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Introduction 
Traffic congestion has become a major problems in many urban areas, and has related 

environmental, economic, and equity impacts. When traffic is congested, various transportation 

modes cannot run efficiently, causing an increase in air pollution, carbon dioxide (CO2) emissions, 

and fuel use. In 2007, Americans lost $87.2 billion in wasted fuel and lost productivity. This waste 

reached $115 billion in 2009. Congestion also increases travel time. For example, in 1993, driving 

in congested conditions caused a delay of about 1.2 minutes per kilometer of travel along arterials. 

The congestion problem has worsened, as reported by the Texas Transportation Institute, which 

found that Americans’ wasted hours in traffic congestion increased fivefold between 1982 and 

2005. 

One potential method of reducing urban traffic congestion is developing tools that plan multi-

modal trips to encourage more people to ride public transportation and to provide better driving 

alternatives for less affluent citizens. The ability to accurately predict passenger demand can help 

public transit agencies minimize operational costs and improve bus service quality by properly 

allocating limited resources. The planning of trips also requires accurate prediction of travel times 

on roads in order to provide travelers with alternative modes of travel. 

Smart cities have many components, including smart transportation. Smart transportation 

integrates different transportation networks and allows them to work together so travelers, and 

commuters in particular, can enjoy seamless multi-modal trips based on their preferences. This 

will encourage more commuters to use public transportation systems and many traffic-related 

problems, such as congestion, will be relaxed. In designing smart transportation systems, it is 

important to consider the last mile problem, which must be solved in order for different 

transportation networks to work together efficiently. This problem is defined as “the short distance 

between home and public transit or transit stations and the workplace, which may be too far to 

walk.” 

One solution to this problem is a bike sharing system (BSS), which takes advantage of the BSS’s 

operating data to efficiently operate the network. Smart bike sharing systems use recent 

technologies to monitor the status of each station in the network, collect bike usage data and other 

relevant data, and use state-of-the-art algorithms to build predictive models, predict future bike 

availability, and find good solutions for the issue of imbalance in the distribution of bikes in order 

to guarantee users’ satisfaction and meet their demand. A well-operated BSS can help solve the 

last mile problem, thereby encouraging more people to use public transportation and relieving 

traffic congestion.  

Due to relatively low capital and operational costs, as well as ease of installation, many U.S. cities 

are investing in BSSs. A technical report distributed by the Bureau of Transportation in April 2016 

indicated that there are 2,655 BSS stations in 65 U.S. cities, and that 86.3% of these stations are 

connected to another means of scheduled public transportation (Contardo, Morency, & Rousseau, 

2012). These numbers show that the physical infrastructure for BSSs already exists and that they 

are good candidates for connecting different transportation networks. In 2013, San Francisco 

launched the Bay Area Bike Share System (now Ford GoBike), a membership-based system 
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providing 24-hours-per-day, 7-days-per-week self-service access to short-term rental bicycles. 

Members can check out a bicycle from a network of automated stations, ride to the station nearest 

their destination, and leave the bicycle safely locked for someone else to use (Bay Area Bike 

Share). The Bay Area Bike Share is designed for short, quick trips, and as a result, additional fees 

apply for trips longer than 30 minutes. In this system, 70 bike stations connect users to public 

transit, businesses, and other destinations in four areas: downtown San Francisco, Palo Alto, 

Mountain View, and downtown San Jose (Bay Area Bike Share). Bay Area Bike Share is available 

to everyone 18 years and older with a credit or debit card. The system is designed to be used by 

commuters and tourists alike, whether they are trying to get across town at rush hour, traveling to 

and from Bay Area Rapid Transit and Caltrain stations, or pursuing daily activities (Bay Area Bike 

Share).  

However, BSSs suffer from a central recurring problem: rebalancing. Rebalancing is a daily 

problem for BSS operators, who have to find an efficient way to redistribute (i.e., rebalance) bikes 

from full stations to empty stations to meet expected demand patterns. This redistribution problem 

is a generalization of the well-known traveling salesman problem, which involves finding the 

shortest route passing through each of a collection of locations and then returning to a starting 

point. This problem was first proposed in J. Schuijbroek, R. C. Hampshire, & W.-J. Van Hoeve 

(2017) as a one-commodity pick-up and delivery traveling salesman problem. The problem is NP-

hard, so heuristic optimization techniques are applied to determine a near optimum tour (i.e., 

route). Rebalancing can be classified as either static, dynamic, or incentivized. In both static and 

dynamic rebalancing, BSS operators usually use a fleet of trucks to perform the task. Static 

rebalancing is generally referred to in the literature as the static bicycle repositioning problem 

(SBRP). The common assumption of SBRP algorithms is that the number of bikes at each station 

either remains the same or changes slightly, and does not affect the rebalancing outcome. Thus, 

demand prediction is needed to check the validity of this assumption. The dynamic bicycle 

repositioning problem (DBRP) assumes that moving bikes will have a significant impact on BSS 

user demand, which will affect the rebalancing outcome. As such, demand predictions have to be 

input into the algorithm for solving the DBRP so that they are incorporated into the solution. 

Incentivized rebalancing is based on providing BSS users with incentives to contribute to the 

system rebalancing. The BSS sends control signals to users suggesting slight changes to their 

planned journeys, providing them with alternate routes, or offering the option to return bikes for 

system credit. These suggestions will depend on the demand prediction at stations near the 

destination station of the planned trip. Consequently, real-time system state prediction and bike 

travel time prediction are important in BSS design and management.  

This research adopts the state of art statistical learning, machine learning, to predict the available 

bikes at each station in the network. The machine learning models employed will consider several 

factors, including weather, season, and stations’ spatial locations. These models are essential in 

multi-modal trip planning, where it is not acceptable to guide the user to pick up a bike from an 

empty station or to return a bike to a full station at the end of a trip. Moreover, the proposed 

research adopts machine learning to model bikes’ travel time. Predicting travel time for bikes is 

important in examining scheduled transportation mode and for predicting the state of the bike drop- 
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off station. 

In this report, we addressed transportation system state prediction problems considering private 

vehicles, transit, and BSSs within the context of a multimodal transportation system. The proposed 

effort focused on developing prediction models for the number of bikes and bike travel times. In 

addition, we developed a comprehensive traffic prediction tool by including different categories 

of prediction models.  

This work yields eight contributions to the literature. First, we proposed a new hierarchical 

classifier that increases the accuracy of traditional transportation mode classification algorithms. 

We also investigated the possibility of improving classification accuracy by extracting new 

frequency domain features. The proposed framework has two layers. The first layer contains a 

multiclass classifier that discriminates between five transportation modes and identifies the two 

most probable modes. The second layer consists of binary classifiers that differentiate between the 

two chosen modes that were identified in the first layer. In addition, the proposed framework 

combines the new extracted features with traditionally used time domain features to create a pool 

of features.  

Second, we proposed a new supervised clustering algorithm to provide a global view of network-

wide bike availability across stations. To do so, we developed a novel supervised clustering 

algorithm built using two well-known algorithms: the Gale-Shapley student optimal college 

admission (CA) algorithm (Gale & Shapley, 1962) and the K-median algorithm.  

Third, we introduced an effective approach to quantifying the effect of various features on the 

prediction of bike counts at each station in the San Francisco Bay Area Bike Share. The Random 

Forest (RF) technique was used to rank the predictors, then guided forward step-wise regression 

and Bayesian information criterion (BIC) were used to develop and compare BSS prediction 

models, respectively. 

Fourth, we adopted state-of-the-art machine learning and statistical techniques to build predictive 

models of bike availability at each station in the BSS. The built models were compared in terms 

of mean absolute error (MAE), prediction accuracy, computational time and we identified which 

algorithm was suitable for which condition.  

Fifth, we investigated the traditionally-known vs. a novel quality-of-service (QoS) measurement, 

and found that neither exposed the spatial dependencies between stations nor did either 

discriminate between stations in a BSS. Therefore, we proposed a novel QoS measurement, 

Optimal Occupancy, that captures the impact of a BSS’ heterogeneity and reflects the spatial 

dependencies between stations.  

Sixth, we built a Markov chain model for each bike station. The models were then used to simulate 

the BSS to determine the optimal station-specific initial number of bikes for a typical day to ensure 

that the probability of the station becoming empty or full is minimal, hence minimizing the 

rebalancing cost.  

Seventh, we proposed a new generation of BSSs in which we assume some of the bike stations can 

be portable. This approach takes advantage of both types of BSS: dock and dock-less. The 
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proposed portable stations can function as either individual stations (standalone) or as an extension 

of existing bike stations. This concept was proposed to overcome the constraints of most current 

rebalancing algorithms in the following ways: (1) the locations of the docking stations are no 

longer fixed (2) the capacity (Q) of each station will become Q + X, where X represents the size 

of the portable station (3) the (un)loading time of bikes during repositioning operations will be 

zero, thus minimizing labor costs (4) there will be no time required for the portable stations to find 

parking, as they can be linked to the existing stations. The goal of this research effort was to 

develop a simulation-based portable stations model as a proof-of-concept. 

Eighth, we developed different bike travel time prediction models using machine learning 

techniques. The main contribution of this work is finding the best predictors to explain bike travel 

time variability. The techniques used in this work do not require any assumptions about the data. 

In terms of the report layout, following the introduction, we will discuss each of the eight 

contributions separately. Each contribution will be discussed in depth, including related work, 

methodology, and results. Finally, the summary findings and conclusions of the work will be 

presented.
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 Smartphone Transportation Mode Recognition 

Using a Hierarchical Machine Learning Classifier and Pooled 

Features from Time and Frequency Domains 

 Introduction 

The application of smartphones to data collection has recently attracted researchers’ attention. 

Apps have been developed and effectively used to collect data from smartphones in many sectors. 

In transportation, researchers can track smartphones and obtain information such as speed, 

acceleration, and the rotation vector from the GPS, accelerometer, and gyroscope sensors 

embodied in smartphones (Susi, Renaudin, & Lachapelle, 2013). These data can then be used to 

recognize the user’s transportation mode, which has several applications, as shown in Table 1-1. 

Table 1-1. Transportation mode detection applications (Elhenawy, Jahangiri, & Rakha, 

2016). 

Application Description 

Transportation 

Planning 

Instead of using traditional approaches such as questionnaires, travel diaries, 

and telephone interviews (Leon Stenneth, Ouri Wolfson, Philip S. Yu, & Bo 

Xu, 2011b; X. Yu et al., 2012), the transportation mode information can be 

automatically obtained through mobile phone sensors. 

Safety Knowing the transportation mode used would help in developing safety 

applications. For example, violation prediction models have been studied 

for passenger cars and bicycles (Jahangiri, Rakha, & Dingus, 2015). 

Environment Physical activities, health, and calories burned, and carbon footprint 

associated with each mode can be obtained when the transportation mode is 

known (S. Reddy et al., 2010). 

Information 

Provision 

Traveler information can be provided based on the transportation mode 

(Manzoni, Maniloff, Kloeckl, & Ratti, 2010; Stenneth et al., 2011b).  

In this study, we investigated the possibility of improving the overall accuracy of transportation 

mode detection by proposing a new hierarchical framework classifier and by looking for a new 

features set. This chapter makes two major contributions to existing work in this realm. First, it 

proposes a two-layer hierarchical framework in which the first layer contains one multi-classifier 

using a dataset of the five transportation modes. The second layer consists of 10 binary classifiers, 

each of which is specialized in only one pair of modes and uses a features subset that discriminates 

between this pair. Second, new frequency domain features were extracted and pooled with the time 

domain features that have been traditionally used. 

Following the introduction, this chapter is organized into six sections. First, the approaches, 

features, and machine learning techniques of previous studies are reviewed. Next, the dataset and 

the extracted features are described. Third, background is presented on the machine learning 

techniques applied in this study. Next, the proposed framework is presented. In the fifth section, 
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details are provided on the data analysis used to detect different transportation modes. Finally, the 

chapter concludes with a summary of new insights and recommendations for future transportation 

mode recognition research. 

 Related Work 

Researchers have developed several approaches to discriminate between transportation modes 

effectively (Kwapisz, Weiss, & Moore, 2011; Leon Stenneth, Ouri Wolfson, Philip S Yu, & Bo 

Xu, 2011a; Susi et al., 2013). Machine learning techniques have been used extensively to build 

detection models and have shown high accuracy in determining transportation modes. Supervised 

learning methods such as the following have been employed:  

 K-Nearest Neighbor (KNN) (Jahangiri & Rakha, 2015) 

 Support Vector Machines (SVMs) (Bolbol, Cheng, Tsapakis, & Haworth, 2012; Nham, 

Siangliulue, & Yeung, 2008; Nick, Coersmeier, Geldmacher, & Goetze, 2010; S. Reddy et 

al., 2010; Zhang, Qiang, & Yang, 2013; Zheng, Liu, Wang, & Xie, 2008) 

 Decision Trees (Manzoni et al., 2010; S. Reddy et al., 2010; Stenneth et al., 2011b; 

Widhalm, Nitsche, & Brandie, 2012; X. Yu et al., 2012; Zheng et al., 2008)  

 RFs (Jahangiri & Rakha, 2015) 

Several factors affect the accuracy of detecting transportation modes, such as the monitoring 

period (positive association), number of modes (negative association), data sources, motorized 

classes, and sensor positioning (see more details in (Elhenawy et al., 2016; Jahangiri & Rakha, 

2015)). However, one of the more important factors that affects the accuracy of mode detection is 

the machine learning framework classifier.  

An additional important consideration is the domain of the extracted features. Extracted features 

from the time domain have been used widely in many studies (Biljecki, Ledoux, & Van Oosterom, 

2013; Jahangiri & Rakha, 2015; Nham et al., 2008; Nick et al., 2010; Sasank Reddy et al., 2010; 

Stenneth et al., 2011b) and have achieved a significant, high accuracy. 

The factors applied to mode detection affect the accuracy of models. Table 1-2 summarizes the 

obtained accuracies and factors for some of the aforementioned studies. Note that no direct 

comparison can be made between the studies listed in Table 1-2 because the factors considered 

and the datasets used varied from study to study. 
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Table 1-2. Summary of some past studies (Elhenawy et al., 2016). 

Accuracy 

(%) 

Features 

Domain 

Machine 

Learning 

Framework 

Monitoring 

Period 

No. of 

Modes 
Data Sources 

More than 

One 

Motorized 

Mode? 

Sensor Positioning Dataset Study 

97.31 Time Traditional 4 s 3 Accelerometer Yes No requirements Not mentioned 
(Nick et al., 

2010) 

93.88 Frequency Traditional 
5 s, 50% 

overlap 
6 Accelerometer Yes/No 

Participants were 

asked to keep their 

device in the pocket 

of their non-

dominant hip 

Collected from 4 

participants 

(Nham et 

al., 2008) 

93.60 
Time and 

frequency 
Traditional 1 s 5 

Accelerometer 

GPS 
No No requirements 

Collected from 16 

participants 

(S. Reddy 

et al., 2010) 

93.50 Time Traditional 30 s 6 
GPS, 

GISa maps 
Yes No requirements 

Collected from 6 

participants 

(Stenneth et 

al., 2011b) 

95.10 Time Traditional 1 s 5 

Accelerometer, 

gyroscope, 

rotation vector 

Yes No requirements 
Collected from 10 

participants 

(Jahangiri 

& Rakha, 

2015) 

91.60 Time Traditional Entire trip 11 
GPS, 

GIS maps 
Yes No requirements 

Two different datasets, 

one of which included 

1,000 participants 

(Biljecki et 

al., 2013) 

96.32 Time Hierarchical 1 s 5 

Accelerometer, 

gyroscope, 

rotation vector 

Yes No requirements 
Collected from 10 

participants 

(Elhenawy 

et al., 2016) 

a GIS: Geographic Information System 
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 Dataset 

1.3.1 Data Collection 

The dataset used is available at the Virginia Tech Transportation Institute (VTTI) and was 

collected by Jahangiri and Rakha (2015) using a smartphone application (Jahangiri & Rakha, 

2015). The application was provided to 10 travelers who work at VTTI to collect data for five 

different modes: driving a passenger car, bicycling, taking a bus, running, and walking. The data 

were collected from GPS, accelerometer, gyroscope, and rotation vector sensors and stored on the 

devices at the application’s highest possible frequency. Data collection was conducted on different 

workdays (Monday through Friday) and during working hours (8 a.m. to 6 p.m.). Several factors 

were considered for collecting realistic data that reflects natural behaviors. No specific requirement 

was applied in terms of sensor positioning. The data were collected on different road types with 

different speed limits in Blacksburg, Virginia, and some epochs may reflect traffic jam conditions 

occurring in real-world conditions. Thirty minutes over the course of the study for each mode per 

person were considered sufficient for collection of enough data. 

For comparison purposes with previous studies using the same types of data (Elhenawy et al., 

2016; Jahangiri & Rakha, 2015), the extracted features were considered to have a meaningful 

relationship with different transportation modes. Furthermore, features that might be extracted 

from the absolute values of the rotation vector sensor were excluded. Additionally, in order to 

allow this framework to be implemented in cases where no GPS data were available, features that 

might be extracted from GPS data were also excluded. 

1.3.2 Time Domain Features 

From the time window 𝑡, time domain features were created by applying the measures in Table 

1-3. These measures were applied twice: first, using the measurements of the data array for the 𝑖𝑡ℎ 

feature from window 𝑡; and second, using the measurements of the derivative of the same data 

array for the 𝑖𝑡ℎ feature from window 𝑡. This resulted in 165 time domain features. 

Table 1-3. Measurements of time domain features. 

No. Measure No. Measure 

1 𝑚𝑒𝑎𝑛() 6 𝑟𝑎𝑛𝑔𝑒() 

2 𝑚𝑎𝑥() 7 𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒, 𝑖𝑞𝑟() 

3 𝑚𝑖𝑛() 8 𝑠𝑖𝑔𝑛𝐶ℎ𝑎𝑛𝑔𝑒() 

4 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒() 9 𝑒𝑛𝑒𝑟𝑔𝑦() 

5 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛() 10 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦() 

1.3.3 Frequency Domain Features 

Jahangiri and Rakha (2015) collected readings from the mobile sensors at a frequency of almost 

25 Hz. Because the output samples of the sensors were not synchronized, they implemented a 

linear interpolation to build continuous signals from the discrete samples. Consequently, they 
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sampled the constructed sensor signals at 100 Hz and divided the output of each sensor in each 

direction (𝑥, 𝑦, and 𝑧) into non-overlapping windows of 1-s width. Finally, the features used for 

mode recognition were extracted from each window. These features were mainly traditional 

statistics, such as mean, minimum, and maximum. The use of these features achieved a good 

accuracy in mode recognition. 

However, some information loss can be expected due to the usage of the summary statistics. 

Summary statistics consists of some descriptive statistics analysis for variability, center tendency, 

and distribution, such as mean, range, and variance. Summary statistics occasionally fail to detect 

the correlations, extract optimal information, and define probabilities (Fedor-Freybergh & 

Mikulecký, 2005; Tan, 2006). Since each window is considered as a signal in the time domain, we 

can improve the mode recognition accuracy by transforming this signal into the frequency domain 

using the short-time Fourier transform. After transforming the time domain signal to the frequency 

domain and neglecting the phase information, we visually inspected the resultant spectrum and 

found that most of the information was provided by the first 20 components. Therefore, in this 

study, we used the magnitude of the first 20 components as the new frequency independent 

features. Transforming time domain into frequency domain not only adds new transferred features 

from an original space (i.e., time) to a new space (i.e., frequency), but also imposes more control 

on the loss of information. This process added another 180 features extracted from the frequency 

domain to the dataset (i.e., 345 features pooled in total).  

 Methods 

This section describes the feature selection algorithm and the machine learning classifiers used in 

the proposed hierarchical framework.  

1.4.1 K-Nearest Neighbor (KNN) 

KNN is a common algorithm in supervised learning that classifies the data points based on the K 

nearest points. K is a user parameter that can be determined using different techniques. The test 

observation (i.e., 𝑦𝑗
𝑡𝑒𝑠𝑡) is classified by taking the majority vote of the classes of the K nearest 

points (i.e., 𝑦𝑗
𝑡𝑟𝑎𝑖𝑛), as shown in        (1-1) 

(Friedman, Baskett, & Shustek, 1974). 

𝒚
𝒋
𝒕𝒆𝒔𝒕 =

𝟏

𝑲
∑ 𝒚

𝒋
𝒕𝒓𝒂𝒊𝒏

𝑿𝒋
𝒕𝒓𝒂𝒊𝒏∈𝑵𝑲

        (1-1) 

where, 𝑦𝑗
𝑡𝑒𝑠𝑡 is the class of the testing data; 𝑦𝑗

𝑡𝑟𝑎𝑖𝑛 is the class of the training data; 𝑋𝑗
𝑡𝑟𝑎𝑖𝑛

 is the 

testing data; and 𝐾 is the number of classes. 

1.4.2 Classification and Regression Tree (CART) 

The CART algorithm was introduced in the early 1980s by Olshen, and Stone (Olshen & Stone, 

1984). This algorithm is a type of decision tree where each branch represents a binary variable. At 

each split, the CART algorithm trains the tree using a greedy algorithm. Different splits are tested, 

and the split with the lowest cost is chosen. After many splits, each branch will end up in a single 

output variable that is used to make a single prediction. The CART algorithm will stop splitting 
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when reaching a certain criterion. The two most common stopping criteria are setting a minimum 

count of the training instances assigned to each leaf and choosing a pruning level that produces the 

highest accuracy. 

1.4.3 Support Vector Machines (SVMs) 

The SVM algorithm is a supervised learning technique that is used to classify the data by 

maximizing the gap between classes. The SVM algorithm attempts to find the hyperplane (i.e., 

splitter) that gives the largest minimum distance to the training data as given in Equation   

     (1-2). The SVM tries to find the weight (𝑤) that produces 

the largest margin around the hyperplane (see       

 (1-2)), while satisfying the two constraints (see       

 (1-3) and        (1-4); (Hsu & Lin, 2002). 

𝐦𝐢𝐧
𝒘,𝒃,𝝃

(
𝟏

𝟐
𝒘𝑻𝒘 + 𝑪∑ 𝝃𝒏

𝑵
𝒏=𝟏 )        (1-2) 

subject to:  

𝒚𝒏(𝒘𝑻𝝓(𝒙𝒏) + 𝒃) ≥ 𝟏 − 𝝃𝒏 , 𝒏 = 𝟏,… ,𝑵        (1-3) 

𝝃𝒏 ≥ 𝟎 , 𝒏 = 𝟏,… ,𝑵        (1-4) 

where, 

𝑤  Parameters to define the decision boundary between classes 

𝐶  Penalty parameter 

𝜉𝑛  Error parameter to denote margin violation 

𝑏  Intercept associated with the hyperplanes 

𝜙(𝑥𝑛)  Function to transform data from X space into some Z space 

𝑦𝑛  Target value for 𝑛𝑡ℎ observation 

1.4.4 Random Forest (RF) 

Breiman proposed RF as a new classification and regression technique in supervised learning 

(Breiman, 2001). The RF method randomly constructs a collection of decision trees in which each 

tree chooses a subset of features to grow, and the results are then obtained based on the majority 

votes from all trees. The number of decision trees and the selected features for each tree are user-

defined parameters. The reason for choosing only a subset of features for each tree is to prevent 

the trees from being correlated. RF was applied in this study to select the best subset of features to 

be used in classification since the RF technique offers several advantages. For example, it runs 

efficiently on large datasets and many input features without the need to create extra dummy 

variables, and it ranks each feature’s individual contribution in the model (Breiman, 2001; Loh, 

2011). 

 Proposed Framework 

As many features could be used to discriminate between modes, we applied feature selection to 
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choose the subset of features with the highest importance in discriminating between modes. The 

subset of selected features, which was used in the classifiers, depends on the classified modes. 

This means that the subset of features selected to discriminate between all modes will be different 

from the subset of features selected to discriminate between only two modes. In this study, RF was 

used to select the best 100-feature subset for each classifying step. Selected features were scaled 

so that the feature values were normalized to be within the range of [−1, 1]. 

Figure 1-1 shows the importance of features in different ranks for all the modes combined and for 

different pairs of modes. The least important feature is ranked 0, and the highest is ranked 2. In 

Figure 1-1, it can be seen that the important feature of one pair may be different from other pairs 

and that its rank within pairs may also vary. 

 

Figure 1-1. Importance of features for different pairs of modes. 

This study proposes a new approach to detect transportation mode. Two layers are applied as a 

hierarchical framework. The first layer consists of only one multiclass classifier to discriminate 

between the five modes, and the second layer consists of a pool of 10 binary classifiers, which are 

used to classify only two modes. The first layer is trained using the 100 features to return the two 

most likely modes. The second layer is trained using a different 100 features, specialized to 

differentiate between only two modes, to return one mode out of the most two likely modes 

resulting from the first layer. Bayes’ rule (i.e., 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×

 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) is used in this framework to combine the output of the two layers. The mode 

that has the largest posterior probability is chosen, given that the first layer probability is the prior 

probability and the second layer probability is the likelihood. 

  Data Analysis and Results 

This section discusses the results of the machine learning techniques used in this study that were 

developed in MATLAB. 
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1.6.1  K-Nearest Neighbors Algorithm (KNN) 

In this study, KNN was used to identify the mode from the five transportation modes in the first 

layer and the two modes in the second layer. The optimal K was chosen after testing different 

numbers of K versus the overall classification accuracy. To select the best model at each value of 

K, a 10-fold cross-validation was performed, and the average highest accuracy among the 10 folds 

was chosen. As shown in Figure 1-2, using the pooled features in the hierarchical framework 

achieved a higher classification accuracy than only using the time domain features in the same 

framework. However, using the time domain features in the proposed hierarchical framework 

outperformed traditional KNN classification for pooled features. The optimal K was found to be 

7, with the highest accuracy of 95.49%. 

 

Figure 1-2. Classification accuracy for KNN in different cases at different neighbors. 

