can be defined as the estimated sum of the

queue lengths in each phase after applying a specific action. The estimated queue length after applying a

specific action is calculated according to the following equation:

QP (t + ∆t) =
∑
l∈P

qtl + Qinl∆t−Qoutl∆t (4)
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Where ∆t is the updating time interval, qtl is the current queue length at time t, QP (t + ∆t) is the

estimated queue length after ∆t for phase P , Qinl is the arrival flow rate (veh/h/lane), and Qoutl is the

departure flow rate (veh/h/lane).

The block diagram of applying the DNB controller is shown in Figure 4, where the predefined threat

values present an input to the controller. In addition, the flow ratios Qinl and Qoutl could be measured

by traffic loop detectors. Qoutl detectors are generally located at the downstream end of the link, whereas

Qinl detectors are located from the downstream end of the link by distances equal to threat points over jam

density.

DNB Controller Traffic Model
Signal Timing

Measurements

Queue Length Prediction

Threat points

Figure 4: System block diagram.

The objective is to minimize and equalize the queue lengths across the different phases [75, 76]. We use

minus queue length as the utility of each strategy. The DNB solution is extended to four players (N=4) with

a four-dimensional utility space and disagreement points. The solution for the DNB over the four phase

combinations has the following formula:

max
(u1,...,u4)

N∏
i=1

(ui − di) (5)

s.t.(u1, ...,u4) ∈ S, (u1, ...,u4) ≥ (d1, ...,d4)

The DNB solution can be calculated as the vector that maximizes the product of the player’s utility gains

relative to a fixed disagreement point.

3.3 Decentralized Mechanism of the DNB Controller

This section presents the decentralized mechanism of the DNB controller on multi-intersections. For the pur-

pose of illustration, we will explain the DNB controller’s behavior on three intersections, shown in Table 2.
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Assume we have three intersections (I1, I2, I3), and each intersection has three phases (Ph1,Ph2, Ph3),

where each phase is considered as a player in the game. Hence, each intersection has three players; i.e.,

I1 has three players (P1,P2, P3), I2 has three players (P4,P5, P6), and I3 has three players (P7,P8, P9).

Every intersection has three possible actions (A), where one phase has a green (G) period and the others are

red (R) as illustrated in Table 2.

Table 2: Multi-players Matrix Game

Intersection First Intersection (I1) Second Intersection (I2) Third Intersection (I3)

Action

Player
Ph1(P1) Ph2(P2) Ph3(P3) Ph1(P4) Ph2(P5) Ph3(P6) Ph1(P7) Ph2(P8) Ph3(P9)

First

G R R G R R G R R︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
A11 A21 A31

Second

R G R R G R R G R︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
A12 A22 A32

Third

R R G R R G R R G︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
A13 A23 A33

Therefore, for the network of three intersections illustrated in Table 2, there are 27 possible scenarios

(action permutations) as shown in Table 3. In order to maximize the overall network performance, we are

looking for the best scenario in Table 3.

For Table 2, assume that the first intersection (I1) has an action (A12) that will maximize its own perfor-

mance, and intersection (I2) has an action (A21) that will maximize its own performance, and intersection

(I3) has an action (A33) that will maximize its own performance. Consequently, searching in Table 3 for

the best combination yields scenario 12. Therefore, to achieve the maximum network performance, it is

sufficient to search for the actions that will maximize an individual intersection’s performance. This can

also be described using the DNB optimization problem, as shown in the following equations.
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Table 3: All possible Network Actions (Permutations)

Scenario # Network Action

1 A11 A21 A31

2 A11 A21 A32

3 A11 A21 A33

4 A11 A22 A31

5 A11 A22 A32

6 A11 A22 A33

7 A11 A23 A31

8 A11 A23 A32

9 A11 A23 A33

10 A12 A21 A31

11 A12 A21 A32

12 A12 A21 A33

13 A12 A22 A31

14 A12 A22 A32

Scenario # Network Action

15 A12 A22 A33

16 A12 A23 A31

17 A12 A23 A32

18 A12 A23 A33

19 A13 A21 A31

20 A13 A21 A32

21 A13 A21 A33

22 A13 A22 A31

23 A13 A22 A32

24 A13 A22 A33

25 A13 A23 A31

26 A13 A23 A32

27 A13 A23 A33

max
(u1,...,u9)

9∏
i=1

(ui − di) (6)

= max
(u1,...,u9)

[
3∏

i=1

(ui − di)︸ ︷︷ ︸
I1

6∏
i=4

(ui − di)︸ ︷︷ ︸
I2

9∏
i=7

(ui − di)︸ ︷︷ ︸
I3

]

= max
(u1,...,u3)

3∏
i=1

(ui − di)︸ ︷︷ ︸
I1

max
(u4,...,u6)

6∏
i=4

(ui − di)︸ ︷︷ ︸
I2

max
(u7,...,u9)

9∏
i=7

(ui − di)︸ ︷︷ ︸
I3

It is worth noting that no intersection has to sacrifice its own performance to achieve network opti-

mization. Therefore, the DNB controller is decentralized, which enables it to control a large urban traffic

network and avoids the issue of a single point failure as in centralized systems, and also avoids the problems

inherent with complex centralized communication. The decentralized behavior of the DNB controller will
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increase both the scalability and robustness of the system, whereas other controller systems are associated

with exponential increases with the number of intersections when the network is expanded.

The proposed controller was first implemented on an isolated intersection to evaluate its performance,

as described in the next section.
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4 Isolated Intersection Results

In this section, the DNB solution is applied to obtain the optimal control strategy on an isolated intersection,

considering a variable phasing sequence and free cycle length. The system is implemented and evaluated

in INTEGRATION microscopic traffic assignment and simulation software. The proposed controller is

compared to an optimum FP controller and an ACT controller to evaluate the performance of the proposed

DNB controller at different traffic demand levels.

4.1 Experimental Setup

The experiments were tested using the DNB controller on an intersection with four approaches, comprised

of three lanes each, located in the heart of downtown Toronto’s financial district (intersection of Front and

Bay streets) [77] as shown in Figure 5.

Figure 5: Testbed intersection.

The traffic demand origin-destination (O-D) matrix provided in Table 4 [78], represents the highest total

demand approaching the intersection during the afternoon rush hour (PM peak) for the year 2005. The O-D

matrix forms an input to INTEGRATION.

The standard NEMA phasing for a four-legged intersection [73] represents the intersection phases as

shown in Figure 6, with protected, leading main street left-turn phases. The four phases represent the four

players (N = 4) in the game [79].

INTEGRATION software was used to model the intersection [26]. INTEGRATION is a microscopic
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Table 4: Origin Destination Demand Matrix

Zone # 2 4 6 8 Total

1 1223 - 134 121 1478

3 - 844 86 278 1208

5 88 71 721 - 880

7 188 100 - 806 1094

Total 1499 1015 941 1205 4660

Figure 6: Phasing scheme.

traffic simulation model that traces individual vehicle movements every deci-second. Driver characteristics,

such as reaction times, acceleration and deceleration rates, desired speeds, and lane-changing behavior are

examples of stochastic variables that are incorporated in INTEGRATION [80].

The following measures of effectiveness (MOEs) were used to evaluate the performance of the system:

• Average Total Delay (s/veh): the sum of delay each deci-second for all vehicles for the entire simula-

tion horizon divided by the number of vehicles.

• Average Stopped Delay (s/veh): the sum of instances where vehicle speed is less than or equal

3.6km/h (pedestrian speed) divided by the number of vehicles.

• Average Queue Length (veh): the sum of vehicles in queue each second divided by the simulation

duration.

• Average Travel Time (s): the summation of all trip times divided by the number of vehicles.

• Average Vehicle Speed (km/h): the sum of instantaneous vehicle speeds divided by the number of

vehicles.

• Average Throughput (veh/h): the total number of vehicles exiting the intersection divided by the

simulation duration.

• Average Fuel (L): the total volume of fuel consumed by vehicles divided by the number of vehicles.

• Average CO2 (grams): the total amount of CO2 produced divided by the total number of vehicles.

• Last Vehicle Arrival Time(s): the arrival time of last vehicle to its destination.
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The proposed controller was compared to an optimum FP controller and an ACT controller to evaluate

its performance. The FP controller was optimized using the Webster method [40], with a yellow time of

3 s, and all red times of 2 s. The optimized effective green times for the four phases shown in Figure 6

were, 19 s, 47 s, 14 s, 32 s, respectively. ACT control was implemented with minimum green time of 10

s, maximum green time of 78 s, and green extension time of 5 s. The simulations were conducted using

the following parameter values: speed at capacity = 60 (km/h), free flow speed = 80 (km/h), jam density

= 160 (veh/km/lane), saturation flow rate = 1900 (veh/h/lane), and threshold speed sTh= 4.5 (km/h).

4.2 Experimental Results

An optimum FP and an ACT controller were simulated to serve as benchmarks to evaluate the performance

of the DNB controller. Vehicles were allowed to enter the links in the first hour, and the simulation ran for

an extra half hour to guarantee that all vehicles exited the network. Three scenarios were simulated: one

for the original O-D demand shown in Table 4, the second for a lower demand (L-D), i.e., (−25%) of the

original demand, and the third for higher demand (H-D); i.e., (+25%) of the original demand.

4.2.1 Original Demand (O-D)

The simulation results shown below were obtained using three signal control systems: FP, ACT, and DNB.

The MOEs are shown in Table 5 to quantify the effect of each control system on the performance of the

signalized intersection.

Five cases were conducted at different threat points (d), and at different updating intervals (∆t) for

DNB in order to study their effect on the performance of the DNB algorithm. First, the performance of the

intersection using the three control systems (FP, ACT, DNB) was investigated at the following parameter

values:

Case 1⇒ d = (−17,−34,−19,−38), ∆t = 15s

The threat point was chosen based on the number of cars that left-turn pocket lanes could accommodate

to prevent spill back into the through lane, where this number was duplicated for the right and the through

movements.

The simulation results shown in Table 5 indicate that the DNB controller outperformed the optimum

FP and ACT controllers. Since the traffic flow was high on all approaches, no considerable difference was

reported between the FP and the ACT controllers. The DNB controller exhibited significant savings in
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Table 5: Overall Intersection Performance Measure For Different Control Systems

MOE

System
FP ACT

DNB

Case 1 Case 2 Case 3 Case 4 Case 5

Average Total Delay (s/veh) 74.268 76.270 32.176 29.390 26.906 43.312 48.148

Average Stopped Delay (s/veh) 46.878 48.77 15.837 13.619 9.553 11.158 25.010

Average Queue Length (veh) 8.294 8.559 2.781 2.484 1.891 2.955 4.623

Average Travel Time (s) 116.141 137.566 53.366 50.577 48.080 74.280 69.879

Average Vehicle Speed (km/h) 21.455 20.617 38.965 38.302 39.954 31.514 31.501

Average Throughput (veh/h) 529.545 529.545 554.762 563.710 563.710 554.762 554.762

Average Fuel (L) 0.1197 0.1212 0.1028 0.1017 0.1037 0.1167 0.1097

Average CO2 (grams) 255.80 258.89 213.708 211.290 213.324 240.083 231.400

Last Vehicle Arrival Time (s) 3852.3 3906.1 3701.1 3664.3 3672.3 3676.4 3693.2

the average total delay, average stopped delay, average queue length, and average travel time. The DNB

showed an increase in the average vehicle speed and in the throughput. Subsequently, the performance of

the intersection using the proposed DNB controller was investigated using different threat points values and

at the same updating interval, using the following parameter values:

Case 2⇒ d = (−17,−55,−19,−51), ∆t = 15s

In this case, the threat point was chosen based on the number of cars that each phase can accommodate

based on the lane lengths, shown in Figure 5, where the right turn and through lanes can accommodate more

cars than the left turn lanes. The results in Table 5 show that MOEs in case 2 outperform the results in

case 1.

Finally, three more simulations were conducted using the proposed DNB algorithm to investigate the

effect of the choice of the updating time interval on the algorithm performance using the same threat point

values.

Case 3⇒ d = (−17,−55,−19,−51),∆t = 10s

Case 4⇒ d = (−17,−55,−19,−51),∆t = 5s

Case 5⇒ d = (−17,−55,−19,−51),∆t = 20s

The results shown in Table 5 show that case 3 was superior to the results of the other cases, as well as the

FP approach and the ACT approach.
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Figure 7 shows the average queue length and the standard deviation across all movements for each

control system, (FP, ACT, and DNB). The DNB algorithm resulted in a significant reduction in the queue

length.

Figure 7: Average queue length.

Figure 8 shows the average values and the standard deviations of the MOEs across all movements over

the entire simulation time for each control system, (FP, ACT, and DNB). The DNB algorithm outperformed

both FP and ACT for all movements with significant reduction in both the average values and the standard

deviations for the total delay, stopped delay, arrival time, fuel consumption, and CO2 emission. In addition

the DNB algorithm resulted in an increase in the average vehicle speed.

The simulation results showed that the DNB controller exhibited major improvements in both the aver-

age values and the standard deviations of all MOEs for different movements, which indicates that the system

efficiency was improved.

4.2.2 Lower And Higher Demand

To better evaluate the performance of the DNB controller, two other simulations were conducted, one at

lower demand (L-D), and the other at higher demand (H-D).

Table 6 shows the results of using the three control approaches at the O-D, L-D, and H-D levels using

the following DNB algorithm parameters

d = (−17,−55,−19,−51), ∆t = 10s
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(a) Average total delay. (b) Average stopped delay. (c) Average travel time.

(d) Average vehicle speed. (e) Average CO2. (f) Average fuel.

Figure 8: Measures of effectiveness (MOEs).

In addition, Table 6 shows the percent improvement in MOEs using the proposed DNB controller over

using either the FP or the ACT approach. The analysis of the results in Table 6 leads to the following

findings: the proposed DNB controller outperforms the FP and ACT approaches in terms of average stopped

delay, average queue length, average travel time, average vehicle speed, average throughput, average fuel

consumed, average CO2 emitted, and time in which the last vehicle clears the network for different demand

levels.

To further investigate the achieved improvements using the DNB controller, simulations were conducted

at different flow ratios (Y ). The flow ratio can be formulated mathematically as

yi = vi
si
, Y =

∑
yc,j (7)

where, yi is the approach flow ratio for lane group i, vi is the traffic volume, si is the saturation flow rate,

yc,j is the critical flow ratio for all lane groups that discharge during phase j, and Y is the sum of all critical

follow ratios for all phases.