1.6.2 Classification and Regression Tree (CART) 

Ten folds for the cross-validation process were applied for each pruning level, ranging from 2 to 

20, and the average was taken as a comparison value with other pruning levels. Figure 1-3 provides 

a comparison between time domain features, frequency domain features, and pooled features under 

different pruning levels. The figure shows that using pooled features (compared to the same 

applied approach) produces the highest accuracy of 93.52% at six pruning levels when applying 

the proposed framework among all other cases. Figure 1-3 also shows that the classification 

accuracy of using only frequency domain features (compared to the same applied approach) is 

lower than using time domain features. 
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Figure 1-3. Classification accuracy for CART in different cases at different pruning levels. 

1.6.3 Support Vector Machine (SVM) 

SVM was applied in the proposed framework using time domain, frequency domain, and pooled 

features. A 10-fold cross-validation was applied to develop a single model. The results show that 

using pooled features improved the average overall classification accuracy from 96.10% to 

97.00%. The overall accuracy for using only the frequency domain features was the lowest at 

93.92%. Table 1-4 presents the overall classification accuracy for the 10-fold testing applying the 

proposed SVM framework.  

Table 1-4. Overall classification accuracy for the SVM using time domain, frequency 

domain, and pooled features. 

Fold Time domain features (%) Frequency domain features (%) Pooled features (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

96.04 

96.32 

95.88 

96.10 

95.98 

96.02 

96.38 

95.71 

96.32 

93.78 

93.65 

92.90 

93.04 

94.01 

94.79 

93.62 

94.57 

94.52 

97.12 

97.31 

96.88 

97.32 

96.76 

96.81 

96.98 

96.93 

97.01 
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Fold Time domain features (%) Frequency domain features (%) Pooled features (%) 

10 96.25 94.28 96.91 

Average 96.10 93.92 97.00 

 

The confusion matrix applying SVM in the proposed framework using pooled features is given in 

Table 1-5. The precision for run mode was the highest. The precision for bus mode was the lowest. 

However, the recall was the lowest for run mode and highest for bike mode. 

Table 1-5. Confusion matrix for SVM using pooled features. 
 

Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d

 

Bike 97.13 0.52 1.17 0.40 0.58 97.33 

Car 0.66 93.57 0.16 0.13 3.06 95.88 

Walk 0.92 0.08 93.59 0.92 0.29 97.68 

Run 0.37 0.05 0.93 92.82 0.20 98.36 

Bus 0.92 2.42 0.40 0.32 93.11 95.81 

 Recall 97.13 93.57 93.59 92.82 93.11  

1.6.4 Random Forest (RF) 

The RF was run with different numbers of trees to investigate the impact of the number of trees 

on the classification accuracy. A number of trees ranging from 200 to 400 was chosen, as the 

highest benefit was expected to be gained in this range according to previous studies (see more 

details in (Elhenawy et al., 2016; Jahangiri & Rakha, 2015). Applying RF in the proposed 

framework using pooled features resulted in the highest classification accuracy of 96.24% at 200 

trees, as illustrated in Figure 1-4. Figure 1-4 also illustrates that applying RF using a traditional 

approach to classify the modes but also using pooled features produced higher accuracy than the 

RF in the proposed framework using only the time domain features in classification. 
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Figure 1-4. Classification accuracy for RF in different cases at different number of trees. 

A comparison between time domain, frequency domain, and pooled features was carried out using 

the RF method in the proposed framework, as shown in Table 1-6. The results demonstrate that 

using the pooled features improved the overall classification accuracy from 95.61% to 96.24%. 

Table 1-6. Overall classification accuracy for RF using time domain, frequency domain, 

and pooled features. 

Fold Time domain features (%) Frequency domain features (%) Pooled features (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

95.95 

95.73 

95.61 

95.37 

95.51 

95.56 

95.67 

95.78 

95.49 

95.47 

94.15 

94.34 

93.91 

94.02 

93.85 

94.09 

93.82 

93.64 

94.18 

93.78 

96.35 

96.59 

96.07 

96.22 

96.24 

96.30 

96.23 

96.13 

96.39 

95.88 

Average 95.61 93.98 96.24 

 

Table 1-7 shows the confusion matrix for the RF proposed framework using pooled features. The 

run mode had the highest precision and the bus mode had the lowest precision.   
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Table 1-7. Confusion matrix for RF using pooled features. 

 
Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d

 

Bike 94.63 0.40 2.59 0.05 0.94 95.96 

Car 0.97 92.54 0.13 0.00 2.78 95.96 

Walk 1.87 0.10 91.74 0.25 0.70 96.92 

Run 0.75 0.05 1.47 90.39 0.57 96.96 

Bus 1.78 2.43 0.13 0.00 91.67 95.48 

 Recall 94.63 92.54 91.74 90.39 91.67 

 

1.6.5 Heterogeneous Framework RF-SVM 

A heterogeneous framework was performed in which the RF classifier was used in the first layer 

to classify all modes and a binary SVM classifier was applied in the second layer. The overall 

classification accuracy was improved from 96.32% to 97.02%  by using pooled features compared 

to only using time domain features, as presented in Table 1-8. 

Table 1-8. Overall classification accuracy for RF-SVM using time domain, frequency 

domain, and pooled features. 

Fold Time domain features (%) Frequency domain features (%) Pooled features (%) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

96.51 

96.38 

96.52 

96.26 

96.44 

96.10 

96.12 

96.16 

96.33 

96.36 

94.26 

94.74 

94.78 

94.83 

93.71 

95.17 

95.30 

94.86 

94.49 

94.86 

96.96 

96.91 

96.86 

96.83 

96.97 

96.66 

97.36 

97.11 

97.39 

97.16 

Average 96.32 94.70 97.02 

 

Table 1-9 and Table 1-10 provide the confusion matrix for applying RF-SVM in the proposed 

framework using time domain features and the pooled features, respectively. 
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Table 1-9. Confusion matrix for RF-SVM using time domain features. 

 Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d

 

Bike 97.83 0.75 1.32 0.72 2.02 95.39 

Car 0.44 94.74 0.15 0.05 3.84 95.51 

Walk 1.03 0.10 97.61 0.98 0.15 97.80 

Run 0.00 0.00 0.20 97.63 0.05 99.74 

Bus 0.69 4.41 0.73 0.62 93.93 93.50 

 Recall 97.83 94.74 97.61 97.63 93.93  

Table 1-10. Confusion matrix for RF-SVM using pooled features. 

 Actual  

Bike Car Walk Run Bus Precision 

P
re

d
ic

te
d

 

Bike 96.12 0.34 1.17 0.06 0.71 97.79 

Car 0.69 96.81 0.16 0.01 2.85 96.27 

Walk 1.22 0.10 97.27 0.36 0.44 97.82 

Run 0.65 0.05 1.18 99.54 0.48 97.55 

Bus 1.32 2.70 0.22 0.04 95.52 95.67 

 Recall 96.12 96.81 97.27 99.54 95.52  

   Conclusions and Recommendations for Future Work 

This study proposes a two-layer hierarchical framework classifier to distinguish between five 

transportation modes using new extracted frequency domain features pooled with traditionally 

used time domain features. We investigated the possibility of improving the classification accuracy 

using pooled features in the proposed framework by applying several techniques: KNN, CART, 

SVM, RF, and RF-SVM. The results show that using pooled features in the proposed framework 

increased the classification accuracy for all the applied classifiers. For the same data, the highest 

reported accuracy was 95.10% using the traditional approach for detection, whereas the proposed 

approach in this study achieved an accuracy of 97.02%. This implies that (a) pooling new features 

to be selected as classifying features increases the classification accuracy regardless of the applied 

approach and algorithm, and (b) applying the proposed hierarchal framework further increases the 

classification accuracy. The proposed hierarchical framework outperformed the traditional 

approach of applying only a single layer of classifiers. 

Although using pooled features increased accuracy, using the new extracted features alone (i.e., 

frequency domain) resulted in a lower accuracy than only using time domain features. Transferring 
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time domain into a new space (i.e., frequency domain) and using the magnitude of the first 20 

components enhanced the control on the information loss. This means that combining different 

features together in a big pool and then choosing the best subset returns better results than using 

one domain of features alone. Finally, the heterogeneous classifier, using RF in the first layer and 

SVM in the second layer, was found to produce the best overall performance. 

As a future recommendation, it is important to use a further deep analysis, such as Canonical 

Correlation Analysis, to correlate between the features in order to obtain better coordinated results. 

Furthermore, future work should investigate the sensitivity of the results to the monitoring period 

and the potential use of GPS data. 
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 Novel Supervised Clustering Algorithm for 

Transportation System Applications 

 Introduction 

With the growth of new technologies, smart cities and urban areas are adapting advanced devices 

to control and monitor transportation networks and thus provide better service to the public and 

private sectors. These devices collect data through many sensors in the city’s infrastructure. 

Agencies and researchers exploring the massive amounts of collected data often find it challenging 

to draw meaningful conclusions due the sheer size of the datasets. One way to deal with such data 

is to use clustering approaches.  

In the transportation field, operating agencies (such as departments of transportation) have been 

collecting data to improve the transportation network’s efficiency and provide a better service for 

all transportation modes. Clustering the travel times or speeds of transportation modes could help 

operating agencies to better manage the transportation network. In particular, the collected data 

could be reduced to find the cluster centroids (i.e., the means of the clusters) that represent the 

entire data with respect to a time event such as time of day, day of month, and month of the year. 

This could assist operating agencies in answering several questions related to traffic operations, 

such as, “Can we discriminate between recurrent congestion and outliers?” and “Can we identify 

how many time periods we need to plan for in terms of resource and congestion management?” 

Clustering is an unsupervised learning technique that identifies the underlying structure of 

unlabeled data. The goal of clustering is to identify intrinsic groupings in an unlabeled dataset. 

Meaningful clustering depends on the clustering criterion used by the clustering algorithm. 

Accordingly, it is crucial to find the best criterion so that the clustering results will suit the needs 

of researchers and agencies. 

Clustering algorithms are used in many disciplines, such as computer vision to segment images 

(Arbelaez, Maire, Fowlkes, & Malik, 2011), marketing to find similar customer behaviors 

(Roberts, 1995), the insurance industry to identify fraud (Ngai, Hu, Wong, Chen, & Sun, 2011; 

Thiprungsri & Vasarhelyi, 2011), and in transportation to identify similar patterns in various 

modes of transport (Calafate, Soler, Cano, & Manzoni, 2015; Elhenawy, Chen, & Rakha, 2014; 

Weijermars & van Berkum, 2005). Clustering helps develop a deep understanding of similarity in 

data patterns. For example, traffic engineers can use clustering algorithms to identify similar traffic 

patterns on a highway during the day, week, or month, and then make use of the clustered patterns 

in the management of the system. Clustering has also been used to analyze BSS data (Froehlich, 

Neumann, & Oliver, 2009b; Vogel, Greiser, & Mattfeld, 2011a). Some researchers have used a 

statistical model to predict bike availability at each station, while others have used clustering 

algorithms, such as traditional and non-traditional clustering (Côme Etienne & Oukhellou Latifa, 

2014). Traditional clustering approaches, such as the k-median, DBSCAN, and fuzzy algorithms 

are good tools for clustering data, but give narrow results, as clusters are based on only one factor 

(i.e., distance or similarity). These clustering algorithms perform unsupervised clustering that 

divides the observational points into clusters based on an objective function without considering 
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natural labels in the dataset, such as the time of events (i.e., month of year, day of week, or time 

of day).  

Recently, supervised clustering (non-traditional) approaches have been widely embraced as 

powerful tools that can take advantage of other attributes (labels) in the dataset (Bar-Hillel, Hertz, 

Shental, & Weinshall, 2003; Eick, Zeidat, & Zhao, 2004; Sinkkonen, Kaski, & Nikkilä, 2002). 

Unlike traditional clustering techniques, the supervised technique clusters labeled data. Supervised 

algorithms use data labels to represent natural data groupings using the minimum possible number 

of clusters. Only the labels are used as an objective function, and distance and similarity are 

ignored (Eick et al., 2004; Spinelli, 2017). 

In this chapter, we propose a new supervised clustering algorithm based on the CA game theory 

algorithm (Gale & Shapley, 1962) to simultaneously maximize the reciprocal of the within-cluster 

sum of distances (similarity) and the cluster purity. The proposed algorithm was used to answer 

several transportation-related research questions, such as which days or months exhibit similar 

patterns. 

To evaluate the proposed algorithm, it was tested using the aforementioned the San Francisco Bay 

Area BSS dataset, which consists of bicycle count data. We then studied how bike patterns changed 

within each cluster, and addressed when and where the system would be imbalanced. 

 Problem Statement 

Operating agencies and transportation researchers have devoted significant attention to clustering 

approaches with the goal of clustering large datasets that contain traffic patterns (i.e., travel times 

or speeds) in transportation networks (Calafate et al., 2015; Elhenawy et al., 2014; Elhenawy & 

Rakha, 2015; Weijermars & van Berkum, 2005). Various classical approaches, such as k-means, 

Ward’s hierarchical clustering algorithms, and density-based clustering, have been adopted to 

accomplish this. The purpose of using these clustering approaches is to (1) cluster traffic patterns 

with respect to a time event so that operators can have a temporal plan for operations planning 

purposes, and (2) discriminate between recurrent congestion and outliers. However, the 

aforementioned studies used classical clustering approaches that do not take advantage of natural 

time event labels (e.g., time of day, day of week, etc.). As for unsupervised clustering algorithms, 

they implicitly assume that clustering the data points based on similarity or distance leads to the 

ground truth of the clustering, which is not necessarily true. These algorithms cannot consider both 

similarity/distance and other domain knowledge information in the objective function. 

Consequently, clustering solutions do not help operators map the clustering solution to the network 

demand with regard to time events (Demiryurek, Pan, Banaei-Kashani, & Shahabi, 2009; 

Elhenawy & Rakha, 2017a).  

In this research, we present a supervised clustering algorithm that attempts to find similar months, 

days, or hours within a day that have similar traffic patterns. We sacrifice the exact centroids of 

traffic patterns for similar time events. The proposed algorithm is scalable (polynomial order), fast, 

and ready for practitioners’ use. It makes no assumptions about the dataset and requires only one 

parameter—the number of clusters—which can be found using the consensus clustering (CC) 
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technique (Section 3.8). It compromises between distance and purity in identifying clusters within 

the data. 

 Related Work 

Clustering algorithms can be categorized into three main approaches: unsupervised (i.e., 

traditional), supervised, and semi-supervised. Unsupervised clustering algorithms assume the data 

are unlabeled (i.e., the relationship is unknown between the data points) and thus try to cluster 

them according to similarity or distance (D. Xu & Tian, 2015). They implicitly assume that 

clustering the data points by distance or similarity leads to the ground truth of the clustering. The 

supervised clustering approach deals with labeled data (the relationship is known). There are a 

variety of supervised clustering algorithms. Some of these algorithms attempt to cluster data 

according to the labels (i.e., purity) and number of clusters (Eick et al., 2004). Another algorithm 

uses the labels to learn the best similarity measure that produces the desirable clustering solution 

(Finley & Joachims, 2005). The semi-supervised clustering algorithms assume that part of the data 

is labeled and the rest is not. The known labels can be used to form constraints between pairs of 

data points in the form of must-link and cannot-link (Basu, Banerjee, & Mooney, 2002; Basu, 

Bilenko, & Mooney, 2003) (this is not covered in this chapter, as it is very different from the work 

conducted here). 

Two examples of unsupervised clustering algorithms are the well-known k-means and hierarchical 

clustering algorithms (Hartigan & Wong, 1979; Johnson, 1967). The k-means simply partitions 

the data points into clusters, minimizing the distortion of each cluster (Hartigan & Wong, 1979). 

The value of the model order (𝑘) is set by the user based on personal knowledge or is chosen to 

maximize some criteria, such as the clustering stability. At each iteration, the k-means algorithm 

assigns all the observation points to the clusters and updates the centroid of each cluster. 

Eventually, the k-means algorithm converges when the centroids stop moving. 

The hierarchical clustering algorithm is a tree-based structure. It does not require the modeler to 

specify 𝑘 apriori. Moreover, the dendrogram can be utilized to select the optimum number of 

clusters (Johnson, 1967). At every level of the tree-based structure, similar clusters are merged 

into one cluster. The key to this clustering algorithm are the criteria determining when and which 

two clusters can be merged. Different approaches are used, such as single linkage and complete 

linkage. The only difference between this algorithm and the k-means is the use of a similarity 

measure between clusters besides data points, but both use only similarity or the distance measure. 

More advanced unsupervised clustering algorithms have been proposed, such as kernel k-means 

(Schölkopf, Smola, & Müller, 1998), kernel self-organizing maps (MacDonald & Fyfe, 2000), and 

kernel fuzzy c-means (Z.-d. Wu, Xie, & Yu, 2003). These algorithms attempt to cluster the data 

points by transforming them into a higher dimensional feature space and then carrying out the 

original clustering algorithm, which is based on the similarity or distance without considering other 

domain knowledge information. 

Supervised clustering algorithms go a step further and endeavor to improve the unsupervised 

clustering algorithms by incorporating purity (i.e., labels) in the objective function (Eick et al., 

2004; Spinelli, 2017). Purity means using labeled data to identify clusters that have a high 
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probability density with respect to a single class. Eick et al. proposed four different supervised 

clustering algorithms with the same objective function containing a linear combination of impurity 

and number of clusters (Eick et al., 2004). The aim is to minimize impurity and the number of 

clusters. However, these algorithms do not consider the similarity or distance measure. Spinellis 

proposed a supervised clustering algorithm called Box Clustering that clusters data points into 

specific convex polygons with a  fixed cluster impurity (Spinelli, 2017). Similar to Eick et al.’s 

work, similarity was not incorporated in the objective function. Another approach to supervised 

clustering algorithms was given by Awasthi and Zadeh. They assumed there is access for a teacher 

that can help improve the purity of the clusters (Awasthi & Zadeh, 2010). Yet this approach 

assumes that the teacher knows the ground truth of the data, which is not the case in many datasets 

(i.e., assumes two datasets: training and test). 

Recently, supervised clustering algorithms have been enhanced greatly by using a multi-objective 

approach (Chen et al., 2015; Forestier, Gançarski, & Wemmert, 2010; Handl & Knowles, 2007; 

Law, Topchy, & Jain, 2004; Marcu, 2005). This approach aims to optimize several clustering 

criteria, such as similarity or compactness of the clusters and connectivity of the clusters. The goal 

is to compromise between these objective functions and produce a trade-off solution. This has led 

these algorithms to be widely introduced in data mining as a powerful way to effectively classify 

labeled datasets. Law et al. proposed a multi-objective approach in a two-step process (Law et al., 

2004). In the first step, the authors used different clustering algorithms with different goals, and in 

the second step they integrated the output into a single partition. The labels of the datasets were 

only used for evaluating the clustering results, not in the objective function. Handi and Knowles 

proposed a multi-objective evolutionary algorithm, maximizing the compactness and connectivity 

of the clusters simultaneously (Handl & Knowles, 2007). This approach (i.e., the evolution 

optimization algorithm) gives many possible solutions (so called population approach) at each 

iteration, and thus the authors used a Pareto-based approach to select the non-dominated solutions 

that were created by the proposed algorithm. 

None of the previous approaches used both purity and similarity in the objective function. Only a 

few supervised clustering algorithms had both purity (i.e., background information) and distance 

or similarity in the objective function, and these suffer from complexity and having many 

assumptions and parameters, making them hard to interpret [24, 25]. For instance, Marcu used the 

Dirichlet process prior to using a Bayesian approach to incorporate both similarity and purity 

(Marcu, 2005). This approach is considered a generative model, meaning it estimates the joint 

probability distribution of the data between the observed data and the corresponding labels. This 

algorithm suffers from several drawbacks: (1) it is complex—one has to define the distribution of 

the data (which is usually unknown) and also has to use the Markov chain Monte Carlo-based 

(MCMC) sampling to avoid intractability; (2) it cannot define a good distribution for the data due 

to its generative nature; and (3) it cannot deal with a large dataset, and thus scalability is an issue. 

Forestier et al. proposed a collaborative clustering algorithm that incorporates three components: 

cluster quality, class label, and link-based constraints (Forestier et al., 2010). This approach 

randomly selects a subset of the dataset as background knowledge, causing it to be less stable. It 

also requires an expert who can tell which subset of the dataset to use as background knowledge. 
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In this chapter, we propose a new supervised clustering algorithm with the ability to 

simultaneously increase both cluster purity and member similarity. The proposed algorithm is 

scalable, quick, and simple, considering only one parameter—the number of clusters. It 

compromises between distance and purity in identifying clusters within the data. It showed 

promising performance when applied to the BSS dataset. It clustered the bike availability with 

respect to a time event, giving operators more practical clustering results for operation planning 

purposes. 

 The College Admission (CA) Algorithm   

In 1962, Gale and Shapley proposed the deferred acceptance algorithm as a solution to the stable 

marriage problem, in which an equal number of men and women are matched such that no player 

has an incentive to leave his/her matched partner (Gale & Shapley, 1962). The stable marriage 

problem involves one-to-one matching. The CA problem is another version of the stable marriage 

problem, though in this case the algorithm matches many to one. In the CA problem, there are a 

number of colleges and applicants that need to be matched. Each college has a ranked list of 

students they prefer, and each student has a ranked list of colleges they prefer. The size of the 

ranked list of students depends on the capacity of the college. The best-qualified candidates are 

offered admission first, followed by the lesser-qualified candidates.  

This problem includes the uncertainty of the colleges not knowing which other colleges the 

students have applied to, and thus not knowing the ranked list of each student, or whether the 

student has been offered admission by other colleges. Consequently, the colleges are in a blind 

position with very little information, which prevents them from making the appropriate decision. 

This can result in an unbalanced situation in which some students are offered many admissions, 

while others are not offered any at all. Gale and Shapley presented a stable solution where each 

student would be accepted to the best possible college with regard to his or her list, and each 

college would have the best possible qualified student. 

The CA algorithm finds a stable matching solution through a series of iterations. At each iteration, 

the colleges offer admission to the best-qualified students, and the students have to reply back by 

either accepting the offer or not. At the end of the iteration, some students have an admission and 

others do not. Colleges then update their list accordingly in the next iteration and offer admission 

to students who did not receive an offer in the previous iterations, regardless of whether they have 

an admission or not. The students’ lists do not change, but students can change their decision at 

each iteration if they are offered admission to a better college. The algorithm continues iterating 

until it reaches a stable matching solution. 

 The Proposed Algorithm 

Knowing some similarities in the dataset is a great advantage to clustering algorithms. It can 

efficiently and effectively advance the outcome of the algorithm and create meaningful clusters. 

Accordingly, we developed a novel supervised clustering algorithm based on the CA algorithm 

(Gale & Shapley, 1962). The proposed algorithm takes advantage of the natural labeling of the 

data (i.e., day of week, time of day) and models the clustering problem as a cooperative game. In 
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this game, two disjointed sets of players join the game to identify a stable match. The first player’s 

set consists of the centroids (clusters), and the second player’s set consists of the data examples 

(data points). Each centroid orders the data points in its preference list based on the distance from 

the centroid to the data point. Alternatively, each data point orders the centroids in its preference 

list based on the purity. For example, a data point that has label ℎ will give preference to the 

centroid that has the proportion of members with label ℎ. In other words, a data point gives higher 

preference to centroids when the majority of its members have the same label as its own label. 

Through a series of iterations, the proposed algorithm tries to match between the clusters, which 

want to minimize distances, and data points, which want to maximize purity, until it converges. It 

should be noted that cluster purity is the number of objects of the largest class in this cluster divided 

by the cardinality of the cluster, as presented in (2-1). The similarity measure is computed using 

(2-2). The algorithm terminates when the stopping criteria of (2-3) are met.  

𝑝𝑢𝑟𝑖𝑡𝑦(𝑐𝑖)
𝑡 = max 

𝑚
(
𝑛𝑖

𝑚

𝑛𝑖
)                                                     (2-1) 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑖)
𝑡 = ∑ 1/𝑑(𝒙𝑗, 𝒄𝑖)𝑥𝑗∈𝑐𝑖

                                   (2-2) 

𝛼 |
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𝑡−1𝐾
𝑖=1

∑ 𝑝𝑢𝑟𝑖𝑡𝑦(𝑐𝑖)
𝑡−1𝐾

𝑖=1

| + 

(1 − α) |
∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑖)

𝑡𝐾
𝑖=1 −∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑖)

𝑡−1𝐾
𝑖=1

∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑐𝑖)
𝑡−1𝐾

𝑖=1

| < ε           (2-3) 

where 𝑡 is the iteration number, 𝑛𝑖 is the number of objects in cluster 𝑖 (cardinality of cluster 𝑖), 

𝑖 ∈ {1, … , 𝐾}, 𝑛𝑖
𝑚 is the number of the class (𝑚) in cluster 𝑖, 𝑚 ∈ {1,… ,𝑀}, 𝑑 is the distance 

between 𝒙𝑗  and 𝒄𝑖, 𝒄𝑖 is the centroid of cluster 𝑖, 𝑖 ∈ {1, … , 𝐾}, 𝑗 ∈ {1, … , 𝑁}, 𝑁 is the number of 

data points, 𝒙𝑗 is the data vector 𝑗, α is a weighting factor (0.5 in our case), and ε is the stopping 

criteria threshold (0.0005 in our case). 

One advantage of the proposed algorithm is that it is not necessary to write the entire objective 

function of the algorithm. Thus, we remove the normalization problem. However, to stop the 

algorithm we normalize the purity difference by simply dividing by the previous purity and do the 

same with the similarity. 

The following is a description of the proposed algorithm assuming the model order 𝐾 is known: 

1. Randomly choose 𝐾 points as the initial centroids 𝒄𝑖, 𝑖 ∈ {1, … , 𝐾}. 

2. Form 𝐾 clusters by assigning all points to the closest centroid using 𝐿1 norm distance 

where 𝒙𝑗 is assigned to the centroid that satisfies min
𝒄𝑖

‖𝒙𝑗 − 𝒄𝑖‖1
. 

3. Recompute the centroid of each cluster by computing the median. The median is computed 

in each single dimension. 

4. Find the cardinality of each cluster. 

5. Compute the within-clusters class distribution matrix P. 
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6. 𝑃 =
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7. Each centroid 𝒄𝑖 creates its preference list of points 𝒙𝑗  ∀ 𝑗 ∈ {1,… ,𝑁} based on 

‖𝒙𝑗 − 𝒄𝑖‖1
= ∑ ‖𝑥𝑑𝑗 − 𝑐𝑑𝑖‖

𝐷
𝑑=1 , where D is the dimension of the data vector 𝒙𝑗. 

8. Each point creates its preference list based on the P matrix. For example a point from class 

𝑚 will create its preference list based on column m of the P matrix. 

9. Find the best match using the CA algorithm. 

10. Recompute the centroids and the P matrix based on the outcome of CA. 

11. Evaluate the stopping criteria using Eq. 3. 

12. While the stopping criteria are not satisfied, repeat steps 7–12. 

To illustrate this algorithm, let us assume we have N data points and want to group them into three 

clusters as shown in Figure 2-1. The data points’ labels are known. These labels could be any 

observed labels, such as the day of the week (M = 7). Moreover, we assume that the true number 

of clusters is three. The question we want to answer is how to partition the N data points such that 

similar data points in terms of distance and true labels are grouped together. By effectively 

partitioning the N data points, we can answer questions such as which days of the week have 

similar bike availability across the network. 

 

Figure 2-1. CA based clustering. 

In the first step, the proposed algorithm first randomly chooses three points as centroids for the 

three clusters. Then, it partitions the data points based on distance to get an estimate of the 

cardinality of each cluster and the P matrix. After that, each data point builds its preference list 

and each centroid builds its preference list, as shown in Figure 2-1. 

In the second step, the proposed algorithm, through a series of iterations, will try to find matches 

between clusters and data points and provide a stable match using the CA algorithm. At the end of 

this step, all points should be matched with one of the three clusters. 

After successfully matching the point with clusters, the centroid and P matrix of the three clusters 
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is recalculated. The algorithm repeats the entire process of building new preference lists, matching, 

and calculating new centroids and the P matrix. The algorithm stops when there is no significant 

improvement in the purity and similarity. 

 Datasets 

We used docking station data collected from August 2013 to August 2015 in the San Francisco 

Bay area. The docking station data included station ID, number of bikes available, number of docks 

available, and time of recording. The time data included year, month, day of month, day of week, 

hour, and minute at which the docking station data were recorded. As the station data were 

documented every minute for 70 stations in San Francisco over 2 years, it was necessary to reduce 

the size of the dataset by sampling station data once at every quarter-hour instead of once at every 

1 minute and obtaining the exact values without any smoothing process. This was done to reduce 

the complexity of the data and take a global view of bike availability in the entire network every 

15 minutes, with the goal of finding the similarity between these views and clustering them based 

on this similarity and recorded time. Similarity refers to bike availability in all stations, while 

recorded time refers to day of week and hour of day. We discarded other time attributes such as 

year, day of month, and minute in the analysis as they might not have a significant impact on bike 

availability.  

During the data processing phase, we found that numerous stations had recently been added to the 

network and others had been terminated, making it necessary to clean the dataset by eliminating 

any entries missing docking station data. This reduced the number of entries from approximately 

70,000 to 48,000. Each entry included the availability of bikes at the 70 stations with the associated 

time (day of week and hour of day). The availability of bikes represents the coordination measure 

for each entry, which is used in the k-median method to determine the entry closeness measure. 

This resulted in each entry constituting 70 dimensions (70 stations). 

 Clustering Results and Discussion 

In this section, we present the results of the aforementioned proposed algorithm using BSS station 

status dataset. We first demonstrate the technique used to select the model order, and then we show 

the results for each dataset with respect to month of year, day of week, and time of day. 

2.7.1 Model Order Selection—Consensus Clustering (CC) 

Finding clustering for similar days of the week or similar hours of the day is not straightforward, 

as we do not know the natural grouping for day of week or hour of day (i.e., number of clusters). 

In cluster analysis, determining the number of clusters is called model order selection. In this 

research effort, we used the aforementioned model order selection technique, CC, to determine the 

number of clusters (Monti, Tamayo, Mesirov, & Golub, 2003). This method looks for the model 

order that yields the most stable clustering solution. By stable clustering we mean that, given the 

model order, nearly the same paired data points are grouped together each time the CC algorithm 

is run using different initial centroids (i.e., the centroids the algorithm begins with) (Șenbabaoğlu, 

Michailidis, & Li, 2014). The CC method begins by assuming that the number of clusters is K, and 

then the dataset is clustered 𝐵 times (using different initial centroids). A consensus matrix (𝐶𝑀) 
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which is an 𝑁 × 𝑁 matrix (N is the number of the data points), is built for this model order K. This 

matrix identifies the number of times each two data points are grouped in the same cluster divided 

by 𝐵. Then the algorithm increases K by one and redoes the clustering and the consensus matrix 

for the new model order. The algorithm continues doing this until it has scanned the whole range 

of model orders required. At this point, the best model order is chosen visually by drawing the 

cumulative distribution function (CDF) of the CM at each model order against the consensus index 

𝑐_𝑖𝑛𝑑𝑒𝑥 ∈ [0,1] (2-5). The CDF for a particular 𝐶𝑀 is defined over the range [0, 1] as follows: 

𝐶𝐷𝐹(𝑐_𝑖𝑛𝑑𝑒𝑥) =  
∑ 1{𝐶𝑀(𝑖,𝑗)≤𝑐_𝑖𝑛𝑑𝑒𝑥}𝑖<𝑗

𝑁(𝑁−1)/2
                                  (2-5) 

where 1{…} denotes the indicator function, 𝐶𝑀(𝑖, 𝑗) denotes entry (i, j) of the consensus matrix 

𝐶𝑀, and 𝑁 is the number of rows (and columns) of 𝐶𝑀.  

The outcome of the CDF is that for the correct model order, the elements of the 𝐶𝑀 will only have 

zeros and ones. So we estimate the CDF for different model orders and choose the cleanest CM 

with the flatter CDF. In other words, every CDF curve represents a different model order (number 

of clusters), and the flatter the curve, the more stable the model order. To illustrate, in Figure 2-2 

shows an example with regard to the time-of-day label. As the figure shows, the most stable model 

order for time of day was determined to be 𝐾 =  2. Consequently, we analyzed the data in more 

detail for 𝐾 = 2, with results presented in the following section. Similarly, the optimal number of 

clusters with regard to the day-of-week label is 𝐾 =  3. 

 

Figure 2-2. CDF against consensus index value for each cluster – time of day using BSS 

station status data. 

 Results 

First, we clustered the bike station data using the day-of-week label, and the optimal number of 

clusters found using the CC method was 𝐾 = 3. The results of the three clusters are presented in 

Figure 2-3, which shows the probability of each day being in one of the three clusters. The three 

clusters are dominated by specific days: (1) Saturdays and Sundays, (2) Mondays and Fridays, and 

(3) finally Tuesday, Wednesday, and Thursday. This pattern differs from previous research 
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(Kaltenbrunner, Meza, Grivolla, Codina, & Banchs, 2010) that showed bike patterns grouped into 

two clusters (weekend and weekdays). Our research shows that the weekdays can be split into 

groups: (a) Mondays and Fridays, and (b) Tuesdays, Wednesdays, and Thursdays. This appears to 

be logical, as the beginning and the end of the week are different from the rest of the weekdays. 

 

Figure 2-3. The probability of the day of week being in one of the three clusters (K = 3). 

Each cluster is associated with a pattern for the availability of bikes at each station. The patterns 

of the ratio of the available bikes to the station capacity for the three clusters are provided in Figure 

2-4. 

Three observations can be made from Figure 2-4. First, the three patterns of the three clusters 

generally follow the pattern of the stations’ capacity, which could be the result of system operators’ 

rebalancing efforts. Second, the patterns of the three clusters show fluctuations in the bike 

activities; none of the days of the week has the highest activity for the entire network, which 

depends on both spatial and temporal factors. Third, several stations appear more likely to be 

empty or full on either weekdays or weekends. The difference in demand between the three clusters 

appears clearly for some stations, but not others. For example, the bike activities for cluster 1 

(Tuesday, Wednesday, and Thursday) and cluster 3 (Saturday and Sunday) are similar for some 

stations in the network. That can be seen in stations 58 and 59 (San Francisco Caltrain 2–330 

Townsend and San Francisco Caltrain–Townside at 4th). When taking a closer look at the location 

of these two stations, we found that they are located close to the Caltrain station. Accordingly, the 

similarity between these two clusters can be linked to the train timetable. 
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Figure 2-4. The ratio of the available bikes to station capacity for the three clusters at 

station in the network. 

Second, we clustered the bike sharing data using the hour- of-the-day label to find the hours of the 

day that have similar patterns. Only the station data at the beginning of each hour were considered. 

The optimal number of clusters was found to be two (𝐾 = 2). The analysis of the data reveals that 

the two clusters are peak (cluster 2) and non-peak (cluster 1) hours, confirming previous research. 

The results of the clustering are shown in Figure 2-5 and Figure 2-6, which give the probability of 

an hour being in one of the two clusters and the pattern of each cluster. It can be concluded from 

Figure 2-6 that when the patterns of the two clusters are lined up, the bike activity in the peak and 

non-peak hours is the same. 

Generally, both clustering results for day of week and time of day are time homogeneous, making 

it possible for BSS operators to manage the bike stations and propose temporal and spatial plans. 

The clustering results give operators a general view of the status of stations and clarify where the 

imbalances would occur with respect to time of day and day of week, leading to better monitoring 

of the system as a whole. 

 

Figure 2-5. Probability of hour being in one of the two clusters (K = 2). 
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Figure 2-6. Available bikes of the two clusters for each station in the network. 

 Conclusion  

The chapter describes the development of a useful tool for agencies and researchers to cluster 

similar transportation patterns with respect to time-based events. A new supervised clustering 

algorithm was proposed to benefit from the background knowledge and similarity of the BSS 

dataset. Unlike other similar supervised clustering algorithms, the proposed algorithm is scalable 

given that it involves low computational times. It takes advantage of the natural labeling of the 

data (i.e., day of week, time of day) and models the clustering problem as a cooperative game and 

simultaneously clusters and identifies the stable number of clusters. 

The algorithm was tested on BSS station status data from the San Francisco Bay area. Two types 

of background knowledge were used: day of week and hour of day. The proposed algorithm 

produced more meaningful clusters considering the background knowledge. The resultant clusters 

appear to be more time homogenous, giving the potential for operators to better manage the 

transportation modes per time event. Specifically, the algorithm provides insight for the clusters 

that operators can use to anticipate and plan for imbalances in the BSS. 

We have shown that the proposed algorithm outperforms the classical k-means clustering 

algorithm, which did not reveal any obvious grouping of similar days.  
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 Quantifying the Effect of Various Features on the 

Modeling of Bike Counts in a Bike-Sharing System  

 Introduction 

A growing population, with more people living in cities, has led to increased pollution, noise, 

congestion, and greenhouse gas emissions. One possible approach to mitigating these problems is 

encouraging the use of BSSs. BSSs are an important part of urban mobility in many cities and are 

sustainable, environmentally-friendly systems. As urban density and its related problems increase, 

it is likely that more BSSs will exist in the future. The relatively low capital and operational cost, 

ease of installation, existence of pedal assistance for people who are physically unable to pedal for 

long distances or on difficult terrain, and better tracking of bikes are some of the properties that 

strengthen this prediction (DeMaio, 2009). 

One of the first BSSs in the U.S. came into existence in 1994 with a small bike sharing program 

in Portland, which had only 60 bicycles available for public use. At present, although the BSS 

experience is still relatively limited, many cities, such as San Francisco and New York, have 

launched programs to serve users using different payment structures and conditions. One of the 

largest information technology (IT)-based systems, based in Montreal, Canada, is BIXI (BIcycle-

TaXI), which employs the concept of using a bicycle like a taxi. In fact, this system, with its use 

of advanced technologies for implementation and management, illustrates a shift into the fourth 

generation of BSSs (Susan, Stacey, & Hua, 2010). 

In 2013, San Francisco launched the Bay Area Bike Share BSS, a membership-based system 

providing 24 hours a day, 7 days a week self-service access to short-term rental bicycles. A detailed 

description of the BSS is provided in the introduction to this report.  

This chapter proposes an approach to constructing a bike count model for the San Francisco Bay 

Area BSS. The count of bikes in each station, each of which has a finite number of docks, 

fluctuates. Thus, a repositioning (or redistribution) operation must be performed periodically to 

meet this fluctuation. Coordinating such a large operation is complicated, time consuming, 

polluting and expensive (DeMaio, 2009). Predicting the available number of bikes in each station 

over time is one of the key tasks to making this operation more efficient. Moreover, this chapter 

attempts to quantify the effect of several variables on the bike count model for each station in the 

Bay Area BSS network, including the significance of the 70 stations, the month-of-the-year, the 

day-of-the-week, time-of-day, and various weather conditions.  

In terms of the chapter layout, following the introduction, this chapter is organized into five 

sections. First, related work, focused on the proposed model in previous studies, is discussed. Next, 

a background of count model regression, RF, and BIC are presented. Third, the different datasets 

used in this study are described. In the fourth section, the details of the data analysis used to 

construct a predictive bike count model are provided. Finally, the chapter concludes with a 

summary of new insights and recommendations for future bike count model research. 

  Related Work 
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The modeling of bike sharing data using various features, including time, weather, built-

environment, transportation infrastructure, etc., is an area of significant research interest. In 

general, the main goals of data modeling are to boost the redistribution operation (Contardo et al., 

2012; Raviv, Tzur, & Forma, 2013; Schuijbroek, Hampshire, & van Hoeve, 2013), to gain new 

insights into and correlations between bike demand and other factors (David William Daddio, 

2012; Rixey, 2013; Rudloff & Lackner, 2013a; X. Wang, Lindsey, Schoner, & Harrison, 2015), 

and to support policy makers and mangers in making optimized decisions (David William Daddio, 

2012; Vogel, Greiser, & Mattfeld, 2011b). Generally, the main approach to modeling and 

predicting bike sharing data is regression count modeling. A recent study modeled the demand for 

bikes and return docks using data from the BSS Citybike Wien in Vienna, Austria. The influence 

of weather (temperature and precipitation) and full/empty neighboring stations on demand was 

studied using different count models (Poisson, negative binomial [NB] and hurdle). The authors 

found that although the hurdle model worked best in modeling the demand of bike sharing stations, 

these models were complex and might not be ideal for optimization procedures. They also found 

that NB models outperformed Poisson models because of the dispersion issue in the data, which 

will be discussed later in this chapter (Rudloff & Lackner, 2013a). However, an early study used 

count series to predict the stations’ usage based on Poisson mixtures, providing insight into the 

relationship between station neighborhood type and mobility patterns (Come Etienne & Oukhellou 

Latifa, 2014a). 

In a study by Wang et al., log-linear and NB regression models were used to estimate total station 

activity counts. The factors they used mostly had economic; built-environment; transportation 

infrastructural; and social aspects, such as neighborhood sociodemographic (i.e., age and race), 

proximity to the central business district, proximity to water, accessibility to trails, distance to 

other bike share stations, and measures of economic activity. All the variables were found to be 

significant. Log-likelihood was used as a measure of the goodness of fit of the Poisson and NB 

models (X. Wang et al., 2015). Linear least regression with data from the on-the-ground Capital 

Bikeshare system was implemented in another study to explain station demand based on the 

demographic, socioeconomic, and built-environment characteristics (Daddio, 2012). 

Several studies used methods other than count models to model bike sharing data. A multivariate 

linear regression analysis was used in another study to study station-level BSS ridership. That 

study investigated the correlation between BSS ridership and the following factors: population 

density; retail job density; bike, walk, and transit commuters; median income; education; presence 

of bikeways; nonwhite population (negative association); days of precipitation (negative 

association); and proximity to a network of other BSS stations. The authors found that the 

demographic, built environment, and access to a comprehensive network of stations were critical 

factors in supporting ridership (Rixey, 2013). 

A study by Gallop et al. used continuous and year-round hourly bicycle counts and weather data 

to model bicycle traffic in Vancouver, Canada. The study used seasonal autoregressive integrated 

moving average analysis to account for the complex serial correlation patterns in the error terms 

and tested the model against actual bicycle traffic counts. The study demonstrated that the weather 

had a significant and important impact on bike usage. The authors found that the weather data 
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(namely temperature, rain, humidity, and clearness) were generally significant; temperature and 

rain, specifically, had an important effect (Gallop, Tse, & Zhao, 2011). 

It is also worth noting that some studies used methods other than regression to either model BSS 

data or to develop new insights and understandings of BSSs (see (Contardo et al., 2012; Vogel et 

al., 2011b). For example, a mathematical formulation for the dynamic public bike-sharing 

balancing problem was introduced using two different models: arc-flow formulation and Dantzig-

Wolfe decomposition formulation. The demand was computed by considering the station either a 

pickup or delivery point, with a real-time and length period between two stations (Contardo et al., 

2012). 

  Methods 

3.3.1 Count Models 

In the model used for this study, the outcomes 𝑦𝑖 (bike count in our prediction model) are discrete 

non-negative integers representing the number of available bikes at a specified time at each station 

in the network. Count models based on generalized linear models (GLMs) were applied. 

Specifically, two models were used to predict the bike count (1 − 𝑑𝑒𝑚𝑎𝑛𝑑) in the network: the 

Poisson regression model (PRM), and the NB regression model (NBRM). Following are brief 

descriptions of these two models; more details can be found in the literature (Cameron & Trivedi, 

2013; Long & Freese, 2006). 

3.3.2 Poisson Regression Model (PRM) 

In the PRM, each observation 𝑖 is allowed to have a different value of mean 𝜇, where 𝜇𝑖 is 

estimated from recorded characteristics. The PRM assumes that 𝑦 has a Poisson distribution, and 

its logarithm (i.e., link function) can be modeled by a linear combination of parameters. However, 

the Poisson distribution assumes that the mean and variance are equal  𝑉𝑎𝑟(𝑦) = 𝜇. If this 

condition is not met, there is an over-dispersion in the data, implying that more complex models 

need to be applied. The probability density for the PRM is 

𝑓(𝑦, 𝜇) =
exp(−𝜇)𝜇𝑦

𝑦!
         (3-1) 

The GLM of the mean 𝜇 on a vector predictors 𝑥𝑖 is formulated as 

log(𝜇𝑖) = 𝛽𝑖𝑥𝑖
𝑇         (3-2) 

where 𝛽𝑖 are the estimated regression coefficients and log (𝜇𝑖) is the natural logarithm. 

3.3.3 Negative Binomial Regression Model (NBRM) 

The NBRM is considered a generalization of PRM. It is based on a Poisson-gamma mixture 

distribution that assumes that the count 𝑦𝑖 is dependent on two parameters: the mean 𝜇𝑖 and some 

dispersion parameter 𝜃. It basically loosens the assumption in PRM that the variance is equal to 

the mean and adjusts the variance independently. In fact, the Poisson distribution is a special case 

of the NB distribution. The probability density for the NBRM is 
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𝑓(𝑦, 𝜇) =
Γ(𝑦+𝜃)

Γ(𝜃)𝑦!

𝜇𝑦𝜃𝜃

(𝜇+𝜃)𝑦+𝜃        (3-3) 

The GLM of the mean 𝜇 on a vector predictors 𝑥𝑖 is formulated as 

log(𝜇𝑖) = 𝛽𝑖𝑥𝑖
𝑇         (3-4) 

where 𝛽𝑖 are the estimated regression coefficients and log (𝜇𝑖) is the natural logarithm. 

3.3.4 PRM vs NBRM 

The Poisson distribution assumes that the mean and variance are the same. However, occasionally, 

the data shows that variance might be higher or lower than the mean. This situation is called over-

dispersion/under-dispersion and NBRM is able to accommodate it. The NB distribution has an 

additional parameter to the Poisson distribution, which adjusts the variance independently from 

the mean. In fact, the Poisson distribution is a special case of the NB distribution. Thus, the PRM 

and the NBRM have the same mean structure, but the NBRM has one parameter more than the 

PRM to regulate the variance independently from the mean. As Cameron and Trivedi explain,  

if the assumptions of the NBRM are correct, the expected rate for a given level of the 

independent variables will be the same in both models. However, the standard errors in the 

PRM will be biased downward, resulting in spuriously large z-values and spuriously small 

p-values (Cameron & Trivedi, 1986, 2013). 

3.3.5 Random Forest (RF) 

One of the characteristics of this type of dataset is that it is often very large. It is therefore crucial 

to implement machine learning to identify potential explanatory variables (Vogel et al., 2011b). 

Moreover, when a model contains a large number of predictors it becomes more complex and 

overfitting can occur. To avoid this, the RF, as introduced by Breiman in 2001 (Breiman, 2001), 

was applied. RF creates an ensemble of decision trees and randomly selects a subset of features to 

grow each tree. While the tree is being grown, the data are divided by employing a criterion in 

several steps or nodes. The correlation between any two trees and the strength of each individual 

tree in the forest affect, also known as the forest error rate in classifying each tree. Practically, the 

mean squared error of the responses is used for regression. 

The fact that in RF each tree is constructed using a different bootstrap sample from the original 

data ensures that the RF extracts an unbiased estimate of the generalization error. This is called 

the OOB (out-of-bag) error estimate, which can be used for model selection and validation without 

the need of a separate test. The OOB was used to validate the significance of the subsequent 

inference of each parameter in this study. The RF technique offers several advantages. For 

example, it runs efficiently with a large amount of data and many input variables without the need 

to create extra dummy variables; it can handle highly nonlinear variables and categorical 

interactions; and it ranks each variable’s individual contributions in the model. However, RF also 

has a few limitations. For instance, the observations must be independent, which is assumed in our 

case. Moreover, model interpretation after averaging many tree models is generally more difficult 

than interpreting a single-tree model. However, this is not relevant to our model, as it was used 

only for ranking the predictors. For more details see (Breiman, 2001; Loh, 2011). 
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In this study, RF was used as a technique to rank the effect of the different parameters in the model. 

This rank was exploited as a systematic guide in the forward step-wise technique. Performing a 

direct stepwise regression for a BSS is difficult, as there are many predictors involved in the 

process, which is time consuming, expensive, and requires expensive statistical software (for 

example, see (David William Daddio, 2012)). Therefore, we employed the BIC (discussed in the 

next section) to choose the most accurate model while maintaining model simplicity. We started 

by modeling the most important parameter resulting from RF as the only explanatory variable (i.e., 

the regressor). Then, forward step-wise regression was applied and the log-likelihood was found 

and applied to determine the accumulated BIC. 

3.3.6 Bayesian Information Criterion (BIC) 

BIC was the criterion selected to compare between models following a forward step-wise 

regression guided by the results of RF. In general, the model with the lowest BIC is preferred. 

However, since there were 111 predictors, the result was a set of 111 models. Adding predictors 

may increase the log-likelihood, leading to overfitting, and log-likelihood does not take into 

account the number of predictors. BIC makes up for the number of predictors in the model by 

introducing a penalty term. Given that �̂� is the maximum likelihood, 𝑛 is number of observations, 

and 𝑘 is the number of predictors, BIC is defined as (Wit, Heuvel, & Romeijn, 2012). 

𝐵𝐼𝐶 = −2. ln �̂� + 𝑘. ln (𝑛)        (3-5) 

As shown in the equation, 𝑘. ln (𝑛) is the term to make up for the number of predictors in each 

model. 

  Dataset 

This study used anonymized bike trip data collected from August 2013 to August 2015 in the San 

Francisco Bay Area, as shown in Figure 3-1 (Hamner, 2016). This study used two datasets. The 

first dataset included station ID, number of bikes available, number of docks available, and time 

of recording. The time data included year, month, day-of-the-month, time-of-day, and minutes at 

which an incident was recorded. As an incident was documented every minute for 70 stations in 

San Francisco over 2 years, this dataset contains a large number of recorded incidents. This dataset 

was exposed to a change detection process to determine times when a change in bike count 

occurred in each station. From this dataset, as a result of pre-processing, the station ID, number of 

bikes available, month, day-of-the-week, and time-of-day were extracted for use as a feature. 

Subsequently, each station’s zip code was assigned and input to the set. A histogram of the bike 

counts is shown for all stations resulting from the change detection process (Figure 3-2). The 

histogram is considerably skewed to the right, which means that the mean, median, and mode are 

markedly different, indicating a dispersion in the counts. 
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Figure 3-1. Locations of the 70 stations covering five cities: San Francisco, Palo Alto, 

Mountain View, Redwood City, and San Jose (2016). 

 

Figure 3-2. Histogram of bike counts. 
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The second dataset contains different attributes: the date (in month/day/year format), zip code, and 

other variables describing the daily weather for each zip code over the 2-year period. Daily weather 

data at each zip code contains information about temperature, humidity, dew, sea level pressure, 

visibility, wind speed and degree, precipitation, cloud cover, and events for that day (i.e., rainy, 

foggy or sunny). The minimum, maximum, and mean of the first six attributes of the weather 

information are recorded in this dataset. This dataset was used to match the daily weather attributes 

with the first dataset utilizing the two mutual attributes between them: date and zip code. The 

matched weather data was concatenated with the first dataset. 

 Data Analysis and Results 

The following subsections present the methodology and the results of the data analysis. MATLAB 

was used in implementing the count regression models—Poisson and NB, RF, and BIC.  

 Problem Definition and Formulation 

We assumed there was no interaction between the 70 stations and thus, we used station dummies 

in modeling for two reasons: (1) the main goal of this chapter was to introduce an effective and 

fast, but also accurate and reasonable, approach to quantifying the effect of various features on 

bike counts at different stations. Investigating other variables, such as the relations between 

different stations (station neighbors), would have required a great deal of effort and may have 

added some distraction to the goal of the analysis. (2) It was suggested that one of the goals of the 

analysis was studying the possibility of pooling all of the variables in one model instead of dealing 

with 70 models for each station. This method could be reasonable and effective in cases of large 

networks and would not require high prediction accuracy at specific stations. 

As we assumed there was no interaction between the 70 stations, the log(μ) of the bike count in 

each station might be represented as parallel hyperplanes. In order to construct one model 

containing all the stations instead of a model for each station, 69 indicator variables were coded as 

the 70 stations in the network, which implies that Station 1 is the reference in the model intercept. 