Figure 9 shows the average queue length, the average total delay, and the average CO2 at different flow

ratios; Y ratios vary from 0.1 to 1.2. These results show that significant improvements were achieved using
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Table 6: Intersection Performance Measure For Different Control Systems at Different Demand Profiles

Demand L-D O-D H-D

MOE (Avg)

System
FP ACT DNB FP ACT DNB FP ACT DNB

Total Delay (s/veh) 41.473 42.913 17.854 74.268 76.270 26.906 101.783 102.938 59.994

Improvement % 56.9503 58.3949 63.7717 64.7227 41.0570 41.7183

Stopped Delay (s/veh) 27.157 28.222 6.357 46.878 48.77 9.553 62.730 63.679 17.970

Improvement % 76.5917 77.4750 79.6216 80.4121 71.3534 71.803

Queue Length (veh) 3.5340 3.7087 0.8827 8.2944 8.5593 1.8907 11.4293 11.4806 4.7811

Improvement % 75.0226 76.1992 77.2051 77.9106 58.1680 58.3550

Travel time (s) 62.602 64.035 38.961 116.141 137.566 48.080 463.612 462.311 228.149

Improvement % 37.7640 39.1567 58.6020 65.0495 50.7888 50.6503

Vehicle Speed (km/h) 35.759 34.987 47.442 21.455 20.617 39.954 9.600 9.435 21.435

Improvement % 32.6715 35.5989 86.223 93.7915 123.2812 127.186

Throughput (veh/h) 415.95 415.95 422.66 529.54 529.54 563.71 526.44 532.86 598.56

Improvement % 1.6129 1.6129 6.4516 6.4516 13.6986 12.3287

Fuel (L) 0.100 0.1017 0.0974 0.1197 0.1212 0.1037 0.1328 0.1337 0.1209

Improvement % 2.6000 4.2281 13.3668 14.4389 8.9608 9.5737

CO2 (grams) 211.225 214.675 198.15 255.80 258.89 213.32 286.741 288.878 254.40

Improvement % 6.1858 7.6935 16.6052 17.6005 11.2764 11.9327

Last Vehicle Arrival (s) 3705.2 3706.0 3652.2 3852.3 3906.1 3672.3 4884.8 4876.4 4284.2

Improvement % 1.4304 1.4517 4.6725 5.9855 12.2953 12.1442

the DNB controller at different traffic volumes.

Figure 10 shows the average queue length at two different flow ratios (Y ) (i.e., 0.1 and 1.2). Consider-

able reductions in the queue lengths were found for all movements.

The simulation results showed that the DNB controller exhibited major improvements in the MOEs for

all movements when compared to FP and ACT algorithms, thus improving system efficiency.

4.3 Summary

In this section, the developed DNB controller was applied to an isolated intersection. INTEGRATION mi-

croscopic traffic assignment and simulation software was used to evaluate the performance of the controller

relative to an optimum FP controller and an ACT controller on a major intersection in downtown Toronto

using observed traffic data. Five DNB controller scenarios were simulated considering different update time
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(a) Average queue length. (b) Average total delay.

(c) Average CO2.

Figure 9: Measure of effectiveness vs. flow ratio.

(a) Average queue length at 0.1 flow ratio. (b) Average queue length at 1.2 flow ratio.

Figure 10: Average queue length vs. flow ratio.
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intervals and different threat point values to study the effect of these parameters on the controller’s perfor-

mance. The experimental results using the DNB controller show that, using relatively short updating time

intervals, it is possible to minimize delay and maximize traffic flow efficiency. To evaluate the benefits of

using the proposed controller, three scenarios were simulated using the three control approaches for differ-

ent traffic demand levels. The results showed significant reductions in the average total delay ranging from

41% to 64%, a reduction in the average queue length ranging from 58% to 77%, a reduction in the emission

levels ranging from 6% to 17%, a reduction in the average travel time ranging from 37% to 65%, and a

reduction in the network clearance time ranging from 1% to 12%. To further investigate the achieved im-

provements using the DNB controller, simulations were conducted at different flow ratios. The simulation

results demonstrated a significant potential for the DNB controller over FP and ACT controllers. Moreover,

the results showed that major improvements were achievable using the DNB controller regardless of the

traffic demand level. The next section integrates the developed DNB controller with transit signal priority

(TSP) and freight signal priority (FSP) to maximize flows in real-time.
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5 Signal Priority (SP)

This section integrates the developed DNB controller with TSP and FSP to maximize flows in real-time using

high-fidelity data collected from vehicles through vehicle-to-infrastructure (V2I) wireless communication.

V2I communication allows traffic signal controllers to dynamically respond to real-time traffic conditions

to reduce the network delay and maximize traffic throughput. Experiments were conducted using the DNB

controller on an intersection (Figure 5), with the traffic demand shown in Table 4.

Traffic signal priority was integrated in the developed DNB controller (DNB-SP), through a length-

based (LB) passenger car equivalency, and formulated mathematically as (only Equation 3 is updated in the

controller’s formulation) shown below, where qtl is the number of queued vehicles in lane l at time t.

qtl =
∑
v∈vtl

qtv (8)

qtv =



LB if st−1v > sTh & stv ≤ sTh

−LB if st−1v ≤ sTh & stv > sTh

0

 if st−1v ≤ sTh & stv ≤ sTh

if st−1v > sTh & stv > sTh

(9)

The performance of the DNB-SP controller was compared to the DNB controller and a decentralized

PSC controller to evaluate the performance of the proposed decentralized controller.

5.1 Transit Signal Priority (TSP)

This section presents the results of incorporating TSP logic within the DNB controller. TSP facilitates the

movement of in-service transit vehicles through traffic-signal controlled intersections, and the TSP decisions

are granted locally by the intersection controller.

The simulations were conducted using the following parameter values: 4525 passenger vehicles (PVs;

97% of the total demand), 146 buses (3% of the total demand), bus length equivalency of 3 passenger cars

(LB = 3), and bus occupancy of 30 passengers (this parameter is used to compute the passenger travel time).

Table 7 shows the average MOEs using PSC and DNB controllers for passenger vehicles and buses.

Table 8 shows the average MOEs using the DNB-SP controller for PVs and buses. The simulation

results show that the DNB-SP controller produced major improvements for both the PVs and the buses in

all MOEs.
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Table 7: Average MOEs Using PSC & DNB Controller for PVs and Buses

MOE

System PSC DNB

PV Bus Average PV Bus Average

Average Vehicle Travel Time (s) 323.76 329.69 323.95 94.35 105.53 94.70

Average Passenger Travel Time (s) 323.76 330.54 327.19 94.35 106.89 100.53

Average Total Delay (s/veh) 104.94 107.13 105.01 51.50 61.66 51.82

Average Stopped Delay (s/veh) 64.34 59.05 64.17 20.21 23.79 20.32

Average Fuel (L) 0.13 0.21 0.14 0.12 0.18 0.12

Average CO2 (grams) 288.76 554.03 297.05 245.38 464.91 252.24

Table 8: Average MOEs Using DNB-SP Controller for PVs and Buses

MOE

System DNB-SP

PV Bus Average

Average Vehicle Travel Time (s) 72.55 77.95 72.72

Average Passenger Travel Time (s) 72.55 79.08 75.77

Average Total Delay (s/veh) 45.39 50.25 45.55

Average Stopped Delay (s/veh) 17.62 13.96 17.50

Average Fuel (L) 0.11 0.17 0.12

Average CO2 (grams) 238.04 449.66 244.65

In addition, Table 9 shows the percent improvement in MOEs for different vehicle classes using the

proposed DNB-SP controller relative to the PSC and DNB controllers. Simulation results indicated signif-

icant improvements in various MOEs using the DNB-SP controller. Specifically, the average vehicle travel

time decreased by 77.5%, the average passenger travel time decreased by 76.8%, the average total delay

decreased by 56.6%, the average stopped delay decreased by 72.7%, and the fuel consumption decreased

by 14.5% relative to the PSC controller. Moreover, the results demonstrated that the DNB-SP controller

produced improvements in system performance relative to the DNB controller. Specifically, the DNB-SP

controller produced reductions in the average vehicle travel time of 23%, the average passenger travel time

of 24.6%, the average total delay of 12%, the average stopped delay of 13.8%, and the fuel consumption of

2.7%.
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Table 9: TSP Improvement (%) Using DNB-SP Over PSC & DNB Controller

MOE

Improvement DNB-SP over PSC (%) DNB-SP over DNB (%)

PV Bus Average PV Bus Average

Average Vehicle Travel Time (s) 77.59 76.36 77.55 23.11 26.14 23.21

Average Passenger Travel Time (s) 77.59 76.08 76.84 23.11 26.02 24.63

Average Total Delay (s/veh) 56.74 53.09 56.63 11.86 18.50 12.11

Average Stopped Delay (s/veh) 56.74 53.09 56.63 12.83 41.32 13.87

Average Fuel (L) 14.30 18.98 14.49 2.72 3.35 2.68

Average CO2 (grams) 17.56 18.84 17.64 2.99 3.28 3.01

The results showed that the DNB-SP controller yielded significant improvements in the MOE values for

different vehicle classes, indicating improved system efficiency.