Similarly, 11 indicators were coded for the 12 months with January as a reference, six indicators 

for the seven days of the week were coded with Sunday as a reference, and two indicators for the 

events in the day were coded with sunny as a reference. All of these indicators were pooled in one 

model. If there was no significant difference between two of the parameters (say for example 

𝛽1 and 𝛽2), this meant that the corresponding two parallel hyperplanes (Station 1 and Station 2) 

were very close to each other and the predicted log(μ) of the bike count was the same for the two 

stations to an acceptable level of accuracy. 

The first step in understanding the bike count’s behavior was to regress all the available predictors 

to generate a full model. To that end, the PRM and NBRM were applied. The next step was using 

RF to rank the predictors in the full model based on the OOB error. Forward step-wise regression 

was then used to fit several models that were constructed as a result of RF. Finally, BIC was used 

to select the best model, or, in other words, the best subset of predictors to construct this model. 

However, this subset of predictors still had to be evaluated to determine whether they were 

reasonable. To accomplish this, all the parameters were examined and it was determined which 
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were most acceptable. Different stations, month-of-the-year, day-of-the-week, and time-of-day 

were all determined to be reasonable parameters that might affect the model. From the weather 

information, mean temperature, mean humidity, mean visibility, mean wind speed, precipitation, 

and events were selected for further investigation. These parameters were selected based on 

subject-matter expertise, previous related studies (see for example (Gallop et al., 2011; Rudloff & 

Lackner, 2013a), and to avoid multicollinearity between two or more predictors. Once again, RF 

and forward step-wise regression were repeated and BIC was used to compare the built models. 

We chose the model with the best compromise between the minimum BIC value and the 

consideration of the effective parameters. 

 Count Regression Models 

As described earlier, two count models were used: Poisson and NB. To compare them, log-

likelihood was estimated to determine goodness of fit. The likelihood of a set of parameter values 

is equal to the probability of the observed outcomes given those parameter values (Johansen & 

Juselius, 1990). The following table shows the log-likelihood of Poisson and NB for the full model 

(Table 3-1). As NB was able to accommodate the over-dispersion/under-dispersion in the data, its 

log-likelihood was higher than Poisson’s. This meant that NB was better than Poisson at describing 

the available bikes in the network. As a result, the NBRM was selected for use in all following 

steps in the analysis. 

Table 3-1.  Log-likelihood of Poisson and NB models. 

 Poisson NB 

Log-likelihood -5.95E+06 -5.61E+06 

 Random Forest and Bayesian Information Criterion 

Both RF and BIC were applied twice in this study. RF was applied on all the available predictors, 

constructing 111 different models. Basically, RF was implemented to sort the predictors in 

descending order of their “importance.” MATLAB’s manual describes this RF measurement as  

an array containing a measure of importance for each predictor variable (feature). For any 

variable, the measure is the increase in prediction error if the values of that variable are 

permuted across the out-of-bag observations. This measure is computed for every tree, then 

averaged over the entire ensemble and divided by the standard deviation over the entire 

ensemble (2016).  

Importance was utilized as a guide in forward step-wise regression using the NBRM, and 

computing the log-likelihood following each addition. BIC was then computed from the log-

likelihood. 

The BIC results of this first process are presented as the orange line shown in the following figure 

(Figure 3-3). As the number of inserted predictors increased in the model, the BIC value decreased, 

indicating a better model. The BIC curve was used to select the most influential predictors resulting 

in the lowest BIC value. There was no specific rule for selecting those predictors, but rather it was 
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a trade-off between the best and most simple model. The elbow in the curve, which corresponds 

to 45 predictors, was chosen to achieve the best compromise. The selected subset contained 

features of 31 stations, 7 months, 5 days, time-of-day, and one weather variable (wind direction 

degree). Based on subject-matter expertise and knowledge gained from related studies, it was 

determined that this subset was largely unacceptable. For example, temperature, not included in 

the subset, was found to be significant in previous studies of modeling bike counts in (Rudloff & 

Lackner, 2013a). 

 

Figure 3-3. BIC before and after feature selection process. 

This first conclusion led to a re-evaluation of the predictors by closely examining the weather 

information variables to determine any correlation among them. Again, based on expertise and 

related studies, mean temperature, mean humidity, mean visibility, mean wind speed, precipitation, 

and events were selected as predictors. RF and BIC were again applied after the predictor selection 

process. The importance of the predictors resulting from the RF is shown in the following figure 

(Figure 3-4[a]) and the result of the BIC following forward step-wise regression is represented by 

the blue line in the previous figure (Figure 3-3). As the previous figure illustrates, selecting these 

features improves BIC values remarkably. This is mainly because RF obtained a different order of 

predictors after neglecting any features that might correlate with other parameters. For example, 

maximum and minimum temperatures were correlated with the mean temperature. Maximum and 

minimum temperatures were neglected and the mean temperature remained. 
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Figure 3-4. Importance of the predictors (a) after feature selection (b) of the first proposed 

solution. 

The BIC curve after feature selection revealed that two elbows could be selected as two proposed 

solutions that might achieve the best compromise: the first using 11 predictors, the second using 

51 predictors. As the simplest explanation is preferable, the first solution was selected as the final 

model. The figure above (Figure 3-4[b]) shows the importance of these 11 predictors, which are 

clearly reasonable. Temperature and humidity turned out to be important features and have 

significant effects in predicting bike availability in the Bay Area Bike Share network. San 

Francisco is one of the most humid cities in the U.S., with an average humidity of nearly 74% 

("Most Humid Cities in USA - Current Results," 2016). Humidity has been proven to be a 

discomfort to people, particularly during physical activities like riding a bicycle. 

Although we chose the first solution, it is worth noting that if we had selected the second solution, 

another two weather variables (visibility and wind speed), some days of the week, and some 

months would be included in the 51 most important predictors. All of these predictors are also 

reasonable and important in predicting bike availability in the San Francisco network. 

The final model was constructed for the first solution, applying NBRM with a log-likelihood and 

BIC of -5.56E+06 and 1.12E+07 respectively. The following table shows the estimated parameter 

values for the NB Model of bike availability in the San Francisco network (Table 3-2). It also 
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shows that all the parameters are significant since the p-values are approximately equal to zero. 

Table 3-2.  Estimated parameter values for the NB model for bike availability in the 

network. 

 Estimate P-value 

Intercept 2.226865 < 0.0001 

Time-of-day -0.00050 < 0.0001 

Station 2 0.467929 < 0.0001 

Station 51 0.411846 < 0.0001 

Station 42 0.290969 < 0.0001 

Humidity 0.000516 < 0.0001 

Station 67 0.428846 < 0.0001 

Station 60 0.186177 < 0.0001 

Station 29 2.56E-01 < 0.0001 

Station 57 0.217112 < 0.0001 

Station 23 0.290833 < 0.0001 

Temperature -0.0013 < 0.0001 

 

  Conclusions and Recommendations for Future Work 

In this chapter, we described the development of a bike availability model for the San Francisco 

Bay Area Bike Share program. Since the demand of bikes in stations is still not well studied, this 

chapter introduced an effective and fast, but also accurate and reasonable, approach to quantifying 

the effect of various features on bike counts at different stations. The results revealed that the bike 

count changes with the month-of-the-year, day-of-the-week, time-of-day, and some weather 

variables. This model could also be used to improve the redistribution of bicycles, which is 

important for rebalancing the network over a period of time.  

NBRM and PRM were performed on the bike count data. NBRM was ultimately chosen, as it was 

found to best fit the count data. However, the significance measure in NBRM (i.e., p-value) 

resulting from the regression process was not always an adequate measure, especially when there 

were a large number of features and if there was a possible correlation. As a result, this study 

adopted a new method consisting of feature selection, RF to run the predictors, guided forward 

step-wise regression of these predictors, and BIC to compare between models. This method turned 

out to be an effective and reasonable approach to identify critical predictors of bike counts. 

The final results reveal interesting new insights. Firstly, mean humidity as a predictor for bike 

counts has not been investigated in previous studies. Results of this study demonstrate that 

humidity is a significant predictor in the Bay Area Bike Share program. Further, although 
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precipitation has been shown to be significant in many previous studies, the results of this study 

demonstrate that precipitation is not a significant predictor in San Francisco. Over the entire year, 

the most common forms of precipitation in San Francisco were light rain, moderate rain, and 

drizzle, none of which appeared to have a major effect on Bay Area Bike Share use. The contrast 

between this finding and that of previous studies indicates that particular weather information may 

have different significance depending on the studied geographic area. 

Secondly, eight indicator variables corresponding to eight stations and one variable serving as a 

reference in the intercept were selected as final predictors in the model. This implies that the bike 

count data for the remaining 61 indicator variables corresponding to 61 stations were not 

significantly different from the bike count data for the reference station. The variability in bike 

counts of these 61 stations would not be influential if the data were employed as predictors in the 

regression. Nonetheless, the eight stations were different from the reference station to an extent 

that might largely affect the prediction if not considered as predictors at all. This is because of 

these station locations. For example, one station is near the main train station in Palo Alto, which 

is the second busiest station in the Caltrain system; another is near Yerba Buena Center for the 

Arts in San Francisco; one is at Union Square, which is a busy public square in the center of San 

Jose; and one is at the San Antonio Caltrain station in Mountain View. 

Finally, time-of-day was found to be one of the most important predictors. This means that the 

bike count fluctuates over the course of the day (i.e., during peak and off-peak hours). 

The adopted approach needs to be further validated by applying it to other bike count data in 

different geographic areas. It is also important to investigate other variables, such as bikes coming 

from other stations and the relative location of each station. 
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 Identifying Optimum Bike Station Initial 

Conditions using Markov Chain Modeling 

 Introduction 

BSSs are being deployed in many cities because of their environmental, social, and health benefits. 

To maintain low rental costs, rebalancing costs must be kept minimal. In this chapter, we use BSS 

data collected from the aforementioned San Francisco Bay Area to build a Markov chain model for 

each bike station. The models are then used to simulate the BSS to determine the optimal station-

specific initial number of bikes for a typical day to ensure that the probability of the station 

becoming empty or full is minimal and hence minimizing the rebalancing cost.  

BSSs suffer from a central recurring imbalance problem, meaning many bike stations either 

become empty or full during their daily operation. We hypothesize that the cost of balancing the 

bike stations can be reduced by optimizing the number of bikes at each station at the start of the 

day, thus reducing the need for a dynamic balancing system (Lu, 2016; Raviv & Kolka, 2013; J. 

Schuijbroek, R. C. Hampshire, & W. J. van Hoeve, 2017). We formulate our hypothesis by 

modeling each station using a Markov chain.  

 Methods And Data 

This study uses the San Francisco Bay Area Bike Share (now Ford GoBike) docking station data 

collected from August 2013 to August 2015 in the San Francisco Bay Area (see Figure 3-1 in the 

previous chapter). The dataset is described in detail in Section 3.4 of this report.   

We used the discrete time-homogeneous Markov chain on a finite state space to model the 

system. We defined the state space as all the possible states a station could be in. Meaning, that if 

station s had 𝑁𝑠 docks then the number of states for that station would be 𝑁𝑠 + 1, where the 

“empty station” is counted as one possible state.  

A matrix 𝑋𝑠,𝑑,ℎ was constructed for each station, 𝑠 ∈ 𝑆, day of the week, 𝑑 ∈ 7, and hour of the 

day, ℎ ∈ 24, (i.e., a total of S×7×24 X matrices were constructed of size (Ns+1)×(Ns+1)). Using a 

specific X matrix, the transition frequency matrix was created by computing the elements 𝑓𝑖𝑗  , 

where 𝑖, 𝑗 ∈ {1, … ,𝑁𝑠 + 1}. The elements 𝑓𝑖𝑗 represent the number of times a transition occurred 

from state i to state j over a 1-minute interval at a specific station, for a specific day of the week 

and within a specific hour of the day. The transition probability matrix for a specific station, s, 

hour of the day, h, and day of the week, d, was then computed as 𝑝𝑖𝑗 = 𝑓𝑖𝑗 ∑ 𝑓𝑖𝑗
𝑁𝑠+1
𝑗=1⁄ . The 

calculated transition matrices above are the one-step transition matrices for a specific station, day 

of the week, and hour of the day. Each transition (i.e., the time tick) was conducted per minute, 

making the movement between states as smooth as possible throughout the hour.  

The probability distribution of the available bikes at a particular station at the end of the day is 

shown in (4-1). 

P(xend of the day = q|xstart of the day = m) =
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(P(xend of the first hour = q|xstart of the first hour = m)) ∗ ∏ Ρh
last hour of the day
h=2   (4-1) 

Here 𝛲ℎ is the 60-minute transition matrix obtained from simulating the corresponding one-step 

transition matrix.  

Equation (4.1) finds the probability distribution of the available bikes at the end of the day given 

that the station started the day with m bikes. We count all possible paths from m at the very first 

hour of the day to all possible values of m at the end of the day. We use the corresponding transition 

matrix to simulate the Markov chains in order to produce a probability distribution that describes 

the likelihood of a particular state at the end of the hour. This leads to the creation of a probability 

distribution of available bikes at the end of the first hour. After that, we can use this probability 

distribution as the initial state probabilities for the following hour and create the next probability 

distribution, which is the next 60-step transition matrix. This procedure is repeated until we reach 

our target hour and draw the final probability distribution as a function of each initial condition. 

When running the Markov chain, our objective function was to find the best initial conditions that 

maximize the probability of the station operating at a bike-to-capacity ratio (number of bikes 

relative to the capacity of the station) within the range 0.25 to 0.75 at the end of each hour, as 

shown in (4-2). 

𝑚𝑎𝑥𝑖  ∑ 𝑊ℎ ∑ 𝑃𝑖𝑗ℎ
𝑁𝑚𝑎𝑥
𝑗= 𝑁𝑚𝑖𝑛

24
ℎ=1                                                                                           (4-2) 

Where 𝑖 is the initial condition of station s, ℎ is the hour of the day (considered only the hours from 

6 a.m. to 8 p.m. in our case), 𝑊ℎ is the weight assigned to hour ℎ (assumed to be 1.0), 𝑗 is the 

expected state of the station at the end of the hour, 𝑁𝑚𝑖𝑛 and 𝑁𝑚𝑎𝑥 are the upper and lower desired 

bounds of the station status (in our case: 𝑁𝑚𝑖𝑛=0.25×(𝑁𝑠 + 1) and 𝑁𝑚𝑎𝑥=0.75×(Ns+1), 𝑁𝑠 is the 

capacity of station s, and 𝑃𝑖𝑗ℎ is the probability of having an 𝑖 initial state and a resulting 𝑗 state at 

the end of hour ℎ. 

 Findings 

We used the BSS data to build the Markov chain for each station and day of the week combination 

to investigate the daily imbalances and identify the optimal inventory level that minimizes the 

probability of a station reaching an empty or full state. When analyzing the results, we first looked 

at all 70 stations, considering different initial conditions to identify the stations that would benefit 

most from optimizing the initial station state. We grouped stations into three categories: (1) have 

an imbalance issue but with a small probability (≤ 10%) for 25% of the initial conditions, (2) have 

an imbalance issue with a medium probability (11–25%) for 25 to 45% of initial conditions, (3) 

have an imbalance issue with a large probability (> 25%) for > 45% of the initial conditions. In 

Table 4-1, we present the percentage for each category for each city separately, as a previous study 

showed that there were close to no trips between the five cities (Ashqar et al., 2017). 
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Table 4-1. Percentage of stations in categories 1 through 3 for all five cities. 

City 

Category 

(1) Imbalance 

probability of ≤10% for 

25% of initial 

conditions 

(2) Imbalance 

probability of 11–25% 

for 25 to 45% of initial 

conditions 

(3) Imbalance 

probability >25% for 

>45% of the initial 

conditions 

San Jose 43.75 12.50 43.75 

Redwood City 57.14 28.57 14.29 

Mountain View 14.29 57.14 28.57 

Palo Alto 80.00 20.00   0.00 

San Francisco   0.00 20.00 80.00 

 

As shown in Table 4-1, San Francisco has the highest percentage of category 3 stations, followed 

by San Jose. This demonstrates that San Francisco BSS stations experience high bike demands, 

and thus are more likely to have an imbalance problem during the day. Our proposed approach 

would be less effective for the San Francisco BSS and more effective for the other cities given that 

the daily evolution of states for San Francisco varies considerably.  

Our analysis shows that the optimal initial conditions vary from one day of the week to another 

for the same station, and thus we present the optimal initial conditions for each day of the week 

for only two selected stations, one in Mountain View and one in San Francisco. Note that we made 

two assumptions when choosing the optimal initial conditions: (1) the bikes are taken from an 

infinite pool, meaning we have no constraints on the available inventory (2) there is no interaction 

between stations. The optimal station state is assumed to occur when the bike-to-capacity ratio 

ranges between 0.25 and 0.75 over the entire day, thus minimizing the probability of reaching 

either an empty or full state. Table 4-2 presents the optimum three initial states for stations 26 and 

59 that result in the highest probability of maintaining a bike-to-capacity ratio ranging between 

0.25 and 0.75 for the entire day. As was demonstrated earlier, the results of Table 4-2 demonstrate 

that there is a lower probability of being able to maintain the San Francisco station in the optimum 

range over the entire day, as discussed earlier. 
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Table 4-2.  The optimal initial conditions for stations 26 and 59 (optimum number of initial 

bikes and probability of achieving the desired bike-to-capacity ratio). 

 

Station#26 

Mountain View 

Station#59 

San Francisco 

1st 2nd 3rd 1st 2nd 3rd 

Saturday 
6 

(0.74) 

5 

(0.74) 

7 

(0.74) 

7 

(0.65) 

8 

(0.63) 

9 

0.63 

Sunday 
6 

(0.74) 

5 

(0.74) 

4 

(0.73) 

7 

(0.62) 

8 

(0.62) 

9 

(0.62) 

Monday 
4 

(0.70) 

5 

(0.69) 

3 

(0.69) 

8 

(0.42) 

9 

(0.42) 

10 

(0.41) 

Tuesday 
4 

(0.71) 

3 

(0.70) 

5 

(0.70) 

7 

(0.42) 

8 

(0.41) 

9 

(0.41) 

Wednesday 
5 

(0.71) 

4 

(0.71) 

6 

(0.69) 

7 

(0.38) 

9 

(0.37) 

9 

(0.37) 

Thursday 
4 

(0.70) 

5 

(0.70) 

6 

(0.68) 

7 

(0.42) 

8 

(0.41) 

9 

(0.41) 

Friday 
5 

(0.71) 

4 

(0.70) 

6 

(0.69) 

7 

(0.42) 

8 

(0.41) 

10 

(0.41) 
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 Modeling Bike Availability in a Bike-Sharing 

System Using Machine Learning  
In this chapter, we provide a toolbox of prediction models that can be used for BSSs. Statistical 

and machine learning models were adapted and compared in terms of prediction accuracy and 

computational time using three different approaches as follows. 

 Introduction 

A growing population, with more people living in cities, has led to increased pollution, noise, 

congestion, and greenhouse gas emissions. One possible approach to mitigating these problems is 

encouraging the use of BSSs. BSSs are an important part of urban mobility in many cities and are 

sustainable and environmentally friendly. As urban density and its related problems increase, it is 

likely that more BSSs will exist in the future due to relatively low capital and operational costs, 

ease of installation, pedal assistance for people who are physically unable to pedal for long 

distances or on difficult terrain, and better tracking of bikes (DeMaio, 2009). 

A detailed description of BSSs implementation over time and the structure and history of the San 

Francisco Bay Area Bike Share program, from which the data used in this work was collected, is 

provided in the introduction to Chapter 3 of this report.  

This chapter proposes an approach to modeling the number of available bikes at a BSS using 

machine learning. Since the number of available bikes at a station, which has a finite number of 

docks, fluctuates, a repositioning (or redistribution) operation must be performed periodically. 

Coordinating such a large operation is complicated, time-consuming, polluting, and expensive 

(DeMaio, 2009). Predicting the number of available bikes in each station over time is one of the 

key tasks to making this operation more efficient. In this study, RF and least-squares boosting 

(LSBoost) algorithms were used to build univariate prediction models for available bikes at each 

Bay Area Bike Share station. However, to reduce the number of required prediction models for 

the entire BSS network, we also used partial least-squares regression (PLSR) as a multivariate 

regression algorithm. 

Following the introduction, this chapter is organized into five sections. Section 5.2 briefly 

discusses related work from the literature, focusing on the methods proposed in previous studies. 

Next, a background of the regression models used is presented in Section 5.3. In Section 5.4, the 

different datasets used in this study are described. The details of the data analysis used to construct 

predictive models of the number of available bikes are provided in Section 5.5. Finally, the chapter 

concludes with a summary of new insights and recommendations for future research on modeling 

the number of available bikes. 

 Related Work 

The modeling of bike sharing data is an area of significant research interest. Proposed models have 

relied on various features, including time, weather, the built environment, and transportation 

infrastructure. In general, the main goals of these models have been to boost the redistribution 

operation (Contardo et al., 2012; Raviv et al., 2013; Schuijbroek et al., 2013), to gain new insights 
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into and correlations between bike demand and other factors (David William Daddio, 2012; Rixey, 

2013; Rudloff & Lackner, 2013b; X. Wang et al., 2015), and to support policy makers and 

managers in making optimized decisions (David William Daddio, 2012; Vogel et al., 2011b). 

Froehlich, Neumann, and Oliver used four predictive models to predict the number of available 

bikes at each station: last value, historical mean, historical trend, and Bayesian network (Froehlich 

et al., 2009b). Two methods for time series analysis, autoregressive moving average (ARMA) and 

autoregressive integrated moving average (ARIMA), have also been used to predict the number of 

available bikes/docks for each bike station. Kaltenbrunner, Meza, Grivolla, Codina, and Banchs 

adopted ARMA (Kaltenbrunner et al., 2010); Yoon, Pinelli, and Calabrese proposed a modified 

ARIMA model considering spatial interaction and temporal factors (Yoon, Pinelli, & Calabrese, 

2012). However, Gallop, Tse, and Zhao  used continuous and year-round hourly bicycle counts 

and weather data to model bicycle traffic in Vancouver, Canada (Gallop et al., 2011). That study 

used seasonal autoregressive integrated moving average analysis to account for the complex serial 

correlation patterns in the error terms and tested the model against actual bicycle traffic counts. 

The results demonstrated that the weather had a significant and important impact on bike usage. 

The authors found that the weather data (temperature, rain, humidity, and clearness) were generally 

significant; temperature and rain, specifically, had an important effect. 

A multivariate linear regression analysis was used by Rixey  to study station-level BSS ridership 

(2013). That study investigated the correlation between BSS ridership and the following factors: 

population density; retail job density; bike, walk, and transit commuters; median income; 

education; presence of bikeways; nonwhite population (negative association); days of precipitation 

(negative association); and proximity to a network of other BSS stations. The author found that 

demographics, the built environment, and access to a comprehensive network of stations were 

critical factors in supporting ridership. 

This chapter makes two major contributions to the literature. First, the univariate response models 

that have been used previously to predict the number of available bikes at each station ignore the 

correlation between stations and might become hard to implement when applied to relatively large 

networks. Thus, this chapter investigates the use of multivariate response models to predict the 

number of available bikes in the network. Second, station neighbors, which are determined by a 

trip’s adjacency matrix, are considered as significant predictors in the regression models. 

 Methods 

In this section, we will briefly describe the three machine learning algorithms used in this chapter: 

RF, LSBoost, and PLSR. 

5.3.1 Random Forest (RF) 

Breiman proposed RF as a new classification and regression technique in supervised learning 

(Breiman, 2001). RF creates an ensemble of decision trees and randomly selects a subset of 

features to grow each tree. While the tree is being grown, the data are divided by employing a 

criterion in several steps or nodes. The correlation between any two trees and the strength of each 

individual tree in the forest affect the forest error rate in classifying each tree. Practically, the mean 
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squared error of the responses is used for regression. 

RF offers several advantages (Breiman, 2001; Loh, 2011). For example, there are very few 

assumptions attached to its theory; it is considered to be robust against overfitting; it runs 

efficiently and relatively quickly with a large amount of data and many input variables without the 

need to create extra dummy variables; it can handle highly nonlinear variables and categorical 

interactions; and it ranks each variable’s individual contributions in the model. However, RF also 

has a few limitations. For instance, the observations must be independent, which is assumed in our 

case. 

5.3.2 Least-Squares Boosting (LSBoost) 

LSBoost is a gradient boosting of regression trees that produces highly robust and interpretable 

procedures for regression. LSBoost was proposed by Friedman as a gradient-based boosting 

strategy (J. H. Friedman, 2001), using square loss 𝐿 (𝑦, 𝐹) =  (𝑦 −  𝐹)2/2, where 𝐹 is the actual 

training and 𝑦 is the current cumulative output 𝑦𝑖  =  𝛽0  + ∑ 𝛽𝑗ℎ𝑗
𝑖−1
𝑗=1  + 𝛽𝑖ℎ𝑖  =  𝑦𝑖−1 + 𝛽𝑖ℎ𝑖. The 

new added training �̂� is set to minimize the loss, in which the training error is computed as in 

(Barutçuoğlu & Alpaydın, 2003): 

𝐸 = ∑ [𝛽𝑖ℎ𝑖
𝑡 − �̂�𝑡]𝑁

𝑡=1        (5-1)

where �̂� is the current residual error and the combination coefficients 𝛽𝑖 are determined by solving 

𝜕𝐸/𝜕𝛽𝑖 = 0. 

In this chapter, RF and LSBoost were used as univariate regression techniques to model the number 

of available bikes in each station at any time 𝑡. RF and LSBoost are ensemble learning algorithms, 

which integrate multiple decision trees to produce robust models. However, the main difference 

between these two algorithms is the order in which each component tree is trained. Using 

randomness, RF trains each tree independently, whereas LSBoost trains one tree at a time and each 

new added tree is set to correct errors made by previously trained trees. The ensemble model is 

produced by synthesizing results from the individual trees. 