5.2 Freight Signal Priority (FSP)

This section presents the results of integrating the FSP in the DNB controller. The simulations were con-

ducted using the following parameter values: 4525 PVs (97% of total demand), 146 trucks (3% of total

demand), truck length equivalency of 5 passenger cars (LB=5), and truck occupancy of 1 passenger. Ta-

ble 10 shows the average MOEs using PSC and DNB controllers for PVs and trucks.

Table 10: Average MOEs Using PSC & DNB Controller for PVs and Trucks

MOE

System PSC DNB

PV Truck Average PV Truck Average

Average Vehicle Travel Time (s) 513.38 533.89 514.02 178.61 193.17 179.06

Average Passenger Travel Time (s) 513.38 533.89 514.02 178.61 193.17 179.06

Average Total Delay (s/veh) 111.86 127.37 112.35 55.75 75.43 56.37

Average Stopped Delay (s/veh) 68.46 70.34 68.51 22.18 28.33 22.37

Average Fuel (L) 0.14 0.20 0.14 0.12 0.16 0.12

Average CO2 (grams) 296.36 520.79 303.38 249.08 427.81 254.67

Table 11 shows the average MOEs using DNB-SP controller for passenger vehicles (PV) and trucks.
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The simulation results showed that the DNB-SP controller exhibited major improvements for both the PVs

and the trucks in all MOEs.

Table 11: Average MOEs Using DNB-SP Controller for PVs and Trucks

MOE

System DNB-SP

PV Truck Average

Average Vehicle Travel Time (s) 108.50 120.59 108.88

Average Passenger Travel Time (s) 108.50 120.59 108.88

Average Total Delay (s/veh) 55.60 64.68 55.88

Average Stopped Delay (s/veh) 21.26 15.47 21.08

Average Fuel (L) 0.12 0.16 0.12

Average CO2 (grams) 249.59 414.77 254.76

In addition, Table 12 shows the percent improvement in MOEs for different vehicle classes using the

proposed DNB-SP controller over the PSC and DNB controllers. Simulation results indicated significant

reductions in the average vehicle travel time of 78.8%, the average total delay of 50%, the average stopped

delay of 69%, and fuel consumption of 13.3% relative to the PSC controller. Moreover, the results of using

the DNB-SP controller showed reductions over the DNB controller in the average vehicle travel time of

39.2% and the average passenger travel time of 39.2%. Furthermore, the results showed an improvement

for trucks in the average total delay of 14.2%, the average stopped delay of 45.4%, and the fuel consumption

of 3% without or with slight impacts on the passenger vehicles.

The results showed that the DNB-SP controller yielded significant improvements in the average values

of all MOEs for different vehicle classes. The next section entails extending the work to test the DNB

controller on an arterial network of multiple intersections.
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Table 12: FSP Improvement (%) Using DNB-SP over PSC & DNB Controller

MOE

Improvement DNB-SP over PSC (%) DNB-SP over DNB (%)

PV Truck Average PV Truck Average

Average Vehicle Travel Time (s) 78.87 77.41 78.82 39.25 37.57 39.20

Average Passenger Travel Time (s) 78.87 77.41 78.82 39.25 37.57 39.20

Average Total Delay (s/veh) 50.30 49.22 50.26 0.27 14.26 0.86

Average Stopped Delay (s/veh) 68.95 78.00 69.24 4.16 45.39 5.80

Average Fuel (L) 12.98 20.51 13.31 -0.25 3.07 -0.08

Average CO2 (grams) 15.78 20.36 16.03 -0.21 3.05 -0.04

6 Arterial Network Results

This section describes the testing of the proposed decentralized DNB controller, considering a variable

phasing sequence and free cycle length on an arterial network.

6.1 Experimental Setup

The proposed controller was simulated on an arterial network located in the heart of downtown of Blacks-

burg, shown in Figure 11. The O-D demand matrices were generated using QueensOD software [81], and

were based on counts collected during the afternoon peak period (4− 6 PM), at 15 minute intervals, for the

year 2012, [82].

A three-phase signalized intersection scheme (Figure 12) was used to represent the intersection phases

applied in the downtown Blacksburg network, with protected leading main street left-turn phases [79]. The

three phases represent the three players (N = 3) in the game.

The performance of the DNB controller was compared to the operation of an optimum FP controller, a

centralized adaptive PS controller, a PSC controller [4], and a fully coordinated adaptive PSCO controller

[23, 24] to evaluate its performance.

The simulations were conducted using the following parameter values: free-flow speed (40 km/h) based

on the roadway speed limit, speed-at-capacity (29 km/h), jam density (160 veh/km/lane), saturation flow

rate (1800 veh/h/lane), threshold speed (sTh=4.5 km/h). These values were based on field measurements

and typical values for arterial roadways. The FP was simulated using the observed signals’ times in the field.
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(a) Google image.

(b) INTEGRATION model.

Figure 11: Blacksburg testbed arterial network.

PS was optimized every 120 s. PSC and PSCO were optimized every 120 s, considering a minimum cycle

length of 30 s and a maximum cycle length of 120 s. In the simulation, vehicles were allowed to enter the

links in the first 2 hours, and the simulation ran for an extra 15 minutes to guarantee that all vehicles exited

the network.
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Figure 12: Phasing scheme.

6.2 Experimental Results

The simulation results shown below represent the average of 30 simulation runs at random seeds. The

performance of the arterial network using the DNB controller was conducted such that the threat points

were chosen based on the number of vehicles that each phase could accommodate based on the link lengths

and number of lanes considering an updating time interval of 10 s.

Figure 13 shows the average values and the standard deviations of the MOEs across all movements over

the entire simulation time for each control system, (FP, PS, PSC, PSCO, and DNB). The DNB controller

outperformed other control approaches for all movements with a significant reduction in both the average

values and the standard deviations for the total delay, stopped delay, travel time, fuel consumption, and CO2

emissions.

In addition, Table 13 shows the percent improvement in MOEs using the proposed DNB approach over

other approaches for 30 simulations with random seeds. Analysis of the results in Table 13 demonstrated

the following: the proposed DNB approach outperformed other approaches in terms of average total delay,

average travel time, average fuel consumed, average CO2 emitted, and the clearance time of the last vehicle.

Figure 14 shows the average queue length for the six intersections, across all movements. The DNB

control system outperformed other control systems (FP, PS, PSC, PSCO) for all movements. The simulation

results showed that the DNB controller exhibited major improvements in the average values and the standard

deviations of all MOEs for different movements, indicating that the system’s efficiency was improved.
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(a) Average number of stops. (b) Average travel time. (c) Average total delay.

(d) Average stopped delay. (e) Average fuel. (f) Average CO2.

Figure 13: Average MOEs of 30 simulations at random seeds.

Table 13: Average MOEs and the Percent Improvement Using DNB Controller over Other Controllers

MOE

System
FP PS PSC PSCO DNB

Average Total Delay (s/veh) 39.255 31.847 20.609 19.833 12.649

Improvement % 67.777 60.282 38.624 36.223

Average Stopped Delay (s/veh) 28.549 22.849 10.127 9.849 4.686

Improvement % 83.585 79.490 53.723 52.418

Average Travel time (s) 122.780 115.376 104.155 103.373 96.188

Improvement % 21.658 16.630 7.649 6.950

Average Number of Stops 1.605 1.418 1.805 1.699 1.350

Improvement % 15.879 4.776 25.205 20.522

Average Fuel (L) 0.092 0.088 0.086 0.085 0.080

Improvement % 13.740 9.617 7.256 6.170

Average CO2 (grams) 213.114 203.352 198.322 196.003 183.820

Improvement % 13.746 9.605 7.312 6.216

Last Vehicle Arrival time (s) 7380.9 7328.0 7316.8 7338.9 7311.9

Improvement % 0.935 0.220 0.067 0.368
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(a) First intersection. (b) Second intersection. (c) Third intersection.

(d) Fourth intersection. (e) Fifth intersection. (f) Sixth intersection.

Figure 14: Average queue length of the intersections.

6.3 Statistical Analysis

To study the statistical significance of these findings, we applied an analysis of variance (ANOVA) test to the

data. ANOVA is a statistical test used to identify significant differences between the means of three or more

independent groups. The ANOVA test was applied to all MOEs; however, only the results for the average

total delay are shown here.

Figure 15 shows that the assumptions of the ANOVA test were validated; i.e., the results show normality

and equal variance. The distribution of the studentized residuals follow a normal distribution, and have

equal variances. Table 14 shows that the null hypothesis for ANOVA—i.e., the mean is the same for all

approaches—is rejected, and at least one approach, has a statistically significant different mean.

In addition, we applied the Tukey test to determine which approaches were similar. Table 15 shows the

results of the Tukey test, where levels not connected by the same letter are significantly different.

Moreover, a pairwise comparison test was conducted to compare approaches in pairs to identify the

approaches with similar MOEs. The results shown in Table 16 conclude that the DNB control approach

exhibited major, statistically significant improvements over other approaches.
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(a) Variance. (b) Normality.

Figure 15: Assumptions of ANOVA test.

Table 14: Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob>F

Algorithm 4 23.492544 5.87314 25124.81 <0.0001

Error 145 0.033895 0.00023

C. Total 149 23.526439

Table 15: Tukey Test

Level Least Square Mean

FP A 3.6699004

PS B 3.4607800

PSC C 3.0255877

PSCO D 2.9872279

DNB E 2.5374774

6.4 Summary

In this section the developed DNB decentralized cycle-free traffic signal controller was applied on an arterial

network. INTEGRATION microscopic traffic assignment and simulation software was used to evaluate the
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Table 16: Pairwise Comparison

Level -Level Difference Std Err Dif Lower CL Upper CL P-Value

FP DNB 1.132423 0.0039476 1.121518 1.143328 <0.0001

PS DNB 0.923303 0.0039476 0.912398 0.934208 <0.0001

FP PSCO 0.682672 0.0039476 0.671767 0.693577 <0.0001

FP PSC 0.644313 0.0039476 0.633408 0.655218 <0.0001

PSC DNB 0.488110 0.0039476 0.477205 0.499015 <0.0001

PS PSCO 0.473552 0.0039476 0.462647 0.484457 <0.0001

PSCO DNB 0.449750 0.0039476 0.438845 0.460655 <0.0001

PS PSC 0.435192 0.0039476 0.424287 0.446097 <0.0001

FP PS 0.209120 0.0039476 0.198215 0.220025 <0.0001

PSC PSCO 0.038360 0.0039476 0.027455 0.049265 <0.0001

performance of the proposed controller relative to the operation of an optimum FP controller, a centralized

adaptive PS controller, a PSC controller [4], and a fully coordinated adaptive PSCO controller, on an arterial

network in downtown Blacksburg, VA. A total of 30 random seed simulations were conducted for the five

control approaches. The experimental results using the DNB controller showed that, with a flexible phasing

sequence and free cycle length control strategy, it was possible to minimize delay and maximize traffic flow

efficiency. The results showed significant reductions in the average queue length, in the average total delay

ranging from 36% to 67%, in the emission levels ranging from 6% to 13%, in the average travel time ranging

from 7% to 21%, and in the network clearance time.

ANOVA tests, Tukey tests, and pairwise comparison tests were conducted to validate the benefits of

using the proposed DNB control approach, and the results showed that the DNB controller produced major

improvements over other approaches. The results demonstrated a significant potential for the proposed

controller over other state-of-the-art centralized and decentralized control approaches. The next section

entails extending the work to test the DNB controller on large scale networks.
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7 Large-Scale Network & Sensitivity Analysis

This section describes the application and testing of the proposed decentralized cycle-free DNB controller

on large-scale networks. The developed controller was compared to the operation of a decentralized PSC

controller and a fully coordinated adaptive PSCO controller to evaluate its performance [83]. The section

is organized as follows. Section 7.1 presents the experimental setup and results of large scale studies in the

town of Blacksburg, VA, consisting of 38 signalized intersections. Section 7.2 describes the experimental

setup and the experimental results of large scale studies on a downtown network in Los Angeles, CA,

consisting of 457 signalized intersections.

7.1 Blacksburg Town Experiments

7.1.1 Blacksburg Experimental Setup

These experiments were large scale studies carried out in the town of Blacksburg, VA, shown in Figure 16.

The simulations were conducted using the morning peak hour (7–8 a.m.) traffic demand. The town of

Blacksburg has 38 signalized intersections, 549 stop signs, 30 yield signs, and 1, 844 links.

Figure 16: Blacksburg network.

The O-D demand matrices were generated using the QueensOD software [81] and consisted of 23, 260

trips. The phasing scheme varied between 2 to 4 phases, reflecting the intersection phases implemented in

the town. The minimum free-flow speed on the network was 30 (km/h), and the maximum free-flow speed
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on the network was 105 (km/h). The minimum link length on the network was 50 m, and the maximum

link length on the network was 2, 932 m. The jam density on the network was equal to 160 (veh/km/lane).

The performance of the DNB controller was compared to the operation of PSC and PSCO controllers to

serve as a reference for the evaluation of the proposed decentralized controller’s performance. The average

of each of the following MOEs was calculated to assess the DNB controller’s performance: total delay,

travel time, stopped delay, queue length, fuel consumption, and emission levels. In the simulations, vehicles

could enter the links for an hour, and the simulation ran for an extra time past that hour to guarantee that all

vehicles departed the network. INTEGRATION microscopic traffic simulation software was used to model

the network, shown in Figure 16. Two experiments were conducted on the Blacksburg network, as discussed

in the following sections.

7.1.2 First Experimental Results (Blacksburg)

In this experiment, the performance of the DNB controller was compared to PSC and PSCO controllers.

The threat point (d) values per lane for the DNB controller were assigned based on the link’s lengths

(L), the link’s free-flow speeds (Uf ), and the updating time intervals (∆t) using the following formula:

d=min[N(L/2), N(Uf ×∆t)], where N(L/2) represents the number of vehicles that could be accumulated

up to the half length of the link, and N(Uf ×∆t) represents the number of vehicles that could be accumu-

lated up to the distance of (Uf ×∆t). Using the distance of Uf ×∆t allowed detected vehicles to pass the

intersection without stopping if there was no queue in front of them, where L/2 was used instead of L to get

a better estimate of the queue length for each movement, as drivers generally move to the appropriate lanes

as approaching the signalized intersection, and to avoid being fully queued (i.e., players will accept a fully

occupied [queued] link).