5.3.3 Partial Least-Squares Regression (PLSR) 

PLSR was recently developed as a multivariate regression algorithm (Geladi & Kowalski, 1986; 

Höskuldsson, 1988; H. Wold, 1982; S. Wold, Ruhe, Wold, & Dunn, 1984; S. Wold, Sjöström, & 

Eriksson, 2001). PLSR finds a linear regression model by projecting the predicted variables 𝑌 and 

the observable variables 𝑋 to a new space. The basic model in the PLSR method consists of a 

regression between two blocks (i.e. 𝑋 and 𝑌). Furthermore, this model contains outer relations for 

each of the 𝑋 and 𝑌 blocks, and an inner relation that links both blocks. PLSR has several 

advantages. For example, it is suitable when the matrix of predictors 𝑌 has more variables than 

observations, and when there is multicollinearity among observable variable 𝑋 values. Moreover, 

the PLSR method outperforms multiple linear regressions because implementing PLSR develops 

stable predictors. In this chapter, PLSR was used as multivariate regression to reduce the number 

of required prediction models for the number of available bikes at any time 𝑡 for the entire BSS 

network. 
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 Dataset 

This study used anonymized bike trip data collected from August 2013 to August 2015 in the San 

Francisco Bay Area (refer to Figure 3-1) (Hamner, 2016).  This study used two datasets. See 

Section 3.4 of this report for a detailed description of the first dataset.  

The second dataset contained different attributes: the date (in month/day/year format), zip code, 

and 22 other variables describing the daily weather for each zip code over the 2-year period. The 

number of available bikes at station 𝑖 at time 𝑡, the number of available bikes at its neighbors at 

the same time 𝑡, month of the year, day of the week, and time of day were all extracted from the 

two datasets as parameters that affect the model. Specifically, the neighbors of a station 𝑖 were 

defined based on the number of trips originated from station 𝑗, in which 𝑗 ≠  𝑖, and ended at station 

𝑖. In that sense, we generated the adjacency matrix of the BSS network and found the highest 10 

in-degree stations for station 𝑖, which were assigned as neighbors of station 𝑖. In addition, an 

unpublished work by the authors (Huthaifa I. Ashqar, Elhenawy, Ghanem, Almannaa, & Rakha, 

2016) investigated various weather data as predictors to determine the reasonable parameters that 

mainly affect the prediction models. From the weather information, mean temperature, mean 

humidity, mean visibility, mean wind speed, precipitation, and events in a day (i.e., rainy, foggy, 

or sunny) were all selected. These parameters were selected based on subject-matter expertise and 

previous related studies (Gallop et al., 2011; Rudloff & Lackner, 2013b), and they were found to 

be significant in predicting the number of available bikes at Bay Area Bike Share stations (Huthaifa 

I. Ashqar et al., 2016). 

 Data Analysis and Results 

5.5.1 Univariate Models 

RF and LSBoost algorithms were applied to create univariate models to predict the number of 

available bikes at each of the 70 stations of the Bay Area Bike Share network. The two algorithms 

were applied to investigate the effect of several variables on the prediction of the number of 

available bikes in each station 𝑖 in the network, including the available bikes at station 𝑖 at time 𝑡, 

the available bikes at its neighbors at the same time 𝑡, the month of the year, day of the week, time 

of day, and various selected weather conditions. The predictors’ vector for station 𝑖 at time 𝑡, 

denoted by 𝑋𝑡
𝑖, was used in the built models to predict the 𝑙𝑜𝑔 of the number of  available bikes at 

station 𝑖 at time 𝑡 and at a prediction horizon time, denoted by log(𝑦𝑡+∆
𝑖 ), where 𝑖 = 1, 2, … , 70. 

The effect of different prediction horizons, ∆ (range 15–120 minutes), on the performance of both 

algorithms was investigated by finding the MAE per station (i.e., bikes/station), which can be 

described as the prediction error. Moreover, as the number of generated trees by RF and LSBoost 

is an important parameter in implementing both algorithms, we investigated its effect by changing 

the number of generated trees from 20 trees to 180 trees with a 40-tree step. 

As shown in Figure 5-1 and Figure 5-2, the prediction errors of RF and LSBoost increase as the 

prediction horizon ∆ increases. The lowest prediction error for both algorithms occurred at a 15-

minute prediction horizon. Moreover, the prediction error of RF and LSBoost decreases as the 

number of trees increases until it reaches a point where increasing the number of trees will not 
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significantly improve the prediction accuracy. Figure 5-1 and Figure 5-2 also show that a model 

consisting of 140 trees yields a relatively sufficient accuracy. 

 

Figure 5-1. RF MAE at different prediction horizons and number of trees. 

Comparing the two algorithms, the models produced by RF generally have a smaller prediction 

error than those produced by LSBoost. LSBoost is a gradient-boosting algorithm, which usually 

requires various regularization techniques to avoid overfitting (Ganjisaffar, Caruana, & Lopes). 

As Figure 5-2 clearly shows, as the prediction horizon time increases, the prediction error increases 

(this is also clearly shown in Figure 5-4 in the next section). 

 

Figure 5-2. LSBoost MAE at different prediction horizons and number of trees. 

5.5.2 Multivariate Models 

PLSR was used as a multivariate regression to reduce the number of required prediction models 

for bike stations in the BSS network. When a BSS network has a relatively large number of 

stations, tracking all the specified models for each bike station becomes complex and time-

consuming. For that reason, we examined the adjacency matrix of the Bay Area BSS network and 

found that the network can be divided into five regions as shown in Figure 5-3. In fact, the bike 
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stations that resulted from the adjacency matrix in each region were found to share the same zip 

code. This means that the majority of bike trips occurred within the same region and very few trips 

went from one region to another. 

 

Figure 5-3. Adjacency matrix of the Bay Area Bike Share network. 

Using PLSR as a regression algorithm can build prediction models for multivariate response. 

Therefore, PLSR was applied to reduce the number of models to five, each of which is specified 

for one region (i.e., one zip code) to reflect the spatial correlation between stations. The input 

predictors’ vector is 𝑋𝑡
𝑖, which consists of the available bikes at the station 𝑖 at time 𝑡, the available 

bikes at its neighbors at the same time 𝑡, the month of the year, day of the week, time of day, and 

various selected weather conditions. The response’s vector is log (𝑌𝑡+∆
𝑖 ), where 𝑖 = 1, 2, 3, 4, 5, 

which is the log of the number of available bikes at all stations in each of the studied regions at a 

prediction horizon time ∆ (range 15–120 minutes). We found that the prediction errors for PLSR 

were higher than the RF and LSBoost prediction errors when ∆= 15 minutes, as shown in Figure 

5-4. Although the prediction errors resulting from PLSR were higher than the previous results, the 

resulting models from PLSR are sufficient and desirable for relatively large BSS networks. 

 

Figure 5-4. PLSR, RF, and LSBoost MAE at different prediction horizons. 
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 Conclusions and Recommendations for Future Work 

In this chapter, we modeled the number of available bikes at San Francisco Bay Area Bike Share 

stations using machine learning algorithms. The investigation applied two approaches: using 

univariate regression algorithms, RF and LSBoost, and using a multivariate regression algorithm, 

PLSR. The univariate models were used to model the available bikes at each station. RF with an 

MAE of 0.37 bikes/station outperformed LSBoost with an MAE of 0.58 bikes/station. On the other 

hand, the multivariate model, PLSR, was applied to model available bikes at the spatially 

correlated stations of each region obtained from the trips adjacency matrix. Results clearly show 

that the univariate models produced lower error predictions compared to the multivariate model, 

in which the MAE was approximately 0.6 bikes/station. However, the multivariate model’s results 

might be acceptable and reasonable when modeling the number of available bikes in BSS networks 

with a relatively large number of stations.  

Investigating BSS networks in terms of determined regions gives new insights to policy makers. 

The fact that stations in each region derived by the multivariate analysis share the same zip code 

implies that most of the trips were short distance, which may be influenced by the overtime fees 

applied when trips are longer than 30 minutes. The results also illustrate that station neighbors, 

prediction horizon time, and weather variables (e.g., temperature and humidity) were found to be 

significant in modeling the number of available bikes. Specifically, when the prediction horizon 

time increases, the prediction error increases, with the most effective prediction horizon being 15 

minutes. Determining prediction horizon is beneficial to policy makers and technicians to learn 

how to manage the BSS more responsively, and achieve better performance in prediction. Future 

work could model the number of available bikes by adding memory as a predictor to handle 

information related to the number of available bikes in the past. 
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 Dynamic Linear Models to Predict Bike 

Availability in a Bike Sharing System 

 Introduction 

With rapid worldwide population growth, large, dense cities are struggling with traffic congestion. 

Many people have migrated from rural to urban areas, creating highly crowded cities with limited 

resources. Traffic jams are one of the critical issues that urbanized areas suffer from. A number of 

potential solutions have been proposed to mitigate the negative impact of this phenomenon and 

improve private and public transportation. One cost-effective solution is a BSS, where residents 

and visitors to urban areas can ride from one bike station to another for a very low rental fee, 

making the system accessible to many people.  

The concept of BSSs started over five decades ago in Europe, and has since bloomed in 50 

countries, growing to more than 37,000 stations by 2000 (DeMaio, 2009). This growth testifies to 

the significant transportation benefits that can be obtained by implementing a BSS, which are 

further enhanced with the use of advanced technology. For example, bike riders can borrow a bike 

from any bike-sharing station using a smart card and then return it to a bike station near their 

destination. Many BSSs offer an app for bikers that provides necessary information, such as nearby 

bike stations, bike dock availability, and operation hours. More broadly, BSSs provide a 

sustainable transportation mode, especially with last-mile trips, and help to reduce congestion, 

emissions, and pollution. Some BSSs have successfully linked public transportation modes by 

filling the gaps between them, thus making it possible for residents and visitors of the city to access 

restricted traffic zones with a priority for pedestrians and cyclists over cars. 

The significant increase in the use of BSSs raises the issue of imbalance in the distribution of bikes, 

where some stations are at capacity and others are empty. This issue creates logistical challenges 

for BSS operators and may discourage bike riders, who could find it difficult to pick up or drop 

off a bike. To address the problem, recent research has been conducted on rebalancing the 

distribution of bikes at stations (Alvarez-Valdes et al., 2016; Espegren, Kristianslund, Andersson, 

& Fagerholt, 2016; Schuijbroek et al., 2013). There are three major ways to address the rebalancing 

issue: static, dynamic and incentivized. The incentivized approach makes includes users in the 

balancing efforts, as they are offered incentives by the operating company  to change their 

destination in favor of keeping the system balanced. Static approaches neglect the demand during 

the rebalancing time because they are usually conducted when bike activities are at their lowest: 

at midnight. Dynamic approaches are more complicated, as they take into account the movement 

of bikes during the rebalancing efforts, so they can be done any time during the day. Thus, a key 

task of dynamic rebalancing efforts is to accurately predict bike counts at any station in the BSS 

(Figure 6-1).This could help both bikers and operating agencies plan ahead and act accordingly. 

For instance, bikers could change their origin or destination in advance if they knew that the station 

would be either empty or full respectively by the time they arrive, which will help keep the BSS 

balanced over time without a need for relocating bikes. Operating agencies could use the predicted 
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demand when rebalancing to prevent any station from running out of bikes or being too full of 

bikes. 

 

Figure 6-1. Model interactions (Regue & Recker, 2014). 

Many researchers use statistical models to predict the demand at any given station, while others 

use clustering algorithms, such as traditional and non-traditional clustering (M. Almannaa, 

Elhenawy, & Rakha, 2019; Côme Etienne & Oukhellou Latifa, 2014). A crucial part of the 

prediction process is quantifying the effect of weather conditions and other factors on the bike 

count at stations. Consequently, extensive research efforts have been conducted using statistical 

and machine learning approaches to determine the correlation between bike availability and other 

factors and thus the significant factors involved (D. W. Daddio & and Mcdonald, 2012; Come 

Etienne & Oukhellou Latifa, 2014b; X. Wang et al., 2015). 

In (Huthaifa I Ashqar, Elhenawy, Ghanem, Almannaa, & Rakha, 2018), the authors developed a 

bike count model to quantify the effect of weather conditions on the prediction of bike counts at 

stations using Poisson and NB regression models. RF and step-wise regression were used, and the 

results show that mean temperature, mean humidity, mean visibility, mean wind speed, 

precipitation, and events in a day (rainy, foggy, or sunny) are significant factors. In (Ashqar H. et 

al., 2017), the authors used machine learning algorithms—RF, LSBoost, and PLSR—to model the 

number of available bikes at each station in the BSS. The input variables for these models for each 

station include the six weather variables mentioned above, the month, day of the week, and time 

of day. Univariate and multivariate regression algorithms were introduced and compared, and the 

results demonstrate that univariate models have lower error predictions than the multivariate 
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model. Similarly, Wang and Kim adapted two other machine learning algorithms: long short-term 

memory neural networks (LSTM) and gated recurrent unit (GRU) to predict bike counts. Although 

their results in general show that both LSTM and GRU algorithms have similar prediction 

accuracy, GRU outperforms slightly the LSTM in terms of both accuracy and computational time 

(B. Wang & Kim, 2018). Chengcheng et al. adapted the long short-term memory neural networks 

(LSTM NN) for predicating bike prediction and attraction at traffic analysis zones (C. Xu, Ji, Liu, 

& Peng, 2018). The results show the LSTM NN shows good prediction accuracy at different 

prediction time intervals. 

Although the previous approaches show promising results in predicting the bike counts at stations, 

they suffer from three major drawbacks. First, they fail to capture the dynamic changes over time, 

making an inaccurate assumption that users’ activity will remain the same in the future, and 

neglecting the changes that dynamic cities or new technology may bring. Consequently, these 

models produce constant coefficients and/or static decision rules that do not evolve with time. 

These models do not take into account the continuing efforts of BSS operators to keep the system 

balanced. For example, modern BSSs have adopted an app that can alter bikers’ behavior based 

on the status of nearby stations. BSS operators attempt to incentivize bikers to change their origin 

or destination in favor of keeping the system balanced (Pfrommer, Warrington, Schildbach, & 

Morari, 2014; Singla et al., 2015). The second drawback of the existing machine learning 

approaches mentioned above is they are sophisticated models using too many variables—there are 

19 variables in (Huthaifa I Ashqar, Mohammed Elhenawy, Ahmed Ghanem, et al., 2018) and some 

of them are difficult to interpret. The third drawback is that they work poorly when encountering 

missing data, so the algorithms must rely on some sophisticated imputation techniques, such as 

Autoclass and C4.5 (Jerez et al., 2010). BSS data, as data in any dataset, suffer from missing data 

due to malfunctions or measurement error in data collection. Additionally, it is very common that 

some bike stations drop out of service due to rebalancing efforts or technical issues, creating a 

missing data problem. 

Dynamic linear models (DLMs) have gained attention due to their flexibility and ability to capture 

underlying changes over time, offering a powerful tool for many applications in different fields 

(Harrison & West, 1999). Unlike other statistical and machine learning algorithms models, DLM 

estimation and forecasting can be done recursively without a need to store the entire past history. 

Given the available information, they adapt themselves in a very short time as new data arrive, 

outperforming many advanced algorithms. In addition, DLM inference and prediction can 

efficiently handle the missing data problem. 

The goal of this research effort is to develop a simple DLM to predict bike counts at stations in 

BSSs. Two DLMs are adopted: first- and second-order polynomial DLMs. Unlike other machine 

learning models, these two models do not use any predictors (i.e., no weather or time information) 

but the log of the bike count at the station being modeled. We tested the DLMs at different 

prediction windows: 15, 30, 45, 60, and 120 minutes. The first three short prediction windows (15, 

30, and 45 minutes) were mainly tested to forecast station status for bikers. The longer prediction 

windows (60 and 120 minutes) are for operating agencies to rebalance the system. 

The chapter is organized as follows. First, a brief summary of the related work and methodology 
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are provided, followed by a short description of the dataset. Second, the experimental work with 

the obtained results are given. Before the conclusions of the chapter are drawn, a comparison with 

other machine learning algorithms is presented. 

  Related Work 

Regression count modeling is one of the common approaches recently used to model bike counts. 

In Austria, Rudloff and Lackner proposed a demand model for bikes and return boxes (2014). 

Poisson, NB, and hurdle models were used to model the bike counts within a given hour. The 

weather information (in particular, temperature and precipitation) and neighboring stations were 

used as regressors in these three models, and the results showed that the hurdle model outperforms 

the other two approaches. Wang et al. used log-linear and NB regression models to anticipate bike 

availability with 13 independent variables, such as socioeconomic, demographic, and geographic 

factors (X. Wang et al., 2015). The results showed that all 13 variables were significant with a high 

goodness of fit for both models. Rixey used a multivariate linear regression analysis to find the 

significant factors for the bike sharing ridership, and then estimate system ridership (Rixey, 2013). 

The study found that demographics, the built environment, and access to a comprehensive network 

of stations were significant factors in the multivariate linear regression model. 

Given the size and complexity of the BSS data, clustering analysis and visualization techniques 

have been discussed extensively. Various researchers have attempted to derive insights by 

exploring trends through visualization techniques (Bar-Hillel et al., 2003; Demiriz, Bennett, & 

Embrechts, 1999; Froehlich et al., 2009b; Sinkkonen et al., 2002). For example, Froehlich et al. 

studied BSS patterns using 13 weeks of bicycle station usage data from Barcelona. They 

investigated the relationship between human behavior, geography, and time of day, and then tried 

to predict future bicycling station usage. The temporal and spatiotemporal patterns were discussed, 

and the results showed that there were some dependencies among the stations. The available 

bicycling data were used to cluster the docking stations. Neighboring stations were found to be 

highly correlated and therefore were clustered in one group. Kaltenbrunner et al. also attempted to 

improve the BSS in Barcelona using docking station data (Kaltenbrunner et al., 2010). Temporal 

and geographic mobility patterns were obtained and analyzed with the goal of detecting imbalances 

in the BSS. Subsequently, the authors used time series analysis techniques to predict the number 

of bicycles at a given station and time. Vogel et al. attempted to derive bike activity patterns by 

analyzing bike share data along with geographical data (Vogel et al., 2011a). Cluster analysis was 

used to group the bike stations with respect to pick-up and return activity. The authors used k-

means, expectation maximization, and sequential information-bottleneck algorithms to conduct 

their analysis. Using the temporal activities of the stations, their results showed that the bike 

stations could be clustered into five groups, and, thereby, average pickup and return for each hour 

were given for each group. After that, the authors tried to link these five clusters with geographical 

information data and found that stations in the same cluster tend to be neighbors. Feng and Hillston 

et al. developed a novel moment-based prediction model using time-dependent rates. They used a 

Population Continuous Time Markov Chain (PCTMC) to derive the number of available bikes 

(Feng, Hillston, & Reijsbergen, 2017). Gast and Massonnet et al. used a queuing theoretical time-

homogeneous model of BSSs to make probabilistic forecast (Gast, Massonnet, Reijsbergen, & 

https://www-sciencedirect-com.ezproxy.lib.vt.edu/topics/mathematics/continuous-time-markov-chain
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Tribastone, 2015). They also introduced a new metric to evaluate the proposed model instead of 

the standard root-mean-square error. Fricker and Gast adapted a stochastic model and a fluid 

approximation to investigate the influence of the station capacities on the performance of 

homogeneous BSSs (Fricker & Gast, 2016).Their proposed model helps in determining the optimal 

size of each station in terms of minimizing the imbalance. 

A few recent studies adopted time series techniques to predict the bike counts at stations (Froehlich 

et al., 2009b; Gallop et al., 2011; Kaltenbrunner et al., 2010; Yoon et al., 2012). Although these 

techniques showed good performance in both explaining the past and predicting the future, they 

had several limitations. For example, Kaltenbrunner et al. (Kaltenbrunner et al., 2010) used an 

autoregressive moving average (ARMA) model to predict the bike availability at stations 

(Kaltenbrunner et al., 2010). However, the ARMA model is a stationary model that assumes the 

mean and variance of the observations are fixed over time, which is not the case in the bike station 

data. Froehlich et al. proposed four models: last value, historic mean, historic trend, and Bayesian 

network (Froehlich et al., 2009b). They showed that the Bayesian network model produces the 

least prediction error. Yet, the Bayesian network model was not adopted to give exact bike counts. 

Instead, it provided only a small number of prediction classes (in percentages); that is, the bike 

availability in stations was classified in even percentage intervals (for example, 25%, 50%, 75%, 

and 100%), and the algorithm only chose one of the four categories to describe the bike availability.  

Yoon et al. proposed a spatial-temporal prediction system using an autoregressive moving integral 

average (ARIMA) model to overcome the non-stationary issue in the ARMA model (Yoon et al., 

2012). Seasonal trends and neighboring information were utilized in the model. A small dataset of 

3 weeks was used to evaluate the model. The results show a slight improvement in favor of ARIMA 

when compared to ARMA (The error is 3.47 bikes/station versus 3.50 bikes/station). However, 

ARIMA is considered a static model; its estimated coefficients do not evolve with time and 

predictions are only within even intervals. Additionally, ARIMA is a complex and hard-to-

interpret model. 

 Methodology 

We used DLMs to model the bike counts at stations because of their ability to evolve and capture 

the change in users’ behavior over time (Petris, Petrone, & Campagnoli, 2009). The DLM is a 

special case of a general state space model as it is linear and Gaussian. Being linear makes it 

possible to extend the model and add trends, covariate, seasonality, and autoregressive 

components. 

DLMs are based on the idea of describing the output of a dynamic system—for example, the bike 

count series of a bike station—as a function of a non-observable state process (which has a simple, 

Markovian dynamic) affected by random errors. Given that it is a dynamic model, the coefficients 

of the model are estimated at every ∆𝑡.  

In general, the dynamic system which generates the observed station status (bike counts) can be 

written in the general state space model form. Therefore, it can be specified by: 

1. The observation equation, 𝑆𝑡 = ℎ𝑡(𝜃𝑡 , 𝜈𝑡), where 𝜈𝑡 is the observation error. 
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2. The evolution equation, 𝜃𝑡 = 𝑔𝑡(𝜃𝑡−1, 𝜔𝑡), which captures the model dynamics, where 𝜔𝑡 

is the innovation. 

3. The prior distribution for the initial state, 𝜃0. 

In the DLM, ℎ𝑡 and 𝑔𝑡 are linear functions. Moreover, we assume Gaussian distributions such that 

any joint distribution of the states and observation will be Gaussian and we only need to estimate 

its mean and covariance matrix. Therefore, the bike count dynamic system can be fully specified 

by the following equations: 

The observation equation:  𝑌𝑡 = 𝐹𝑡𝜃𝑡 + 𝜈𝑡,          (6-1) 

where 𝜈𝑡~𝑁(0, 𝑉𝑡) and 𝐹𝑡 is a known matrix; and 

the evolution equation:  𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝜔𝑡,        (6-2) 

where 𝜔𝑡~𝑁(0,𝑊𝑡) and 𝐺𝑡 is a known matrix and 𝜃0~𝑁(𝑚0, 𝐶0) is the initial state. 

Once we define the state space model for the bike station, it can be used to make inferences on the 

unobserved states and predict future observations using part of the observation sequence. In a 

DLM, the Kalman filter is used for updating our current inference on the state as new data become 

available. DLM computations can be done recursively and there is no need to store the entire past 

history. In addition, DLM inference and prediction can efficiently handle the missing data 

problem. 

The DLM can be written in different ways based on the assumptions and information added to it 

(i.e., trends, seasonality, and regressors). In this chapter, we only use two simple models: first-and 

second-order polynomial models. The following two subsections cover them briefly. 

6.3.1 First-order Polynomial Model (Random Walk Plus Noise Model) 

The first-order polynomial model is also called a random walk plus noise, or local level, model 

(Petris et al., 2009). It is the simplest DLM model that assumes a constant mean (i.e., a zero slope). 

It is similar to the first-order Taylor series approximation of a smooth function. The first-order 

model is used mainly for time series observations with no clear seasonal or trend variations. The 

observations (𝑌𝑡) are modeled as noise observations with a mean of 𝜇𝑡. The mean 𝜇𝑡 changes over 

time as a function of 𝜇𝑡−1 and 𝑤𝑡, which leads the mean to be non-stationary. Given that it is a 

first-order model, 𝐹𝑡 and 𝐺𝑡 are equal to one. The first-order polynomial model can be formulated 

using the following two equations: 

𝑌𝑡  =  𝜇𝑡 + 𝑣𝑡             𝑣𝑡 ~  𝑁(0, 𝜎𝑣)          (6-3) 

𝜇𝑡  =  𝜇𝑡−1 + 𝑤𝑡        𝑤𝑡~ 𝑁(0, 𝜎𝑤)         (6-4) 

where 𝑌𝑡 is the observation at t, 𝜇𝑡 is the state governing the mean of the observations at t, and 𝑣𝑡 

and 𝑤𝑡 are independent random errors with zero mean and a variance of 𝜎𝑣 and 𝜎𝑤, respectively. 

In this chapter, we assume 𝑣 and 𝑤 are time-invariant for the sake of simplicity. 

6.3.2 Second-order Polynomial Model (Linear Growth Model/Local Linear Trend Model) 

This model is very similar to the first-order model with only one key difference: it considers both 
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the mean and slope of the observations. Unlike the first-order model, it includes a time-varying 

slope (denoted by 𝐵𝑡) in the evolution equation, representing the growth of the level of the 

observations. The second-order polynomial model can be defined as follows: 

𝑌𝑡  =  𝐹𝑡𝜇𝑡  +  𝑣𝑡    𝑣𝑡   ~  N(0, 𝜎𝑣𝑡
)          (6-5) 

𝜇𝑡  =  𝐺𝑡𝜇𝑡−1  + 𝐵𝑡−1  +  𝑤1,𝑡            𝑤1,𝑡 ~  N(0, 𝜎𝑤1,𝑡
)       (6-6) 

𝐵𝑡  =  𝐵𝑡−1  + 𝑤2,𝑡     𝑤2,𝑡 ~  N(0, 𝜎𝑤2,𝑡
)         (6-7) 

where 𝑌𝑡 is the observation at t, 𝜇𝑡 is the state governing the mean of the observations at t, and 𝐵𝑡 

is the state governing the slope of the observations at t. 𝑣𝑡, 𝑤1,𝑡, and 𝑤2,𝑡 are independent random 

errors with zero mean and a variance of 𝜎𝑣𝑡
, 𝜎𝑤1,𝑡

, and 𝜎𝑤2,𝑡
, respectively.  