The average MOEs values over the entire simulation time for the PSC, PSCO and DNB controllers are

shown in Table 17. In addition, Table 17 shows the percent improvement in MOEs when using the proposed

DNB controller versus PSC and PSCO controllers.

Simulation results indicated significant reduction in the average total delay of 16.5%, a reduction in

the average stopped delay of 40.3%, and a reduction in the average travel time of 5.25%, over the PSC

controller. In addition, the results indicated significant reduction in the average total delay of 19.8%, a

reduction in the average stopped delay of 52.7%, and a reduction in the average travel time of 6.5%, over

the PSCO controller. These results show that the proposed DNB controller outperformed both PSC and

PSCO controllers.
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Table 17: Average MOEs and (%) Improvement Using DNB over PSC and PSCO Controllers

MOE

System
PSC PSCO DNB

Average Total Delay (s/veh) 96.234 100.197 80.323

Improvement % 16.534 19.823

Average Stopped Delay (s/veh) 20.285 25.649 12.1074

Improvement % 40.314 52.7962

Average Travel time (s) 306.254 310.225 290.175

Improvement % 5.250 6.463

Average Number of Stops 4.662 4.5899 4.281

Improvement % 8.18 6.734

Average Fuel (L) 0.4142 0.4129 0.40

Improvement % 3.38 3.07

Average CO2 (grams) 913.833 912.495 883.127

Improvement % 3.36 3.22

7.1.3 Second Experimental Results (Blacksburg)

The minimum free-flow speed on the network was 30 (km/h), and the maximum free-flow speed on the

network was 105 (km/h), with updating time intervals of 10 s. Assigning the detectors’ locations to be

the min(L/2, Uf × ∆t), the detectors could be located for long links between 84 m (i.e., 13 veh/lane) to

292 m (i.e., 47 veh/lane), employing the free-flow speed to determine the disagreement point.

(d=min[N(L/2), N(Uf ×∆t)]) is a good choice for low traffic demand, as vehicles are not to stop at

the intersection); however, for high traffic demand, long links can accommodate long queues, which causes

delays for the vehicles on that link.

Hence, reducing the number of vehicles that can accumulate in a lane might enhance the network’s

performance. To examine the effectiveness of improving the MOEs by changing the maximum number of

vehicles that could be accumulated per lane, a sensitivity analysis was conducted, as shown in Figure 17,

with d=min[N(L/2), NV], where NV represents the maximum number of vehicles that can accumulate in a

lane; this number ranges between 6 and 32 vehicles.

Analysis of the results in Figure 17 demonstrates that better performance could be achieved using the

DNB controller by assigning the threat point as a minimum of 12 veh/lane and the number of vehicles that

could be accumulated as L/2, (d=min[N(L/2), 12]).
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(a) Average travel time. (b) Average CO2.

Figure 17: Sensitivity analysis.

Table 18 shows the average MOEs values over the entire simulation time and the percent improvement

in MOEs using the proposed DNB controller over PSC and PSCO controllers.

Simulation results indicate significant reduction in the average total delay of 19.38%, a reduction in

the average stopped delay of 51.18%, a reduction in the average travel time of 6.162%, a reduction in the

average number of stops of 8.39%, a reduction in the average fuel consumption of 3.89%, and a reduction

in the emission levels of 3.84%, over the PSC controller. The results show that the proposed DNB controller

outperformed both the PSC and PSCO controllers.

Table 18: Average MOEs and (%) Improvement Using DNB over PSC & PSCO Controllers

MOE

System
PSC PSCO DNB

Average Total Delay (s/veh) 96.234 100.197 77.577

Improvement % 19.3871 22.575

Average Stopped Delay (s/veh) 20.285 25.649 9.903

Improvement % 51.182 61.391

Average Travel Time (s) 306.254 310.225 287.384

Improvement % 6.162 7.362

Average Number of Stops 4.662 4.5899 4.271

Improvement % 8.393 6.95

Average Fuel (L) 0.4142 0.4129 0.3981

Improvement % 3.887 3.584

Average CO2 (grams) 913.833 912.495 878.739

Improvement % 3.84 3.7
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To further investigate the achieved improvements using the DNB controller, it was taken into consid-

eration that the network has 459 stop signs and 30 yield signs, which might conceal the full degree of

improvement achieved using the DNB controller on the signalized intersection. Accordingly, we investi-

gated the percent improvement in MOEs using the DNB controller versus the PSC controller over only the

links that were directly associated with intersections. Table 19 shows the percent improvement in MOEs

using the DNB controller over the PSC controller on the 38 intersections. Table 19 demonstrates an im-

provement in the travel time on the intersections between 6% to 52%, an improvement in the queue length

on the intersections between 8% to 60%, and an improvement in the number of stops on the intersections

between 8% to 80%. In addition, Table 19 demonstrates an overall reduction in the average travel time of

23.63%, in the average queued vehicles of 37.66%, in the average number of stops of 23.58%, in the average

fuel consumption of 10.44%, in the average CO2 emitted of 9.84%, and in the average NOx emitted of 5.4%

over the PSC controller. These results reveal that the DNB controller performed significantly better than the

PSC controller.
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Table 19: Intersections (%) Improvement of MOEs Using DNB over PSC Controller

Int. #

MOEs
Travel Time Queue Num. of Stops CO2 Fuel NOx

1 6.153 22.015 24.311 2.645 2.566 0.161

2 16.409 26.801 21.184 7.706 7.710 5.859

3 8.485 18.233 32.777 6.034 6.450 9.040

4 31.114 52.874 39.564 8.166 6.595 8.756

5 22.230 53.875 52.914 9.355 8.962 3.309

6 23.176 34.435 14.240 11.594 10.716 4.751

7 8.967 15.881 17.832 3.889 3.597 2.271

8 24.057 41.868 16.114 13.753 13.480 9.162

9 40.709 56.267 29.850 25.253 24.654 13.842

10 13.395 26.346 41.436 8.634 8.653 9.772

11 17.628 26.340 11.802 9.014 8.353 1.352

12 7.642 7.968 32.650 3.481 3.373 3.476

13 19.414 37.909 20.915 8.991 8.745 3.758

14 28.503 35.499 25.359 7.854 6.617 8.147

15 23.870 39.630 34.584 12.553 12.272 6.166

16 27.552 59.095 41.876 15.109 14.785 8.836

17 42.001 60.000 56.974 16.896 14.827 12.842

18 26.258 49.883 32.723 14.491 13.414 5.703

19 19.676 36.533 21.104 4.963 4.253 4.976

20 52.237 76.083 63.088 32.966 31.762 20.159

21 34.822 50.159 46.265 21.568 21.385 18.268

22 38.267 59.396 37.466 27.628 27.284 26.528

23 17.193 30.863 16.272 7.595 6.922 5.258

24 34.669 43.997 11.269 14.632 13.342 3.239

25 23.480 44.588 57.381 5.760 4.502 0.085

26 18.029 26.028 30.503 4.017 2.478 0.750

27 28.129 36.340 8.565 16.769 16.194 14.480

28 14.530 35.046 11.902 9.459 9.846 11.611

29 13.131 19.115 9.603 5.347 4.985 1.142

30 23.632 47.382 23.224 19.330 19.409 24.772

31 32.761 55.701 80.381 18.004 17.273 19.333

32 34.761 53.070 35.456 26.641 27.045 29.311

33 35.984 48.472 15.256 20.348 19.563 11.668

34 16.679 32.676 30.335 11.273 11.151 11.757

35 18.012 28.950 21.575 18.241 18.672 26.116

36 22.588 46.509 34.331 7.676 7.028 2.465

37 29.307 46.502 31.486 7.399 6.678 1.081

38 14.317 14.552 8.061 4.669 4.168 1.143

Overall (%) 23.633 37.666 23.586 10.444 9.842 5.390
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7.2 Downtown Los Angeles Experiments

7.2.1 Los Angeles Experimental Setup

These experiments were large scale studies of a network in downtown Los Angeles, CA, including the most

congested downtown area, as shown in Figure 18. Simulations were conducted during the morning peak hour

(7 − 8 a.m.) [84]. The downtown Los Angeles network has 457 signalized intersections, 285 stop signs,

23 yield signs, and 3, 556 links. The O-D demand matrices were generated using the QueensOD software

[81] with 143, 957 trips. The phasing scheme varied from 2 to 6 phases, reflecting the intersection phases

implemented in downtown Los Angeles. The minimum free-flow speed on the network was 15 (km/h), and

the maximum free-flow speed on the network was 120 (km/h). The minimum link length on the network

was 50 m, and the maximum link length on the network was 4400 m. The jam density on the network was

equal to 180 (veh/km/lane).