The above model can be written as follows: 

𝑌𝑡  =  𝐹𝑡  𝜃𝑡  +  𝑣  𝑣𝑡    ~  N(0, 𝜎𝑣𝑡
)        (6-8) 

𝑀𝑡  =  𝐺𝑡 𝜃𝑡−1 +  𝑤                              𝑤 ~  N( 0, (
𝜎𝑤1

0

0 𝜎𝑤2

))     (6-9) 

where 𝜃𝑡 = (𝜇𝑡
𝐵𝑡

), 𝐹𝑡 = (1,0), 𝐺𝑡 = (
1 1
0 1

), and 𝑤 = (𝑤1
𝑤2

).  

 Dataset 

This study used a publicly available dataset of docking station data. The case study dataset covers 

the period from September 1, 2014, to September 1, 2015, in the San Francisco Bay area for 70 

stations in five different zip codes (see Figure 3-1). The dataset included station ID, number of 

bikes available, number of docks available, and time of recording. Each row had the availability 

of bikes at the 70 stations with the associated time (day of week and hour). As the station data 

were collected at a frequency of every minute for 70 stations in San Francisco over a year of 2014–

2015, the dataset contains a large amount of recorded station data. Consequently, we derived five 

subsets of the original dataset by sampling station data once at 15, 30, 45, 60, and 120 minutes and 

obtaining the exact values without any smoothing process. This was done to reduce the complexity 

of the data and avoid running out of memory. Additionally, we could build a model for each 

different version of the dataset and do one-step-ahead forecasting to get the prediction up to 120 

minutes. 

 Model testing 

The first- and second-order polynomial models were coded using R (Petris et al., 2009). These two 

models were applied to create univariate models for 70 stations in the San Francisco Bay area. The 

response of the models (denoted by 𝑌𝑖) is the log of the number of predicted available bikes at 

station 𝑖. Different prediction windows were used: 15, 30, 45, 60, and 120 minutes. The first three 

short prediction windows (15, 30, and 45 minutes) were mainly tested to forecast station status for 

bikers while the longer prediction windows (60 and 120 minutes) were for operating agencies to 

rebalance the system.. All year-round data were utilized, including weekends and weekdays, on-
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peak and off-peak hours, and summer and non-summer months. The DLMs returned the 

anticipated log of the number of bikes at every prediction window. To ensure the prediction did 

not exceed the size of the bike station, we set the prediction equal to the maximum capacity if the 

prediction was larger than the station’s capacity.   

We used two different approaches when applying the DLMs for prediction windows longer than 

15 minutes: (1) we modeled the sample at an interval equal to the prediction horizon and did one-

step-ahead forecasting and (2) we modeled the 15-minute sampled dataset and used multiple-steps-

ahead forecasting techniques. In the following subsections, we present the evaluation criteria used 

with the results for each approach, followed by a comparison of these two approaches with other 

machine learning algorithms. 

 Evaluation Criteria 

To measure the predictive accuracy of the two models, two different measurements were used: the 

MAE and the symmetric mean absolute percentage error (SMAPE). The MAE (well-known as 

prediction error) was calculated by taking the average of the absolute difference between the 

anticipated and actual number of the bike counts for all 70 stations in the entire year (6-8). The 

SMAPE is an accuracy measure and is calculated as shown in (6-9). 

MAE = 
∑ |𝑌𝑡− 𝐴𝑡|

𝑛
𝑖=1

𝑛
            (6-8) 

SMAPE = 
100%

𝑛
 ∑

|𝑌𝑡−𝐴𝑡|

(|𝐴𝑡|+ |𝑌𝑡|)/2

𝑛
𝑡=1             (6-9) 

where 𝑛 is the number of observations, and 𝑌𝑡 and 𝐴𝑡 are the predicted and actual number of bike 

counts respectively. 

The third measurement that was used was the MAE relevant to the capacity of the station (MAE/C) 

in which we divided the MAE for each station over its capacity. This was to make the prediction 

error more informative by considering the capacity of stations. 

 DLM Using Single-step-ahead Forecasting Technique  

This approach used a one-step forecasting technique, meaning we built a model of each version of 

the dataset. For instance, when applying the DLMs for a prediction window of 120 minutes, we 

used the reduced (sampled) dataset at 120 minutes, then did the forecast one step ahead using the 

observation and evolution equations mentioned above for both first- and second-order models. 

 DLM Using Multiple-steps-ahead Forecasting Technique 

This approach built only one model using the 15-minute sampled data and did the forecast using a 

multiple-steps-ahead forecasting technique. If we want to estimate the bike counts at time 𝑡 + 𝑘 

(𝑘 is sometime in the future) and the available data are only up to time 𝑡, the multiple step 

forecasting of the bike count can be estimated as following: 

For the first-order model, we need to know only the mean of the observations at time 𝑡 (the level 

for the observation), so the estimated bike count at time 𝑡 + 𝑘 can be determined as follows: 
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𝜇𝑡 = 𝐸(𝑌𝑡+𝑘 /  𝑌1:𝑡  )                 (6-10)                                   

where 𝜇𝑡 is the known status space at time t, and 𝑦1:𝑡 is the observed data from time 1 until time 

𝑡. 

For the second-order model, we need to know two parameters: the mean 𝜇𝑡 and slope 𝐵𝑡 of the 

observations at time t, and then estimate the bike counts as follows: 

𝐸 (
𝑌𝑡+𝑘

𝑌1:𝑡
) =  𝜇𝑡  +  𝐾 × 𝐵𝑡                  (6-11) 

 Results  

Table 6-1 shows the performance comparison of the two DLMs considering five different 

prediction windows and two approaches. It was unsurprising that the first and second-order models 

for both approaches had quite similar results (up to the ten-thousandths place) over different 

prediction windows. That can be explained by the fact that our bike count data do not show any 

clear trend, so there is no benefit of adding a term for the slope (i.e., using the second-order 

polynomial model). The DLMs clearly show a high accuracy in predicting the bike counts, 

especially at a short prediction window for both the single- and multiple-step approaches. The 

DLMs were able to predict the bike count precisely at a 15-minute window with a small prediction 

error of 0.37 bikes/station (2% with respect to the station capacity), corresponding to a percentage 

error (SMAPE) of 5%. The DLM using a multiple-step approach outperforms the single-step 

approach under all the prediction windows. The difference between these two approaches increases 

as the prediction window increases, with the 120-minute prediction window having the biggest 

difference: 0.6 bikes/station (9.3% with respect to the station capacity). 

Table 6-1. Performance comparison of the two DLMs at different prediction windows, 

using one-step-ahead and multiple-steps-ahead forecast techniques. 

Prediction 

window 

(minutes) 

First-order model, 

single step 

Second-order model, 

single step 

First-order model, 

multiple step 

Second-order model, 

multiple step 

MAE SMAPE 

𝑴𝑨𝑬

𝑪
 

MAE SMAPE 

𝑴𝑨𝑬

𝑪
 

MAE SMAPE 

𝑴𝑨𝑬

𝑪
 

MAE SMAPE 

𝑴𝑨𝑬

𝑪
 

15 0.37 0.05 2.07 0.37 0.05 2.07 0.37 0.05 2.09 0.37 0.05 2.09 

30 0.65 0.08 3.59 0.65 0.08 3.59 0.52 0.07 2.89 0.52 0.07 2.89 

45 0.90 0.11 4.99 0.90 0.11 4.99 0.65 0.08 3.58 0.65 0.08 3.58 

60 1.13 0.13 6.22 1.13 0.13 6.22 0.76 0.09 4.19 0.76 0.09 4.19 

120 1.70 0.18 9.32 1.70 0.17 9.32 1.10 0.12 6.06 1.10 0.12 6.06 

Average 0.95 0.11 5.24 0.95 0.11 5.24 0.68 0.08 3.76 0.68 0.08 3.76 

 

Given that the first- and second-order DLMs yield almost the same results, we will discuss only 

the first-order DLM in the rest of the chapter for both the singe-step and multiple-step approaches. 
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In Figure 6-2, we present the pattern of the prediction error in percentages (MAE/C) of the first-

order DLMs of the single-and multiple-step approach over different prediction windows. The 

figure clearly shows that the prediction error increases as the prediction window increases for both 

approaches, with the 120-minute window being the least-effective prediction window, producing 

a prediction error of 6% and 9.3% bikes/station for the single- and multiple-step approaches, 

respectively. 

 

Figure 6-2. Prediction error with respect to the capacity for the single- and multiple-step 

approaches for the first-order DLM for different prediction horizons. 

The MAE/C of the single- and multiple-step approaches at different prediction windows helps to 

explain why the multiple-step approach outperforms the single step (Figure 6-3). Generally, the 

behavior (pattern) of the two approaches is similar at each prediction window. Surprisingly, the 

patterns of both approaches are lined up at stations 1–32, and then a gap favoring the multiple-step 

approach begins (i.e., the prediction error decreases in favor of the multiple-step approach). This 

gap becomes larger at the 60-minute and 120-minute prediction windows.  
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Figure 6-3. MAE/C per station for single-step and multiple-step forecasts at different 

prediction windows. 

Investigating the difference between stations 1–32 and the other stations, we found that the usage 

patterns for stations 1–32 tends to be smoother than the patterns of the other stations. Stations 33–

70 are more likely to become empty (or get full) in a short period. We investigated the spatial 

characteristics of the stations and found that, for the most part, stations 33–70 are located in 

downtown San Francisco and thus are exposed to high demand, unlike the other stations, which 

are located in four smaller cities (San Mateo, Mountain View, Palo Alto, and San Jose). In fact, 

we recently learned that the operating company (Ford GoBike) has deactivated most of these 

stations and we believe this could be due to the low demand. 
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With regard to performance, the single-step approach performs well when encountering a smooth 

pattern in which the bike activity changes slightly, but it fails with irregular patterns (i.e., sudden 

changes in bike activity within a short period). The multiple-step approach is always powerful 

when facing either a smooth or uneven pattern. This can be explained as follows. The DLM using 

a single-step approach uses sampled data at a larger interval, hence less information is used to 

build the model. In addition, because the multiple-step approach uses 15-minute sampled data, it 

is updated more frequently than the single-step approach.  

For the sake of completeness, in Figure 6-4, we give three examples for the prediction obtained 

using the first-order DLM at the 15-minute prediction window for three different days: Saturday, 

Sunday, and Friday. We chose these days with the goal of demonstrating the performance of the 

adopted first-order DLM for three common patterns: (a) low-demand, (b) medium-demand, and 

(c) high-demand stations. The blue curve corresponds to the actual number of bikes in the station, 

while the red curves indicates the predicted number. In Figure 6-4(a), the bike counts in the station 

only changed slightly during the day, so the difference between the actual and predicted curves is 

relatively low, and, thus, we achieve a low prediction error: 0.32 bikes/station. In Figure 6-4(b), 

the station had more bike activity than Figure 6-4(a), but generally the expected pattern follows 

the actual curve with a small delay in responding to the jumps. In Figure 6-4(c), the station 

experienced a high demand and went out of service (i.e., bike inventory dropped to zero between 

8:00 a.m. and 9:45 a.m.). Also, at 4:45 p.m. the station received 14 bikes, which caused inventory 

to jump from 5 to 19 bikes within 15 minutes. Consequently, the predicted curve could not follow 

these sudden changes in the actual curve, leading to a high prediction error of 1.86 bikes/station. 
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Figure 6-4. Pattern of expected and actual bike availability for three different days of the 

week at 15-minute prediction window of one station for first-order DLM, multiple-step 

technique.  

 Comparison with Other Machine Learning Algorithms 

In (Ashqar H. et al., 2017), two machine learning algorithms were adopted: RF and LSBoost using 

the same dataset to model the number of available bikes at each station. The input variables for 

these two models for each station were six weather variables (mean temperature, mean humidity, 

mean visibility, mean wind speed, precipitation, and events in a day), the available bikes at the 10 

nearest neighboring stations, and the month, day of week, and time of day. These input variables 

were chosen based on subject-matter expertise, previous studies (Gallop et al., 2011; Rudloff & 

Lackner, 2013b), and also were found to be significant. We compared the best results of these two 

models (140 trees for RF and 180 trees for LSBoost) to the multiple-step approach of the first-

0

5

10

15

20

12:00 AM 3:00 AM 6:00 AM 9:00 AM 12:00 PM 3:00 PM 6:00 PM 9:00 PM 12:00 AM

av
ai

la
b

le
 b

ik
es

Time

(b) Friday - 27/3/2015 (prediction error=0.83)

actual

0

5

10

15

20

12:00 AM 3:00 AM 6:00 AM 9:00 AM 12:00 PM 3:00 PM 6:00 PM 9:00 PM 12:00 AM

av
ai

la
b

le
 b

ik
es

Time

(c) Sunday - 3/1/2015 (prediction error=1.86)

actual



79 

 

order DLM result (Figure 6-5). Although the LSBoost and RF algorithms were adopted using 19 

variables and the DLM does not use regression components (no predictors), the first-order DLM 

of the multiple-step approach outperforms the LSBoost at all the prediction windows. It gives the 

same prediction error as RF at the 15-minute and 30-minute prediction windows.  

 

Figure 6-5. Multiple-step approach of the first-order DLM, RF, and LSBoost MAE at 

different prediction windows. 

This comparison reveals the good performance of the DLMs using the multiple-step approach 

compared to other statistical and sophisticated machine learning algorithms. Given that DLMs are 

linear, they can be easily extended to incorporate external factors such as weather information, 

seasonality, etc., that might improve the prediction well beyond the results presented here. 

  Conclusions 

BSSs are expanding and becoming a reliable transportation mode across the world, yet suffer from 

logistical challenges in which some stations run out of bikes and others become full of bikes. The 

first step in solving this issue is to predict bike demand in advance to help both bikers and operating 

agencies be part of the solution. Bikers could use the predicted demand to plan ahead and change 

their destination, while BSS managers could relocate bikes from saturated to non-saturated stations 

using service trucks. This research makes use of two well-known DLMs: first-and second-order 

polynomial models to predict the bike counts at stations in a BSS in the San Francisco Bay area. 

The two DLMs were adopted to create univariate models for 70 stations. Different prediction 

horizon windows of 15, 30, 45, 60, and 120 minutes were used to investigate the effect of the 

length of the prediction horizon on prediction accuracy. Short prediction windows (15, 30, and 45 

minutes) can be used to inform bikers of a station’s status in advance (and thus mitigate the impact 

of logistical challenges), while the longer windows (60 and 120 minutes) enable operating agencies 

to relocate bikes. 
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Results reveal that both DLMs predicted the bike counts at stations with high accuracy and errors 

as low as 0.37 bikes/station (corresponding to a percentage error of 2% using the third 

measurement, MAE/C) for 15-minute prediction horizons. The prediction error increased as the 

time horizon increased, with a prediction error of 1.1 bikes/station for a 2-hour prediction horizon 

(corresponding to a percentage error of 6% using the third measurement, MAE/C). Although the 

DLMs that were adopted in this chapter did not use any other external variables, such as weather 

or spatiotemporal information, our results show they outperformed the RF and LSBoost algorithms 

for short and long prediction horizons.  

In the future, we will extend our work by incorporating more predictors in the DLM model, such 

as weather information, seasonality, and availability and location of the other public transportation 

modes (bus or metro) and their schedules. In addition, we will investigate the benefit of clustering 

the months or days, and then adopt a DLM for each cluster
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 Incremental Learning Models of Bike Counts at 

Bike Sharing Systems 

 Introduction 

Many cities have realized the negative effects of the increasing number of vehicles on the roads, 

such as greater congestion, emissions, and pollution rates. In response, various cities have 

discussed methods to reduce these rates. For example, in South Korea, a massive, first-of-its-kind 

100 million square foot city is being designed to reduce or even eliminate the need for cars. At a 

cost of $35 billion, completion of this district is expected by 2020 (2016).   

BSSs have also been shown to be an energy-efficient and reliable transportation mode, and have 

been introduced in 1,139 cities and over 50 countries (Ghosh, Varakantham, Adulyasak, & Jaillet, 

2017). In the San Francisco Bay Area, Saltzman and Bradford found that 92% of all weekday trips 

using BSSs were made by daily commuters going to and from work, showing significant faith in 

the BSS’s reliability (Saltzman & Bradford, 2016). According to the National Association of City 

Transportation Officials, in the U.S, in 2016 alone, there were over 28 million bike trips, an 

increase of 25% compared to 2015. This increased usage of bikes led many cities to either expand 

their existing system or launch a new one. For example, the BSS in the San Francisco Bay Area 

started operating in 2013 with 700 bikes and 70 stations, and now the current operator (Ford, 

operating the system as GoBike) plans to expand their system to 7,000 bikes and over 300 stations 

by the end of 2018 . 

Due to the unbalanced spatial-temporal demand of bike trips, many bike stations become empty 

or full during the day. This significantly affects the reliability and usefulness of the BSS, which 

may prompt riders to return to using their personal cars or to adopt another transportation mode, 

consequently increasing congestion and thus auto emissions and pollution. This in turn, would lead 

to a decrease in the number of BSS users, reducing the system’s revenue. Operating agencies have 

recognized the imbalance issue and have started to establish more bike stations close to one 

another, aiming to keep them within no more than a 5-minute walk . However, this solution is 

difficult to implement, both financially and practically. 

Researchers have been investigating the imbalance issue and have recommended potential 

solutions to mitigate this issue with minimal cost and effort. Generally, these efforts can be 

categorized into three major approaches: static, dynamic, and incentivized. The underlying concept 

of the first two approaches is to move bikes between stations using a fleet of trucks either during 

or at the end of the day (Brinkmann et al., 2016; Caggiani & Ottomanelli, 2012; Espegren et al., 

2016; Kloimüllner, Papazek, Hu, & Raidl, 2014). The incentivized approach aims to encourage 

bikers to change either their origin or destination in favor of balancing the system (Fricker & Gast, 

2016). 

An essential part of the rebalancing efforts is to predict the bike counts at stations accurately and 

quickly so that an imbalance can be discovered in advance and plans can be made accordingly. 

Predictions can be either used as an input for the three rebalancing approaches or can simply be 
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given to bikers using a smartphone app to help them organize their trips. A good predictive model 

can improve the rebalancing efforts and thus increase the reliability and efficiency of the system.  

Researchers have used different methods to predict bike counts at stations, such as regression, 

count models (Rixey, 2013; X. Wang et al., 2015), clustering, and exploring algorithms (Froehlich 

et al., 2009b; Kaltenbrunner et al., 2010), machine learning algorithms (Huthaifa I Ashqar et al., 

2017; H. Yang, Wang, Xie, Ozbay, & Ma, 2018), and time series techniques (Kaltenbrunner et al., 

2010; Yoon et al., 2012). All of these methods use many input variables, such as weather and time 

information, making them complex. Additionally, these models generally are static rather than 

dynamic, meaning that they do not adopt dynamic change over time.  

This year, a study was published in the field of crime predictive models showing that a very simple 

model (i.e., a linear model) with only two features has almost the same predictive accuracy as other 

machine learning algorithms with up to 137 features (Dressel & Farid, 2018). This raises the 

question of why so many factors are needed in a model when the same accuracy (or close to it) 

can be achieved using simple (and thus fast) models. A quick and simple predictive model for 

bikers would allow them to be informed and adjust their routes before heading to their destination, 

and would also help keep the system balanced.  

In this chapter, we adopted two dynamic, easy-to-interpret, rapid approaches to predict bike counts 

at stations in a BSS: mini-batch gradient descent for the linear regression (MBGDLR) and locally 

weighted regression (LWR). These two approaches were built using an incremental learning 

concept based on previous knowledge (i.e., the previous status of the station) with neither weather 

nor time information. The two proposed models were applied to a BSS dataset for one year (2014–

2015) in the San Francisco Bay Area at different prediction windows: 15, 30, 45, 60, and 120 

minutes. Our results show that both MBGDLR and LWR algorithms perform well, with high 

accuracy and errors as low as 0.30 bikes/station for a 15-minute prediction window and as low as 

1.1 bikes/station for a 120-minute window. 

 Related Work 

Bike prediction approaches have mainly taken one of four approaches: statistical models, exploring 

and clustering algorithms, machine learning algorithms, and time series models. Each approach 

has a different level of complexity with varying numbers of independent variables, such as time 

information, neighboring stations, and weather information. 

Rudloff and Lackner used three count models: Poisson, NB, and hurdle models to predict bike 

demand using temperature, precipitation, and neighboring stations as predictors (Rudloff & 

Lackner, 2014). They used bike data from the bike sharing system Citybike Wien in Vienna, 

Austria and concluded that the hurdle model outperformed the other two. Wang et al. adopted log-

linear and NB regression models with 13 regressors as independent parameters (X. Wang et al., 

2015). These 13 regressors included socioeconomic, demographic, and geographic information. 

They showed that all 13 regressors were significant and fit well with both models. Rixey adopted 

multivariate linear regression models to predict bike ridership using demographics and built 

environment characteristics near the BSS (Rixey, 2013). The authors used three bike sharing 
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systems and concluded that the factors used were significant. Ashqar et al. investigated the 

significant factors on bike demand, and using RF found that time-of-day, temperature, and 

humidity level were significant predictors in bike prediction (Huthaifa I Ashqar, Elhenawy, 

Almannaa, Ghanem, & Rakha, 2018). The authors adopted two count models: Poisson and NB 

along with RF; their results showed that RF outperformed the other two models. 

Due to the size of BSS datasets, several studies were conducted using visualization and clustering 

approaches and considering spatial and temporal information. Froehlich et al. utilized a clustering 

approach to predict bike counts in two steps (Froehlich et al., 2009b). The first step was to 

investigate the relationship between human behavior, geography, and time of day. The second step 

was to predict bike counts based on the three aforementioned factors. They divided bike stations 

into clusters and then predicted bike counts for each cluster. Their findings demonstrated 

neighboring stations were highly correlated and thus they were treated as one cluster. Similarly, 

Vogel et al. used clustering approaches to group stations with respect to the bike pickup and return 

activity (Vogel et al., 2011a). Based on the geographical information, they clustered bike stations 

into five groups and then provided average pickup and return rates for each hour. 

Recently, machine learning approaches have been shown to be promising for predictive models 

due to their remarkable ability to learn from the dataset and account for many predictors to discover 

hidden dataset patterns. (Huthaifa I Ashqar et al., 2017; H. Yang et al., 2018). Ashqar et al. adapted 

three models: RF, least-squares boosting (LSBoost), and partial least-squares regression (PLSR). 

The authors used six weather variables, 10 nearest neighboring stations, the month, day of week, 

and time of day (Huthaifa I Ashqar et al., 2017). Their analysis showed that RF outperformed the 

other two methods, and also that RF kept the prediction error from increasing constantly as the 

prediction window increased, unlike the other models. Yang et al. used deep learning (i.e., a 

convolution neural network) to predict the daily usage of bikes (H. Yang et al., 2018). They used 

weather information, neighboring stations, and day of week as inputs for the models, and showed 

that the convolution neural network outperformed both the neural network and the autoregressive 

moving integral average model. 

However, the previous three approaches suffer from the following: (1) they are static models, 

meaning they are trained once and remain the same and thus cannot capture the dynamic change 

over time, (2) they require many predictors, and (3) they are computationally expensive and thus 

cannot be used as online models.  

Machine learning algorithms can be categorized into two major approaches: batch and online (or 

incremental) learning approaches (Saridis & Stein, 1968). The batch approach is meant to use all 

the observed data at once and produce fixed coefficients of the model, while the online learning 

approach uses the observed data once they arrive and then produces dynamic coefficients over 

time, leading this approach to be faster. According to the literature, the first approach (i.e., batch) 

has been used for bike prediction, although it suffers from the three aforementioned drawbacks. 

To the best of our knowledge, the second approach has not been adapted for bike prediction. 

The online machine learning approach is mainly proposed to handle systems that cannot tolerate a 

large processing delay. Its power comes from the fact that it is flexible enough to be applied to 
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most machine learning algorithms. For the sake of simplicity, we chose two simple machine 

learning algorithms: stochastic gradient descent for linear regression and locally weighted 

regression. These two algorithms are dynamic and use no predictors aside from previous 

knowledge and both have a small computational time.  

  Methods  

7.3.1 Mini-batch Gradient Descent for Linear Regression (MBGDLR) 

In 1972, Nelder and Wedderburn developed a non-Bayesian approach to improve the classical 

static regression models by proposing generalized linear models (West, Harrison, & Migon, 1985). 

One of the proposed generalized linear models was the incremental learning linear regression 

model. This model is a stochastic approximation of the gradient descent optimization and is an 

iterative method for minimizing an objective function. It is built based on the classical linear 

regression model in which we make the coefficients (𝛽) dynamic, meaning that they change over 

time.  

For the multiple linear regression (MLR), we have input-output pairs: (𝑥1, 𝑦1)… (𝑥𝑛, 𝑦𝑛) where 

𝑥𝑖 ∈ 𝑅𝑚 and 𝑦𝑖 ∈ 𝑅 for 𝑖 = 1,… ,𝑁. Assuming the relationship between 𝑥′𝑠 and 𝑦′𝑠 are linear with 

𝐸[𝑦𝑖] = 𝑥𝑖
𝑇𝛽 and the loss function for any 𝑥𝑖 (i.e., the objective function) is the squared loss, then  

𝑓(𝑦𝑖, 𝑥𝑖
𝑇𝛽) = (𝑦𝑖 − 𝑥𝑖

𝑇𝛽)2 where 𝛽 denotes the regression coefficient’s vector. The gradient of the 

loss function is −2(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)𝑥𝑖 . The negative of the gradient helps move the 𝛽 in a direction that 

decreases the loss function to find the optimal values of the coefficients (i.e., minimizing the 

current loss function will lead to minimizing the error and providing a better fit for the model). 

The dynamic linear regression coefficients are estimated using a stochastic gradient descent. At 

time 𝑡, we receive the t-th observation and thus we predict the output using the previous dynamic 

coefficient (i.e., 𝐵𝑡−1) as follows: 

  𝑦�̂� = 𝑥𝑡
𝑇𝛽𝑡−1                                               (7-1) 

Once we receive the true value of the output (𝑦𝑡), we can update the dynamic coefficient 

(𝐵) considering the previous observations (as 𝛽𝑡−1) plus the new data point as follows: 

 𝛽𝑡 = 𝛽𝑡−1 +  2 𝛼(𝑦𝑡 − 𝑥𝑡
𝑇𝛽𝑡−1)𝑥𝑡                                (7-2) 

Where 𝛼 is the learning rate in which we determine how much weight we want to give to this new 

arrival point. The higher the value is, the more stochastic the observations are. 

As shown in (7-2), we update the regression coefficient immediately every time we receive the 

true value of the response. A better way to update the regression coefficients is the mini-batch 

approach, which calculates the gradient of a selected number (𝑊) of data points and updates the 

regression coefficients as shown in (7-2) and (7-3). 

 𝛽𝑡 = 𝛽𝑡−𝑊 +  2 ∑ 𝛼(𝑦𝑡−𝑗 − 𝑥𝑡−𝑗
𝑇 𝛽𝑡−𝑊)𝑥𝑡−𝑗

𝑊
𝑗=0             (7-3)      
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Figure 7-1. Illustration of the regression coefficients updating process (W = 3).        

As shown in Figure 7-1, the number of coefficient updates are fewer and hence the coefficients are 

more stable. 

Note that this approach applies to both single and multiple linear regression and the same approach 

applies for each coefficient separately. Although we assume the relationship between 𝑥′𝑠 and 𝑦′𝑠 

(globally) are linear, the predicted line does not have to be linear, as we calibrate the coefficients 

locally not globally. 

The MBGDLR algorithm needs two parameters—the learning rate (𝛼) and the mini-batch size 

(𝑊)—to be tuned, and thus a sensitivity analysis must be carried out to find the optimal values, as 

shown in the “Model Testing” section. Moreover, the initial values of the β need to be set up and 

then continuously updated based on the new arrival of data points. To accomplish this, it is 

necessary to first determine the size of the sample to be used in calculating the initial coefficients. 

Again, more details are provided in the “Model Testing” section. 

 Locally Weighted Regression (LWR) 

LWR is a form of memory-based or lazy-learning algorithm for learning continuous non-linear 

mappings from real-data to predicted vectors. It is considered a local learning approach due the 

fact that it considers only a particular moving window (𝑊𝐿) when calibrating model parameters. 

When predicting a new data point at time 𝑡 + 1 (e.g. �̂�𝑡+1), the model uses only the data points 

that are inside the moving window (e.g., if the moving window is 5, then we would use 

{(𝑥𝑡−4, 𝑦𝑡−4), … (𝑥𝑡, 𝑦𝑡)}) and then gives them weights based on a weight function. The weight 

function assigns weights to each of the five points inside the window 𝑊𝐿 based on the distance 

between 𝑥𝑡+1 and each 𝑥 inside the window. There are different weighting functions (i.e., kernel 

functions), and here we used the most common function: Gaussian. The distance (𝑑) between the 

point of estimation (𝑥𝑡+1) and other points inside the moving window are squared and then used 

in the Gaussian function as shown in (7-4). 

𝐾 = 𝑑𝑖𝑎𝑔(𝑒
− 

𝑑𝑖
2

2 𝜎2)                                       (7-4) 
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Where 𝑘𝑖 is the weight of the 𝑖𝑡ℎdata point in the moving window, 𝑑𝑖 is the distance between the 

𝑖𝑡ℎdata point inside the moving window and the point of estimation (𝑥𝑡+1𝑡
), and 𝜎2 is the variance 

of the kernel. 

Then, the weight (𝐾) 𝑚𝑎𝑡𝑟𝑖𝑥  will be used in the Hat matrix to estimate the new coefficient 

regression 𝛽𝑡+1to predict �̂�𝑡+1 as shown in (7-5) and (7-6). 

 𝛽𝑡+1 = 𝑖𝑛𝑣(𝑋′ ∗ 𝑊𝑖 ∗ 𝑋) ∗ 𝑋′ ∗ 𝑊𝑖 ∗ 𝑌          (7-5)  

�̂�𝑡+1 = 𝑥𝑡+1
𝑇 𝛽𝑡+1                            (7-6) 

Where 𝑋 is the design matrix and consists of the x’s of points inside the 𝑊𝐿. and 𝑌 is the vector 

of the corresponding responses. Note that there are two tuning parameters that need to be 

determined when adapting LWR: the size of the moving window (𝑊𝐿) and the variance of the 

kernel (𝜎2). More details are provided in the “Model Testing” section regarding the optimal values 

used in this research. 

  Dataset: Case Study of San Francisco 

This study used a publicly available BSS docking station dataset. Details of the San Francisco Bay 

Area Bike Share dataset can be found in Section 3.4 of this report.  

Due to the large size of the dataset, we derived a subset of the original dataset by sampling station 

data once at every 15 minutes and obtaining the exact values without any smoothing process. This 

was done to reduce the complexity of the data and avoid running out of memory. The subset was 

tested to make sure it represented the population and the analysis showed it to be representative of 

the entire dataset. When analyzing the dataset, we noticed big jumps in the numbers of returned 

and taken bikes at specific times at some stations; we suspect these indicate periods of rebalancing 

operations. However, we did not exclude these jumps when making predictions, as we could not 

get confirmation of this suspicion from the operating agency (now Ford, which operates the BSS 

as GoBike).  

  Results and Discussion 

7.6.1 Model Testing 

Given that there are tuning parameters in the two models, we conducted a sensitivity analysis to 

find the optimal values. For the MBGDLR algorithm, we found that all prediction horizons 

behaved in the same way when changing the two tuning parameters: mini-batch size (W) and the 

learning rate (𝜎). The optimal values for 𝑊 and 𝛼 for all prediction horizons were 1.5-hours (6 

steps) and 0.0055 respectively. We found also that the prediction accuracy started to decrease 

significantly at 𝑊 = 24-hour (96 steps) and 𝛼 = 0.01. For the sample size used to calculate the 

initial coefficients (𝛽′𝑠), our analysis showed a 7-day window is sufficient to calibrate the 

coefficients.  

For the LWR algorithm, there are two tuning parameters: the size of the moving window (𝑊𝐿) and 

the variance of the kernel (𝜎2). Our analysis showed that 𝑊𝐿 starts returning reasonable results 

after a length of around half a week and then the prediction accuracy starts improving very slightly 
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as 𝑊𝐿 increases. Therefore, we had to compromise between obtaining good prediction accuracy 

and achieving a small computational time (i.e., increasing 𝑊𝐿 would make the model slower as the 

data got bigger) Choosing a 1-week window as the optimal 𝑊𝐿 allowed us to achieve both of our 

goals for all prediction windows. 

For 𝜎2, the optimal value is based on the prediction horizon. The smaller prediction horizons (15 

and 30 minutes) tended to behave slightly better with large variance (16) while the longer 

prediction horizons (45, 60, 120 minutes) performed somewhat better with small variance (1). 

Accordingly, increasing the prediction horizon would require decreasing the variance to get a 

better accuracy result. 

7.6.2 Evaluation Criteria 

To measure the predictive accuracy of the two models, two different measurements were used: 

The MAE and the SMAPE. The MAE (well-known as a prediction error) was calculated by taking 

the average of the absolute difference between the anticipated and actual number of the bike counts 

for all 70 stations in the entire year (7-7). The SMAPE is an accuracy measure and is calculated as 

shown in (7-8). 

MAE = 
∑ |𝑌𝑡− 𝐴𝑡|

𝑛
𝑖=1

𝑛
   (7-7) 

SMAPE = 
100%

𝑛
 ∑

|𝑌𝑡−𝐴𝑡|

(|𝐴𝑡|+ |𝑌𝑡|)/2

𝑛
𝑡=1      (7-8) 

 

where 𝑛 is the number of observations, and 𝑌𝑡 and 𝐴𝑡 are the predicted and actual number of bike 

counts respectively. 

7.6.3 Results 

We used the aforementioned optimal values for both MBGDLR and LWR algorithms to predict 

the bike counts at 70 stations in the San Francisco Bay Area at different prediction horizons. The 

results, given in Table 7-1, show that LWR performs slightly better than MBGDLR for all 

prediction horizons. The smallest prediction error was 0.309 bikes/station (4% prediction error) 

under a 15-minute prediction horizon while the prediction error was 0.318 bikes/station using 

MBGDLR. As shown in Figure 7-2, the prediction error increased as the prediction horizon 

increased, with the 120-minute prediction horizon having the largest prediction error at 1.1 

bikes/station and 1.2 bikes/station for LWR and MBGDLR respectively. 

Table 7-1. Performance comparison of MBGDLR and LWR at different prediction 

horizons. 

Prediction 

Horizons 

(Minutes) 

MBGDLR LWR 

MAE SMAPE MAE SMAPE 

15 0.318 0.04 0.309 0.04 

30 0.514 0.06 0.488 0.06 

45 0.676 0.08 0.633 0.75 



88 

 

Prediction 

Horizons 

(Minutes) 

MBGDLR LWR 

MAE SMAPE MAE SMAPE 

60 0.813 0.09 0.756 0.086 

120 1.2 0.13 1.101 0.11 

Average 0.7 0.08 0.66 0.074 

Although LWR performed slightly better than MBGDLR, the former takes much longer than the 

latter to return a prediction. The computational time for LWR was 45 times longer than it was for 

MBGDLR. When increasing the batch size and the window size for both MBGDLR and LWR 

respectively, the computational time was greatly increased for LWR but was not when using 

MBGDLR (PC configuration: Intel® Core™ i7-6700 CPU @ 3.40GHz, Ram 16 GB, 64-bit 

operating system, x64-based processor). 

 

Figure 7-2. Prediction error for MBGDLR and LWR at different prediction horizons. 

 

Figure 7-3. One-day pattern of expected and actual bike availability at 15-minute 

prediction window for MBGDLR and LWR algorithms, station 59. 

To investigate why LWR performed slightly better than MBGDLR, though the expected pattern 

does not differ much (Figure 7-3), we looked at station-level prediction error for all prediction 

horizons at all stations and compared both algorithms. Results are shown in Figure 7-4 (note: only 
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the 15-minute prediction horizon is presented here as an example). As Figure 7-4 shows, 

predictions are in line for almost all stations except stations 15, 17, and 18, with better results 

shown for LWR. Analyzing the patterns of these three particular stations led us to conclude that 

they are slightly different compared to other stations. They look more stable at some point during 

the day and thus produce a small variance, holding an overfitting issue. 

Based on Figure 7-4, the largest prediction error happens for both algorithms at stations 41, 58, 

and 59. To understand this, we investigated the stations’ patterns and found them to be very 

dynamic, indicating that they ran out of bikes or racks almost every day. To verify this, we 

performed a spatial analysis and found that stations 58 and 59 are next to each other and are also 

located quite close to a train station in San Francisco, making them more likely to be affected by 

the trains’ timetables. And while station 41 is far from stations 58 and 59, and is not close to any 

train station, an examination of the BSS’s adjacency matrix revealed that station 41 and 59 are 

highly correlated and connected. This means that station 59 receives the highest number of bikes 

from station 41, especially at 5:00 p.m., compared to other stations, as shown in Figure 7-5. 

Approximately 15 minutes after bikes are taken from station 41, station 59 starts receiving almost 

the same number of bikes (15 minutes is the approximate bicycling time between stations).  

 

Figure 7-4. MAE per station for MBGDLR and LWR algorithms across stations at a 15-

min prediction window. 
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Figure 7-5. Pattern of bike availability for stations 41 and 59. 

7.6.4  Comparisons with Other Algorithms 

We compared the results of MBGDLR and LWR algorithms with one online and two offline 

algorithms: the first order of the DLM (M. H. Almannaa, Elhenawy, & Rakha, 2018), RF, and 

LSBoost. The two off-line models (RF and LSBoost) used 20 predictors (e.g., time, weather, and 

neighboring information) and were implemented with an optimal number of trees for producing 

the best accuracy:180 and 140 trees for RF and LSBoost respectively (Huthaifa I Ashqar, 

Mohammed Elhenawy, Mohammed H Almannaa, et al., 2018). Note that the off-line models had 

to be built using predictors. The online model (DLM) used only the previous station status, and 

was built using the optimal values of the variance of the noise for observation and evolution 

equations. 

As shown in Figure 7-6, all algorithms returned a comparable prediction accuracy under 15-minute 

and 30-minute prediction windows, with the exception of LSBoost. For the rest of the prediction 

windows, RF outperformed all other algorithms. However, when comparing the computational 

time for the five algorithms, RF had the largest running time, followed by LWR. MBGDLR had 

the smallest computational time, followed by DLM. Although RF gives the smallest prediction 

accuracy, it takes longer to predict (77 times longer than MBGDLR and 12 times longer than 

MBGDLR). 
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Figure 7-6. Comparison of the average computational time and MAE of all prediction 

windows for MBGDLR , LWR, DLM, RF, and LSBoost algorithms for all 70 stations. 

Based on the previous comparison considering both prediction accuracy and computational time, 

we can conclude that MBGDLR is better than the rest of the algorithms due to its ability to predict 

with a relatively small prediction error in a very short time. That makes MBGDLR a promising 

algorithm for implementation in BSS apps that inform bikers about station statuses in advance.  

One way to explain the differences in computational time between these algorithms is to look at 

the mechanism of each. MBGDLR outperforms all other algorithms in terms of computational 

time due to the simplicity of its linear regression form. Also, the MBGDLR model can be used as 

either univariate or multivariate given that the parameters are the same. 

Although DLM is the same conceptually, it appears to be slower due to its need to estimate the 

variance of noise for the whole dataset. That makes it theoretically difficult to estimate and might 

lead to instability, especially with a large dataset (i.e., a lot of matrices would lead to a singular 

matrix that could not be inversed). 

 Conclusions  

BSSs have increased and expanded in many cities in over 50 countries, reducing the negative 

impact of the increased number of motor vehicles on the roadways. However, imbalances reduce 

BSS’s efficiency, resulting in some stations running out of either bikes or racks. To remedy this, 

a quick online predictive model needs to be developed and either fed into BSS apps, so that bikers 

can be informed in advance and change their destination, or used for rebalancing models to 

redistribute bikes before imbalance occurs. This chapter adopted two online algorithms to predict 

bike counts at stations in a BSS: MBGDLR and LWR. These two algorithms were adopted to 

create univariate models and were then tested for 70 stations in the San Francisco Bay Area. 

Different prediction horizon windows of 15, 30, 45, 60, and 120 minutes were used. Short 

prediction windows (15, 30, and 45 minutes) can be used to inform bikers of a station’s status in 
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advance (and thus mitigate the impact of logistical challenges), while the longer windows (60 and 

120 minutes) enable operating agencies to redistribute bikes. 

The results show that LWR performed slightly better than MBGDLR for all prediction windows. 

The smallest prediction error was 0.309 bikes/station for LWR compared to 0.318 bikes/station 

for MBGDLR under a 15-minute prediction window. The prediction error increased as the 

prediction window increased, and the 120-minute prediction window had the largest prediction 

error with 1.1 bikes/station and 1.2 bikes/station for LWR and MBGDLR respectively. MBGDLR 

was shown to be 55 times faster than LWR. 

A comparison was made with DLM, RF, and LSBoost, and the results revealed that RF 

outperformed all other algorithms but was very slow, and thus unsuitable for use as an online 

model. When taking into account both prediction accuracy and computational time, MBGDLR 

was shown to be the best model to use for prediction. Further, it does not use any other external 

variables, such as weather or time information, making it simple for practical use. 
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 Predicting Station Locations in Bike-Sharing 

Systems Using a Proposed Quality-of-Service Measurement: 

Methodology and Case Study  

 Introduction 

A growing population, with more people living in cities, has led to increased pollution, noise, 

congestion, and greenhouse gas emissions. One possible approach to mitigating these problems is 

encouraging the use of BSSs. BSSs are an integral part of urban mobility in many cities and are 

sustainable and environmentally friendly. As urban density increases, it is likely that more BSSs will 

appear due to their relatively low capital and operational costs, ease of installation, pedal assistance 

for people who are physically unable to pedal for long distances or on difficult terrain, and the ability 

to track bikes (DeMaio, 2009). 

BSS operators take great efforts to ensure bike and dock availability at each station. This task can be 

difficult as the movement of users are highly dynamic, difficult to predict, and redistributing bikes is 

expensive. Recent studies have shown that there are spatial dependencies in bike usage at different 

stations (Borgnat, Fleury, Robardet, & Scherrer, 2009; Froehlich, Neumann, & Oliver, 2009a; 

Kaltenbrunner et al., 2010; Vogel et al., 2011b), and that imbalances in the spatial distribution of bikes 

occur due to one-way use and short rental periods (Vogel et al., 2011b). Thus, it is necessary for 

operators to understand the spatial dependencies to more effectively manage the system. For example, 

operators could improve the QoS by identifying the best candidate spots for new stations. However, 

finding the best QoS measurement for a station in a heterogeneous BSS and using it to study the 

spatial dependencies in the system is a challenging problem. 

We investigated the state-of-art QoS measurement and found it to be largely indiscriminative at the 

station level. In this study, we propose a new QoS measurement, Optimal Occupancy, to discriminate 

between different stations in heterogeneous BSSs. We demonstrate that Optimal Occupancy is not 

only discriminative but can also capture the spatial correlations in a BSS. 

 Related Work 

Modeling bike sharing data is an area of significant research interest. In general, the main goals of 

previous studies have been to boost the redistribution operation (Caggiani, Camporeale, Ottomanelli, 

& Szeto, 2018; Contardo et al., 2012; Liu, Szeto, & Ho, 2018; Pal & Zhang, 2017; Raviv et al., 2013; 

Schuijbroek et al., 2013), to gain new insights into and correlations between bike demand and other 

factors (Bordagaray, dell’Olio, Fonzone, & Ibeas, 2016; David William Daddio, 2012; Rixey, 2013; 

Rudloff & Lackner, 2013b; X. Wang et al., 2015), and to support policy makers and managers in 

making optimized decisions (David William Daddio, 2012; Vogel et al., 2011b). 

Research questions that have been studied previously include the strategic design, operation, and 

analysis of BSSs. Due to the potential benefits to operators, measuring the level of stations’ or the 

entire system’s service (Gunasekaran, Patel, & Tirtiroglu, 2001) has become an appealing issue for 

researchers. In some cases, operators measure the fraction of time that their stations are full or empty 
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as a measurement of the system’s QoS (Schuijbroek et al., 2013). Similarly, Fricker et al. considered 

the limiting probability that a station is empty or full as the performance measure. They argued that 

the optimal proportion of bikes at a station is slightly more than half the capacity of a station in a 

homogeneous system. In an heterogeneous system, however, they concluded that this performance 

metric collapses due to the heterogeneity (Fricker, Gast, & Mohamed, 2012). 

Lin and Yang (Lin & Yang, 2011) investigated the strategic problems by studying the question of 

bike stations’ measures of service. They argued that the measures of QoS in the system should include 

two measurements: the availability rate, which was defined as the proportion of pick-up requests at a 

bike station that are met by the bicycle stock on hand, and the coverage level, which is the fraction of 

the total demand at both origins and destinations that is within some specified time or distance from 

the nearest rental station. Fricker and Gast (Fricker & Gast, 2016) proposed a stochastic model of a 

homogeneous BSS and investigated the impact of users’ random choices on the number of 

problematic stations. Problematic stations were defined as stations that, at a given time, have no bikes 

available or no available spots for bikes to be returned to. Consequently, the performance of the system 

was determined by the proportion of problematic stations. However, these measures have critical 

drawbacks: (1) as BSSs usually offer two services—picking up bikes, and returning bikes—these 

measurements fail to take into account the QoS of returning bikes to stations; (2) some of the studies 

assume that, in contrast to real systems, the system is homogeneous; and (3) while some studies 

modeled the system as heterogeneous, they failed to consider the variability of the system parameters 

(i.e., arrival and pickup rates) throughout the same day or across the different days of the week and 

their dependency on the individual station. 

In any BSS, one of the keys to success is the location and distribution of bike stations (Lin & Yang, 

2011). Some studies have worked on locating bike stations using different methods, such as location-

allocation models (García-Palomares, Gutiérrez, & Latorre, 2012), and an optimization method that 

maximizes the demand covered and takes the available budget as a constraint (Frade & Ribeiro, 2015). 

The spatial distribution of the potential demand is a fundamental element in optimal location 

modeling. In order to estimate the potential demand, several studies used preference surveys to 

evaluate both the factors influencing the use of the bicycle mode and choice of routing (Abraham, 

McMillan, Brownlee, & Hunt, 2002; Dill & Voros, 2007; Meng, 2011; Shafizadeh & Niemeier, 1997). 

Potential demand has also been estimated by considering the population, employment associated with 

each building, and the number of trips generated for each transport zone (García-Palomares et al., 

2012). However, there are some limitations and drawbacks in the methods previously used to find the 

optimal station location: these methods are basically used to plan new systems and might not be useful 

to predict new stations in existing systems; they are aimed at serving the local population on selected 

days (e.g., workdays); and certain places in the studied area (e.g., large parks) have neither population 

nor jobs and yet may attract a considerable number of trips. 

This chapter makes two major contributions to the literature: (1) we propose a new discriminative 

QoS measure that reflects the spatial dependencies in a heterogeneous BSS and that considers the 

variability of arrival and pickup rates; and (2) we use this QoS measure with geo-statistics to model a 

spatial variogram that could predict the QoS in nearby areas for the purpose of locating new stations 

in an existing BSS. 
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 Proposed QoS Measurement 

BSSs are highly heterogeneous. The arrival rates, pickup rates, origins, and destinations between 

stations in diverse areas and topographies are very different. These parameters may also vary with the 

time of day, day of the week, and season (Borgnat et al., 2011). In this study, we consider that the 

bike-sharing system has 𝑁 stations, in which each station 𝑖 may have a unique capacity 𝐶𝑖 (i.e., 

maximum number of docks). We assume that the dynamics of the system are as follows. Users reach 

the stations to pick up a bike at varying departure rates 𝐷𝑖
̇  at station 𝑖 (we name this departure rate as 

the user’s intention is to take the bike and depart to their destination stations). This departure rate 𝐷𝑖
̇  

depends on station 𝑖 and varies throughout the day and with different days of the week. If there are no 

available bikes, the user leaves the system or waits until another user arrives to return a bike. Users 

arrive at their destination stations to return the bike at a varying rate 𝐴�̇� at station 𝑗. Similar to the 

departure rate, the arrival rate 𝐴�̇� depends on station 𝑗 and varies throughout the day and with different 

days of the week. If there are less than 𝐶𝑗 (i.e., capacity) bikes in this station, the user returns the bike 

and leaves the system. If the station is full, the user either chooses another station to return the bike 

or waits until another user reaches the station to pick up a bike. 

To consider the impact of system heterogeneity, we introduce a new QoS measurement for each 

station: Optimal Occupancy. The Optimal Occupancy of a station is formulated in terms of two 

services: (1) picking up bikes, and (2) returning bikes. As each station 𝑖 has a finite number of docks 

(i.e., capacity), two thresholds should be defined. The lower threshold (𝐿𝑖) is the point when the 

number of available bikes (𝐵𝑖,𝑡) in station 𝑖 at time 𝑡 drops low enough that the possibility of a user 

not finding a bike is very high. The upper threshold (𝑈𝑖) is the point when the number of bikes (𝐵𝑖,𝑡) 

in a station 𝑖 at time 𝑡 is high enough that the possibility of a user not finding a dock to return a bike 

is very high. For example, if a station’s capacity is 25 docks and the number of available bikes at time 

𝑡 is within [5, 20], then the station is considered functional, and otherwise it needs to be rebalanced 

(i.e., it is a problematic station). In that sense, the Optimal Occupancy (𝑂𝑜𝑝) is formulated as the ratio 

of the total time that a station is functional (𝑡𝑓) during a given interval to the length of the interval 

(𝑡𝑡𝑜𝑡𝑎𝑙): 

𝑂𝑜𝑝𝑖
=

𝑡𝑖,𝑓

𝑡𝑖,𝑡𝑜𝑡𝑎𝑙
 (8-5) 

where 𝑡𝑖,𝑓 = ∑ 𝑋𝑖(𝑡)
𝑡=𝑡𝑓
𝑡=0  where 𝑋𝑖(𝑡) is the status function and defined as  

𝑋𝑖(𝑡) = {
1, station 𝑖 is functional

0, station 𝑖 is problematic
 

(8-6) 

and station 𝑖 is functional if 𝐵𝑖,𝑡 ∈ [𝐿𝑖 , 𝑈𝑖] at any given time 𝑡. (8-7) 

As the two thresholds 𝐿𝑖  and 𝑈𝑖 define the functionality of the station, 𝐿𝑖 and 𝑈𝑖 are correlated with 

the departure rate 𝐷𝑖
̇  and arrival rate 𝐴𝑖

̇ , respectively. Both 𝐷𝑖
̇  and 𝐴𝑖

̇  randomly vary throughout the 

day, with different days of the week, and different months of the year. However, in this study, we 

assume that 𝐷𝑖
̇  and 𝐴𝑖

̇  vary only with different days of the week (𝐷𝑜𝑊), and different months of the 
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year (𝑀) to be consistent with the length of the study interval (see Analysis and Results section of this 

chapter). In fact, 𝐷𝑖
̇  and 𝐴𝑖

̇  are the bike counts picked up (𝐷𝑖) or returned (𝐴𝑖), respectively, per unit 

time (𝑡𝑖,𝑡𝑜𝑡𝑎𝑙). In that sense and to reflect the stochastic phenomenon in the system, 𝐷𝑖
̇  and 𝐴𝑖

̇  were 

modeled using a PRM with an exposure variable. Exposure is a measure of how the bike counts are 

divided. Since both rates are bike counts per unit time, time is considered as the exposure. The model 

contains a 𝑙𝑜𝑔(𝑡𝑖,𝑡𝑜𝑡𝑎𝑙), called the offset variable, as a term that could be added to the regression 

coefficients: 

𝐷𝑖  or 𝐴𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃𝑖
(𝐷) or (𝐴)

) (8-8) 

where 𝜃𝑖
(𝐷) 

=
𝜇𝑖

𝑡𝑖,𝑡𝑜𝑡𝑎𝑙
, and 𝜃𝑖

(𝐴) 
=

𝜆𝑖

𝑡𝑖,𝑡𝑜𝑡𝑎𝑙
 (8-9) 

log (
𝜇𝑖 or 𝜆𝑖

𝑡𝑖,𝑡𝑜𝑡𝑎𝑙
) = 𝛽0 + 𝛽1𝐷𝑜𝑊 + 𝛽2𝑀 (8-10) 

𝐿𝑖 = 𝜇𝑖 (8-11) 

𝑈𝑖 = 𝐶𝑖 − 𝜆𝑖 (8-12) 

In that sense, problematic stations can be redefined as stations that, at any given time 𝑡, have fewer 

bikes available than the expected bike counts to be picked up during analysis discretization duration 

or more bikes than the difference between capacity and the expected bike counts to be returned during 

analysis discretization duration. The next sections in this study will further explain the concept of the 

proposed Optimal Occupancy QoS measurement by applying it to a real BSS dataset and comparing 

the new definition of problematic stations with the one previously used. 