Figure 18: Downtown Los Angeles, Google maps.

The DNB controller was compared to the PSC controller to evaluate their relative performance. The

average of each of the following MOEs was calculated to assess the performance of the DNB controller: total

delay, travel time, stopped delay, queue length, fuel consumption, and emission levels. In the simulations,

vehicles could enter the links for an hour, with extra time at the end of the simulation to guarantee that all
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vehicles departed the network. INTEGRATION microscopic traffic simulation software was used to model

the network, as shown in Figure 19.

Figure 19: INTEGRATION, Los Angeles network.

7.2.2 First Experimental Results (Los Angeles)

In this experiment, the DNB controller’s performance was compared to that of the PSC controller using

the full demand in the morning peak hour. The threat point per lane for the DNB controller was as-

signed as the minimum of 12 veh/lane and the number of vehicles that could be accumulated on L/2 (i.e.,

d=min[N(L/2), 12]) based on the sensitivity analysis shown in Figure 20.

(a) Average Travel Time. (b) Average Fuel Consumption.

Figure 20: Los Angeles sensitivity analysis.

The average MOEs values over the entire simulation time for PSC and DNB controllers are shown
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in Table 20. In addition, Table 20 shows the percent improvement in MOEs using the proposed DNB

controller over the PSC controller. Simulation results indicated significant reduction in the average total

delay of 14.55%, a reduction in the average stopped delay of 25.18%, a reduction in the average travel time

of 7.89%, a reduction in the average number of stops of 12.4%, a reduction in the average fuel consumption

of 4.0%, and a reduction in the emission levels of 4.25%, for the DNB over the PSC controller. Analysis of

the results demonstrates that the proposed DNB controller outperformed the PSC controller.

Table 20: Average MOEs and the (%) Improvement Using DNB Controller over PSC Controller (100%

Demand)

MOE

System
PSC DNB DNB Imp. (%)

Average Total Delay (s/veh) 557.463 476.346 14.55

Average Stopped Delay (s/veh) 256.766 192.116 25.178

Average Travel Time (s) 1034.27 952.732 7.89

Average Number of Stops 7.406 6.487 12.4

Average Fuel (L) 1.155 1.109 4.0

Average CO2 (grams) 2482.13 2376.59 4.25

To further investigate the achieved improvements using the DNB controller, it was taken into consid-

eration that the network has 285 stop signs and 23 yield signs, which might conceal the full degree of

improvement achieved using the DNB controller on the signalized intersection. Accordingly, we investi-

gated the percent improvement in MOEs using the DNB controller over the PSC controller over only the

links that were directly associated with intersections. Table 21 demonstrates a reduction in the average travel

time of 35.16%, a reduction in the average queued vehicles of 54.67%, a reduction in the average number

of stops of 44.03%, a reduction in the average fuel consumption of 9.97%, a reduction in the CO2 emitted

of 9.92%, and a reduction in the NOx emitted of 11.78% over the PSC controller. These results reveal that

the DNB controller has significantly better performance potential than the PSC controller.

7.2.3 Second Experimental Results (Los Angeles)

To further investigate performance potential using the DNB controller, a simulation was conducted at lower

traffic conditions (i.e., 10% of the peak demand).

Table 22 shows a reduction in the average total delay of 36.79%, a reduction in the average stopped
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Table 21: Average (%) Improvements of MOEs Using DNB Controller over PSC Controller (100% De-

mand), over the Links That Are Directly Associated with Intersections

Int. #

MOEs
Travel Time Queue Num. of Stops CO2 Fuel NOx

Overall 457 Int. (%) 35.156 54.669 44.031 9.966 9.919 11.774

delay of 90.26%, a reduction in the average travel time of 7.1%, a reduction in the average number of stops

of 34.66%, a reduction in the average fuel consumption of 4.8%, and a reduction in the emission levels of

4.79%, over the PSC controller.

Table 22: Average MOEs and the (%) Improvement Using DNB over the PSC Controller (10% Demand)

MOE

System
PSC DNB DNB Imp. (%)

Average Total Delay (s/veh) 84.938 53.689 36.79

Average Stopped Delay (s/veh) 19.971 1.9451 90.261

Average Travel Time (s) 450.114 418.177 7.1

Average Number of Stops 4.475 2.924 34.66

Average Fuel (L) 0.846 0.805 4.8

Average CO2 (grams) 1830.27 1742.53 4.79

Once more, To further investigate the achieved improvements using the DNB controller, it was taken

into consideration that the network has 285 stop signs and 23 yield signs, which might conceal the full

degree of improvement achieved using the DNB controller on the signalized intersection. Accordingly, we

investigated the percent improvement in MOEs using the DNB controller versus the PSC controller over

only the links that were directly associated with intersections at a lower demand, as shown in Table 23.

Table 23 demonstrates a reduction in the average travel time of 19.19%, a reduction in the average

queued vehicles of 49.84%, a reduction in the average number of stops of 53.71%, a reduction in the average

fuel consumption of 54.16%, a reduction in the average CO2 emitted of 16.09%, and a reduction in the

average NOx emitted of 25.94% over PSC controller. These results reveal that the DNB controller performed

significantly better than the PSC controller as the traffic demand decreased.

The results show that the DNB controller yielded significant improvements in the average values of all
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Table 23: Average (%) Improvements of MOEs Using DNB over PSC Controller (10% Demand) over the

Links Directly Associated with Intersections

Int. #

MOEs
Travel Time Queue Num. of Stops CO2 Fuel NOx

Overall 457 Int. (%) 19.186 49.844 53.708 54.158 16.085 25.939

MOEs, indicating improved system efficiency.

7.3 Summary

In this section, the developed DNB decentralized, cycle-free, flexible phasing traffic signal controller was

applied and evaluated on large scale networks. INTEGRATION microscopic traffic assignment and simu-

lation software was used to evaluate the performance of the proposed controller relative to a decentralized

PSC optimization controller, and a fully-coordinated adaptive PSCO controller, in the town of Blacksburg,

VA, and in downtown Los Angeles, CA.

Several simulations were conducted on the Blacksburg network using different threat point values to

determine their effect on the controller’s performance. The results showed significant reductions on the

network in the average total delay of 19.3% and 22.6%, a reduction in the stopped delay of 51% and 61%,

a reduction in the average travel time of 6.1% and 7.3%, and a reduction in the emission levels of 3.8% and

3.7%, over PSC and PSCO controllers, respectively. In addition, the results showed significant reductions

on the intersections links in the average travel time of 23.6%, a reduction in the average queue length of

37.6%, a reduction in the average number of stops of 23.6%, a reduction in the Co2 emitted of 10.4%, a

reduction in the fuel consumption of 9.8%, and a reduction in NOx emitted of 5.4%.

In addition, the DNB controller’s performance was tested in downtown Los Angeles, CA, and compared

to the performance of a PSC controller. The results showed significant reductions on the network in the

average total delay of 14.5%, a reduction in the stopped delay of 25.1%, a reduction in the average travel

time of 8%, a reduction in the average number of stops of 12.4% and a reduction in the Co2 emitted of

4.25%, over the PSC controller. Moreover, the results showed significant reductions at the intersections

links in the average travel time of 35.1%, a reduction in the average queue length of 54.7%, a reduction

in the average number of stops of 44%, a reduction in the Co2 emitted of 10%, a reduction in the fuel

consumption of 10%, and a reduction in NOx emitted of 11.7%. Furthermore, simulations conducted at
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lower traffic flow conditions showed significant reductions on the network in the average total delay of

36.7%, a reduction in the stopped delay of 90.2%, and a reduction in the average number of stops of 35%

over the PSC controller. As these results indicate, the DNB controller can generate major performance

improvements at lower demands.

The results demonstrate significant potential benefits of using the proposed DNB controller over other

state-of-the-art centralized and decentralized controllers on large scale networks.
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8 Summary & Conclusions

Traffic growth constrained by available capacity in urban areas affects traveler mobility, air quality, and

public health. Reducing traffic congestion can improve these conditions while simultaneously decreasing

transportation-related energy use. To enhance air quality, optimizing the utilization of the available infras-

tructure via advanced traffic signal controllers is necessary to mitigate traffic congestion and emissions in a

world with growing pressure on financial and physical resources. To mitigate traffic congestion at signalized

intersections, we developed a novel real-time adaptive multi-modal decentralized traffic signal optimization

controller, considering a flexible phasing sequence and free cycle length, using an NB game-theoretic frame-

work (DNB controller).

The DNB controller is used to optimize the signal timings at each signalized intersection by modeling

each phase as a player in a game, where players cooperate to reach a mutually agreeable outcome. Decen-

tralized systems are scalable and easy to expand by inserting new controllers into the system. Additionally,

decentralized systems are often inexpensive to establish and operate, as there is no essential need for a reli-

able and direct communication network between a central computer and the local controllers in the field. IN-

TEGRATION microscopic traffic assignment and simulation software was used to evaluate the performance

of the algorithm relative to an optimum FP and an ACT controller on a major intersection in downtown

Toronto, considering different traffic demand levels, and using observed traffic data. Several simulations

were conducted using the DNB controller with different update time intervals and different threat point val-

ues to study the effect of these parameters on the controller’s performance. The experimental results using

the DNB controller showed that, using a relatively short updating time interval, it was possible to minimize

delay and maximize traffic flow efficiency. To evaluate the benefits of using the proposed controller, three

scenarios were simulated using the three controllers at different traffic demand levels. The results showed

significant reductions in the average total delay ranging from 41% to 64%, a reduction in the average queue

length ranging from 58% to 77%, a reduction in the emission levels ranging from 6% to 17%, a reduction

in the average travel time ranging from 37% to 65%, and a reduction in the network clearance time ranging

from 1% to 12%. To further investigate the achieved improvements using the DNB controller, simulations

were conducted at different flow ratios. The simulation results demonstrated a significant potential for the

DNB controller over FP and ACT controllers. Moreover, the results showed that major improvements are

achievable using the DNB controller regardless of the traffic demand level.

In addition, the proposed controller integrated TSP and FSP, to maximize flows in real-time using data
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collected from vehicles through V2I wireless communications. The results of integrating the TSP in the

developed controller on an isolated intersection showed an improvement in the average vehicle travel time

of 77.5%, the average passenger travel time of 76.8%, the average total delay of 56.6%, the average stopped

delay of 72.7%, the fuel consumption of 14.5%, and emissions of 17.6%. In addition, the results of integrat-

ing the FSP in the developed controller on an isolated intersection, showed an improvement in the average

vehicle travel time of 78.8%, the average total delay of 50%, the average stopped delay of 69%, the fuel

consumption of 13.3%, and emissions of 16%.

Furthermore, the proposed controller was applied on an arterial network in downtown Blacksburg, VA,

which was composed of six intersections. INTEGRATION microscopic traffic assignment and simulation

software was used to evaluate the performance of the proposed controller relative to an optimum FP con-

troller, a centralized adaptive PS controller, a decentralized PSC controller, and a fully-coordinated adaptive

PSCO controller. A total of 30 random seed simulations were conducted for the five controllers. The results

showed significant reductions in the average queue length, in the average total delay ranging from 36% to

67%, a reduction in the emission levels ranging from 6% to 13%, a reduction in the average travel time

ranging from 7% to 21%, and a reduction in the network clearance time. ANOVA, Tukey , and pairwise

comparison tests were conducted to validate the benefits of using the proposed controller (DNB), and the

results showed that the DNB controller produced statistically significant major improvements over other

state-of-the-art centralized and decentralized control approaches.

Moreover, the developed DNB decentralized cycle-free with flexible phasing traffic signal controller was

applied and evaluated on large scale networks. INTEGRATION microscopic traffic assignment and simu-

lation software was used to evaluate the performance of the proposed controller relative to a decentralized

PSC optimization controller and a fully-coordinated adaptive PSCO optimization controller in the town of

Blacksburg, VA, and in downtown Los Angeles, CA.

Several simulations were conducted on the Blacksburg network using different threat point values to

determine their effect on the DNB controller’s performance. The results showed significant reductions on

the network in the average total delay of 19.3% and 22.6%, a reduction in the stopped delay of 51% and

61%, a reduction in the average travel time of 6.1% and 7.3%, and a reduction in the emission levels of

3.8% and 3.7% over the PSC and PSCO controllers, respectively. In addition, the results showed significant

reductions at the intersection links in the average travel time of 23.6%, a reduction in the average queue

length of 37.6%, a reduction in the average number of stops of 23.6%, a reduction in the Co2 emitted of

10.4%, a reduction in fuel consumption of 9.8%, and a reduction in NOX emitted of 5.4%. The DNB
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controller’s performance was also tested on a downtown Los Angeles, CA network and compared to the

performance of a PSC controller. The results showed significant reductions on the network in the average

total delay of 14.5%, a reduction in the stopped delay of 25.1%, a reduction in the average travel time of 8%,

a reduction in the average number of stops of 12.4% and a reduction in the Co2 emitted of 4.25% over the

PSC controller. Moreover, the results showed significant reductions on the intersection links in the average

travel time of 35.1%, a reduction in the average queue length of 54.7%, a reduction in the average number

of stops of 44%, a reduction in the Co2 emitted of 10%, a reduction in the fuel consumption of 10%, and

a reduction in NOX emitted of 11.7%. Furthermore, simulations were conducted at lower traffic flow, and

results showed significant reductions on the network in the average total delay of 36.7%, a reduction in the

stopped delay of 90.2%, and a reduction in the average number of stops of 35% over the PSC controller,

indicating that the DNB controller can generate major performance improvements at lower demands.

The results of this work showed significant potential benefits of using the proposed DNB controller

over other state-of-the-art centralized and decentralized controllers on large scale networks. This research

presented a novel traffic signal controller that is able to adapt signal plans based on the observed traffic state

without using historical data. The developed control system is decentralized, which will increase both its

scalability and robustness. The proposed controller was evaluated on traffic scenarios that represent those

found in the real world, which ensures that the controller is applicable to real-life situations. The proposed

DNB controller is capable of alleviating congestion as well as reducing emissions and enhancing air quality.
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