 Dataset 

One of the first BSSs in the U.S. was established in 1964 in Portland, with 60 bicycles available for 

public use. Although BSSs are still relatively limited, at present many cities, such as San Francisco 

and New York, have launched BSS programs. These programs implement different payment 

structures, conditions, and logistical strategies. In 2013, San Francisco launched the Bay Area Bike 

Share System (now operated by Ford under the name GoBike), a membership-based system providing 

24-hours-per-day, 7-days-per-week self-service access to short-term rental bicycles. A detailed 

description of this system is provided in section 3.4 of this report.   

This study used anonymized bike trip data collected from August 2013 to August 2015 in San 

Francisco (Hamner, 2016). This study used two datasets of 34 stations in downtown San Francisco 

(Error! Reference source not found.). The 34 stations have different capacities, ranging from 15 to 2

7 docks, which means the system is heterogeneous. The first dataset includes station ID, number of 

available bikes, number of available docks, and time of recording. The time data include the year, 

month, day of month, day of week, time of day, and minute at which a record was documented. As 

the database was updated every minute for 34 stations in San Francisco over 2 years, this dataset 

contains a large number of recorded incidents. The second dataset consists of the station ID, name of 
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station, latitude and longitude of each station, the maximum number of docks, and the installation 

date. The latitude and longitude of each station were converted to the Universal Transverse Mercator 

Coordinate (UTM) system, which is expressed as a two-dimensional projection on the surface of the 

Earth (National Geodetic Survey, 2017).  

 Analysis and Results 

In a BSS, the QoS measurement should reflect the spatial dependencies of BSS stations in addition to 

describing the performance of a station’s service. Consequently, we investigated the traditionally-

known QoS measurement using the Bay Area BSS dataset in San Francisco. We found that it was 

neither satisfying in exposing the spatial dependencies between stations nor adequate in describing 

the performance of the service.  

The first QoS measurement presented in different studies, such as in (Fricker & Gast, 2016; Fricker 

et al., 2012; Schuijbroek et al., 2013), is that of problematic stations, defined as stations that, at a given 

time, have no bikes available or no available spots for bikes to be returned to. This definition has been 

mainly used to describe the overall performance of the system. However, we used that definition to 

find a QoS measurement for a specific station by computing the ratio of the total time that a station is 

not problematic during a given interval to the length of the interval. The second measurement is our 

proposed QoS measurement, Optimal Occupancy (𝑂𝑜𝑝), which redefines problematic stations as 

stations that, at any given time 𝑡, have fewer bikes available than the expected bike counts to be picked 

up during analysis discretization duration or more bikes than the difference between capacity and the 

expected bike counts to be returned during analysis discretization duration. Similarly, we used our 

definition to find the Optimal Occupancy for a specific station by computing the ratio of the total time 

that a station is not problematic (i.e., functional) during a given interval to the length of the interval. 

For this specific dataset, and to effectively represent the service in the system, we defined the length 

of the study interval in both definitions as running from 8 a.m. to 5 p.m., the interval that was found 

to be the peak hours for the system (M. H. Almannaa, M. Elhenawy, A. Ghanem, H. I. Ashqar, & H. 

A. Rakha, 2017). Figure 8-1 shows the locations of the stations with the corresponding results of the 

two QoS average measurements (over 2 years) of 34 stations in the Bay Area Bike Share in San 

Francisco. The measurements were first found for every 15 minutes at each station then averaged over 

the interval of the peak hours for the system. 
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Figure 8-1. The locations, and the values of the (a) proposed QoS, and (b) traditionally-known 

QoS measurements. 

8.5.1 Analysis of Variance (ANOVA) 

Analysis of variance (ANOVA) was used to determine whether there were any statistically significant 

differences between the means of the two QoS measurements. Before interpreting the results of the 

hypothesis tests, we checked the ANOVA assumptions, and the hypothesis test results were found to 

be trustworthy. BSSs are highly heterogeneous, with arrival rates and pickup rates between stations 

in diverse areas and topographies varying with the time of day, day of the week, and season (M. H. 

Almannaa et al., 2017; Borgnat et al., 2011). Therefore, to fairly compare the two measurements, we 

compared the daily values for specific months and days. ANOVA was used to analyze the differences 

among four group means for all 34 stations: (1) Tuesdays of February, (2) Tuesdays of July, (3) 

Mondays of February, and (4) Mondays of July. The p-values resulting from testing the groups of 

traditionally-known QoS measurements were 0.7704, 0.8400, 0.5099, and 0.7443, respectively. This 

means that the null hypothesis is true and there are no significant differences (𝑝 > 0.05). On the other 

hand, the p-values resulting from testing the groups of the proposed QoS measurements (𝑂𝑜𝑝) were 

2.73𝐸 − 29, 3.25𝐸 − 36, 7.34𝐸 − 41, and 1.42𝐸 − 30, respectively. This means that the null 

hypothesis is rejected and that there were significant differences between the measurements of the 

stations (𝑝 < 0.05). Figure 8-2 shows the differences among the Tuesdays of February group means 

for all 34 stations, clearly demonstrating that the traditionally-known QoS cannot be used to 

discriminate between the stations, while the proposed Optimal Occupancy is discriminative to a 

sufficient extent. In that sense, recognition of the differences between the QoS of stations is not 

(a) (b) 
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required in and of itself but because it is necessary for operators to effectively manage the system and 

it appears to reflect the dynamics of the BSS. Although we present the results of only four groups, in 

fact we examined the ANOVA test for other groups that cover most of the days of the week and 

months of the year. The results were found to be consistent with the results presented here. 

 

Figure 8-2. ANOVA test for Tuesdays of February for the 34 stations for (a) traditionally-

known QoS, and (b) proposed QoS. 

8.5.2 Spatial Analysis 

We applied geo-statistics to explore the spatial configuration of Optimal Occupancy variations. We 

used two packages in R: geoR to analyze geostatistical data (Ribeiro Jr & Diggle, 2001) and gstat to 

perform geostatistical modelling and prediction (Pebesma, 2004). The analysis was performed to 

assess whether the proposed Optimal Occupancy measurements can reflect the spatial dependencies 

and be used to predict the QoS in nearby areas. This would allow operators to determine candidate 

spots for new stations in the BSS, increasing the overall QoS of the system. 

Spatial statistics attempt to develop inferential methods to properly account for the spatial 

dependences in the presence of georeferenced observations. Spatial modeling typically contains a 

specification of a mean function and a model of the correlation structure (i.e., variogram), which is a 

description of the spatial continuity of the data. The variogram is the key function in geostatistics, as 

it is used to fit a model of the spatial correlation of the observed phenomenon (Banerjee, Carlin, & 

Gelfand, 2014). A variogram model is chosen by plotting the empirical variogram, which is a simple 

nonparametric estimate of the variogram, and then comparing it to various theoretical shapes 

(a) 

(b) 
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available. A variogram could be mathematically defined as (Banerjee et al., 2014): 

𝛾(∆𝑥, ∆𝑦) =
1

2
𝜀 [{𝑍(𝑥 + ∆𝑥, 𝑦 + ∆𝑦} − 𝑍(𝑥, 𝑦)}2] (8-13) 

 

where 𝑍(𝑥, 𝑦) is the value of the variable of interest at location (𝑥, 𝑦), and 𝜀 [ ] is the statistical 

expectation operator. The variogram, 𝛾(), is a function of the separation between points (∆𝑥, ∆ 𝑦), 

and not a function of the specific location (𝑥, 𝑦). However, one common assumption of the spatial 

analysis is that it is isotropic. An isotropic variogram means that the correlation between any two 

observations depends only on the distance between those locations and not on their relative direction; 

otherwise, it is anisotropic (Maity & Sherman, 2012). 

A series of directional empirical variograms (including directions between 0° and 180°) was 

investigated to highlight the main observations’ directions and check the spatial isotropy in the 

proposed QoS measurements data. The results illustrate that we cannot assume isotropy and that the 

directional empirical variogram for 45° outperforms other variograms, as it reflects the correlation 

between the observations and the distance. The empirical variogram for 45° using transformed 

coordinates was estimated and is illustrated in Figure 8-3. It shows a steady increase in the semi-

variance over increasing distance intervals to an absolute maximum between 1.0 and 1.5 km. For 

greater distances, Figure 8-3 displays an oscillatory state with a second maximum around 2.5 and 

3 km. 

 

Figure 8-3. The empirical variogram for 45° using transformed coordinates. 

Modeling variograms are usually used for spatial prediction (i.e., interpolation). Most practical studies 

used exponential, spherical, and Gaussian models. As we assumed anisotropy, we applied the 

maximum likelihood estimation of spatial regression models to estimate the angle for geometric 

anisotropy of the three models. The exponential variogram model yields the most beneficial 

realization of the spatial process in the BSS. While the spherical model yields a decent estimation, the 

Gaussian model fails to fit a variogram that manifests the spatial correlation. We also applied the 

maximum likelihood estimation for the same three models to fit the traditionally-known QoS 

measurement to compare it with the Optimal Occupancy. Similarly, the exponential variogram model 
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outperforms the spherical and the Gaussian models. Results in Table 8-1 show some inferences. 

According to the BIC of the spatial and non-spatial models, the spatial model for Optimal Occupancy 

outperforms the non-spatial model, but the traditionally-known QoS non-spatial model outperforms 

the spatial one. This shows that the traditionally-known QoS cannot expose the spatial dependencies 

between stations. Therefore, using Optimal Occupancy is more advantageous than using the 

traditionally-known QoS. As the BIC for the spatial model demonstrates, Optimal Occupancy as a 

measurement is more gainful and would result in better prediction of the QoS in a BSS. 

Table 8-1. Parameters estimation of the exponential model for Optimal Occupancy and 

traditionally-known QoS. 

 
BIC for 

spatial 

BIC for non-

spatial 
Angle 

Optimal Occupancy -55.46 -52.12 78° 

Traditionally-known 

QoS 
-204.50 -211.10 71° 

 

8.5.3 Optimal Location of New Stations 

We proposed Optimal Occupancy as a QoS measurement to: (1) allow the operator to keep track of 

the performance of different stations in a BSS, so, for example, they may increase the number of 

docks/available bikes in a station; (2) identify the optimal location of new stations in existing systems 

using a data-driven decision management approach. In the previous section, geo-statistics were used 

to model a spatial variogram that could predict the QoS in nearby areas for the purpose of locating 

new stations in an existing BSS. The model was used to produce new QoS datasets in order to build 

a QoS surface for the case study area. Figure 8-4 shows the QoS surface for the case study area in San 

Francisco. This surface could be used to quantify and visualize the QoS measurements represented by 

contours in the surface. Looking at the surface in Figure 8-4, there are four hot spots (red-colored) 

that could be considered as candidates to add new stations nearby or increase the number of docks in 

a station. By considering these candidates, we convert the surface into more homogeneous QoS 

terrain, which means the BSS will be more functional (i.e., less problematic stations at any given time) 

and easier to rebalance. It is also interesting to note that during our study, Ford GoBike, the operator 

of the case study BSS, added different “coming-soon” stations near the aforementioned areas or added 

more docks to others. For example, a coming-soon station is to be built very near to Station 50, which 

is shown in Figure 8-1 (a). We hypothesize this station was added to increase the functionality of 

Station 50 (Ford GoBike, 2018). 
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Figure 8-4. Predicted QoS surface for the case study area. 

In (H. I. Ashqar, Elhenawy, & Rakha, 2018), a model was developed to predict the bike counts at each 

station in the Bay Area BSS using RF as a univariate regression algorithm for different prediction 

horizons. Modeling bike counts using RF produced a MAE of 0.37 bikes/station, which means the 

model was found to be promising. Station 50, the Harry Bridges Plaza Station, was also found to be 

one of the highly unpredictable stations due to the large fluctuations in bike counts. When the area 

around the Harry Bridges Plaza Station was studied, it was hypothesized that this high 

incoming/outgoing demand is a result of the station being in an open air area at the end of a market 

and restaurants, where artists, skaters, tourists and others congregate (SF Station, 2017). We used the 

developed model in (H. I. Ashqar et al., 2018) to prove our hypothesis that adding a new station, for 

example near Station 50, will increase its functionality. We compared the proposed QoS values for 

two different days of the week, Monday and Tuesday of July, before and after adding the new 

suggested station near Station 50. The model was used to predict the bike counts at Station 50 every 

15 minutes for each of the selected days to estimate the proposed QoS using Equations (8-5) through 

(8-12). We assumed that the new station will cover only a third of the two types of services that Station 

50 used to serve. The resulting QoS for Station 50 was improved after adding the new suggested 

station by an increase from 0.52 to 0.84 and from 0.43 to 0.79 for Monday and Tuesday of July, 

respectively. 

 Conclusions 

BSS operators tend to spend a great amount of time and effort to satisfy users. Accurately measuring 

Station 50 Station 60 

Station 65 

Station 70 

Station 69 
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the QoS of each station in a BSS will advance this mission. Moreover, measuring the QoS and using 

it to study the spatial dependencies in a BSS allows operators to better manage the system. For 

example, operators can determine candidate spots for new stations that will improve the overall QoS. 

Consequently, we investigated the traditionally-known QoS measurement and found it to be largely 

indiscriminative at the station level and not reflective of the spatial correlations. For that reason, we 

introduced a new QoS measurement, Optimal Occupancy. The Optimal Occupancy at a station is 

formulated in terms of two types of services: (1) picking up bikes and (2) returning bikes. It is 

formulated as the ratio of the total time a station is functional during a given interval to the length of 

the interval. Consequently, we redefined problematic stations as stations that, at any given time, have 

fewer bikes available than the expected bike counts to be picked up during the analysis discretization 

duration or more bikes than the difference between capacity and the expected bike counts to be 

returned during the analysis discretization period. 

We further studied the proposed QoS measurement by applying it to a real dataset of 34 stations in 

San Francisco and also compared the new definition of problematic stations with the previous 

definition. First, results from ANOVA analysis clearly demonstrate that the traditionally-known QoS 

cannot be used to discriminate between the stations, whereas the Optimal Occupancy is found to be 

sufficiently discriminative. Recognition of the differences between the QoS of stations benefits the 

effective management of the system, and appears to reflect the dynamic nature of the BSS. 

Second, we applied geo-statistics to explore the spatial configuration of the Optimal Occupancy 

variations and model variograms for spatial prediction. The empirical variogram shows a steady 

increase in semi-variance over increasing distance intervals to an absolute maximum between 

1 and 1.5 km. The exponential variogram model was fitted and yields the most beneficial realization 

of the spatial process in the BSS. Results revealed that the spatial model for Optimal Occupancy 

outperforms the non-spatial model. Furthermore, Optimal Occupancy as a measurement is more 

gainful and would result in better prediction for the QoS in nearby locations. The spatial model was 

used to produce new QoS datasets in order to build a QoS surface for the case study area. Adding new 

stations near the hot spots in the surface, we were able to convert the surface into a more homogeneous 

QoS terrain, indicating that the BSS will be more functional and easier to rebalance as a result of this 

change. For example, the resulting QoS for Station 50 was improved after adding the new suggested 

station from 0.52 to 0.84 and from 0.43 to 0.79 for Monday and Tuesday of July, respectively. 
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 A Can Portable Stations Resolve Bike Share 

System Station Imbalances? 

 Introduction 

Due to the large increase in vehicles on the road over the years, cities face challenges in providing 

high-quality transportation services. Traffic jams are a clear sign that cities are overwhelmed, and 

that current transportations networks and systems cannot accommodate the current demand 

without a change in policy, infrastructure, transportation modes, and commuters’ choice of 

transportation mode. In response to this issue, cities in a number of countries have started putting 

a threshold on the number of vehicles on the road by deploying a partial or complete ban on cars 

in the city center. For example, in Oslo, leaders have decided to completely ban privately-owned 

cars from its center by the end of 2019, making it the first European country to totally ban cars in 

the city center. Instead, public transit and cycling will be supported and encouraged in the banned-

car zone, and all parking spaces in the city will be replaced by bike lanes. As another example, in 

Dublin, Ireland, a proposal has been made to totally ban privately-owned cars from selected areas 

of the city center and push for public transit and bicycle use ("Proposals to ban cars and taxis from 

Dublin city centre," 2018). 

As an effort by governments to support bicycling and offer alternative transportation modes, BSSs 

have been introduced over 50 countries (DeMaio, 2009). BSSs aim to encourage people to travel 

via bike by distributing bicycles from stations located across an area of service. Residents and 

visitors can borrow a bike from any station and then return it to any station near their destination. 

Bicycles are considered an affordable, easy-to-use, and, healthy transportation mode, and BSSs 

show significant transportation, environment, and health benefits. In transportation, BSSs replace 

privately-owned car trips with bicycling, thereby mitigating traffic jams in the city. A survey 

conducted by McNeil at al. found that 80% or more of BSS users said they use BSSs for 

shopping/errands, social/recreational, trips to and from public transit, and commute trips (McNeil, 

Dill, MacArthur, & Broach, 2017), confirming that BSSs are becoming a reliable and convenient 

transportation mode for both recreational and non-recreational trips. In the environmental and 

health fields, the reduction in privately-owned car trips means less carbon energy consumption 

and carbon emissions. Qiu and He found that using BSSs in Beijing could save workers 8 minutes 

per day and that this saving could result in reducing fuel consumption by 225.05 thousand tons 

(Qiu & He, 2018). This would contribute in increasing the GDP of Beijing by Ren Min Bi (RMB) 

1.2 billion (RMB is the official currency of china) and reducing the health costs by RMB 2420.57 

million yuan. 

As the use of BSSs has grown, imbalance has become an issue and an obstacle for further growth. 

Imbalance occurs when bikers cannot drop off or pick-up a bike because the bike station is either 

full or empty. This problem has been investigated extensively by many researchers and policy 

makers, and several solutions have been proposed (Alvarez-Valdes et al., 2016; Angeloudis, Hu, 

& Bell, 2014; Contardo et al., 2012; Pfrommer et al., 2014; Schuijbroek et al., 2013).The main 

approaches are static and dynamic, both of which deal with the movement of bikes between 
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stations either during or at the end of the day to overcome imbalance. They both assume the 

location and number of bike stations are fixed and only the bikes can be moved. This is a realistic 

assumption given that current BSSs have only fixed stations. However, cities are dynamic and 

their geographical and economic growth affects the distribution of trips in cities and thus 

constantly changes BSS users’ behavior. In addition, work-related bike trips cause certain stations 

to face a high-demand level during weekdays, while these same stations are at a low-demand level 

on weekends, and thus become useless (Mohammed H Almannaa, Mohammed Elhenawy, Ahmed 

Ghanem, Huthaifa I Ashqar, & Hesham A Rakha, 2017). Moreover, fixed stations fail to 

accommodate big events such football games, holidays, or sudden weather changes. 

One solution for adapting to these challenges is installing and reinstalling stations; however, this 

is costly and impractical. Taking a different approach, a new generation of BSSs was introduced 

in China in 2015—the dock-less (or station-free) BSS takes an approach in which the BSS does 

not have stations. Rather, bikes are distributed along city sidewalks. Residents and visitors can rent 

a bike from anywhere and leave it within a defined zone. Although this innovative approach 

partially overcomes the issue of imbalance and gives bikers more flexibility, it does create other 

problems. First, this system has created chaotic parking problems in high-density cities where users 

leave their bikes in inappropriate locations, especially during rush hours and in the city center and 

at tourist sites (Cui, 2018). Second, in low-density cities, bikes are often left in remote locations 

and thus become sparse in the city, making it more difficult for users to find a bike. Eventually, 

the efficiency and reliability of the BSS will be affected negatively and as a result, customer 

satisfaction and the BSS’s revenue decreases. 

In this chapter, we propose a new generation of BSS in which we assume some of the bike stations 

can be portable. This approach takes advantage of both types of BSS: dock and dock-less. This 

idea is supported by the fact that many bike stations, for example in the San Francisco Bay Area, 

are installed on streets (Figure 9-1), and thus can be easily linked to portable stations. The proposed 

portable stations can function as either individual stations (standalone) or as an extension of 

existing bike stations. This concept is proposed to overcome the constraints of most current 

rebalancing algorithms in the following ways: (1) the locations of the docking stations are no 

longer fixed (2) the capacity (Q) of each station will become Q+X, where X represents the size of 

the portable station (3) the (un)loading time of bikes during repositioning operations will be zero, 

thus minimizing labor costs (4) there will be no time required for the portable stations to find 

parking, as they can be linked to the existing stations. 

The goal of this research effort was to develop a simulation-based portable stations model as a 

proof-of-concept. A BSS of 35 stations in the San Francisco Bay area was utilized and tested using 

the proposed approach, and the results show that adding only one portable station to the BSS can 

reduce missed bike pick-ups and thus enhance customer satisfaction by approximately 10% on 

average compared to the traditional static approach. Moreover, adding one more portable station 

could reduce missed bike pick-ups by almost 25% and reduce repositioning operations as much as 

three times. 
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Figure 9-1. Off-street bike station located at 594 Howard St., San Francisco (Source: 

Google Earth). 

 Related Work 

Previous research efforts have been largely spent on two main rebalancing approaches: the SBRP 

and the DBRP. The SBRP neglects the bikes’ movements while rebalancing the stations, so static 

repositioning is done overnight when there is minimal bike usage. Unlike the SBRP, the DBRP 

takes into consideration the bikes’ movement while rebalancing, and can thus be done anytime 

during the day. 

For the SBRP approach, research efforts vary based on the objective function, size of the service 

vehicles, the allowance of multiple visits, and the adopted technique (Caggiani & Ottomanelli, 

2012; Chemla, Meunier, & Calvo, 2013; Espegren et al., 2016). Espegren et al. proposed a model 

to minimize the deviation from the optimal status of the stations (Espegren et al., 2016). The 

proposed model allowed for more than one visit for stations by a fleet of vehicles. Their objective 

function allows for a non-perfect solution. Caggiani and Ottomanelli developed a modular decision 

support system with an objective function of minimizing both deviation from the stations’ optimal 

status and the cost of moving bikes between stations (Caggiani & Ottomanelli, 2012). Their 

proposed system also included finding the optimal time horizon and route for the service vehicle.  

Chemla et al. adopted the branch-and-cut algorithm to rebalance bike distribution using only one 

service vehicle (Chemla et al., 2013). The objective function was minimizing the distance traveled 

by the service vehicle. Elhenawy and Rakha proposed a rebalancing algorithm, called the deferred 

acceptance algorithm, based on the game theory algorithm. Their proposed algorithm had two 

phases: tour construction and tour improvement. The objective function was to minimize the total 

tour cost (Elhenawy & Rakha, 2017b). Kadri and Kacem formulated the balancing problem 

mathematically with two lower and four upper bonds (Kadri, Kacem, & Labadi, 2018). The two 

lower bonds were developed based on Eastman’s bound while the four upper bonds were based on 
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a genetic algorithm. These bonds were incorporated in a branch-and-bound algorithm. The authors 

used a fleet of vehicles and aimed to minimize the duration of imbalanced stations. 

These aforementioned studies using the SBRP approach assume the user’s demand to be negligible 

while performing the repositioning operations. Consequently, rebalancing efforts are conducted at 

the end of day, making rebalancing a day-to-day operation, which means that this approach fails 

to prevent imbalance during the day. As a response, researchers investigated a faster approach, the 

DBRP, to reposition bikes dynamically by allowing repositioning decisions to be adapted over the 

planning horizon. The DBRP approach was shown to give a better result than the SBRP approach 

due to its ability to rebalance continually during the day (Brinkmann, Ulmer, & Mattfeld, 2015; 

Brinkmann et al., 2016; Chiariotti, Pielli, Zanella, & Zorzi, 2018; Ghosh et al., 2017; Kloimüllner 

et al., 2014; Regue & Recker, 2014; Vogel & Mattfeld, 2010). 

Recent DBRP research work differs mainly with regard to the objective function of rebalancing, 

routing and rebalancing technique, size of the fleet of the service vehicle, and scalability. 

Brinkmann et al. developed  a dynamic model to overcome imbalance by incorporating two 

strategies: short and long (Brinkmann et al., 2016). The short-term strategy aimed to find the bike 

stations that are at risk of being imbalanced, while the long-term strategy suggested a number of 

stations to be considered for repositioning operations based on the short-term strategy. The 

objective of their developed model was to minimize the number of times that stations are 

imbalanced with only one service vehicle. Contardo et. al used Danzig-Wolf and Benders 

decomposition to rebalance bike distribution using a scalable methodology with lower and upper 

bounds (Kloimüllner et al., 2014). The goal of their proposed model was to minimize stations’ 

deviation from their optimal status using a fleet of service vehicles with large instances of stations. 

Ghosh et al. adopted a mixed integer linear programming approach with the goal of maximizing 

service and minimizing the cost of repositioning operations (Ghosh et al., 2017). The authors used 

clustering techniques for simplification purposes. Multiple service vehicles and large instances 

were used in the proposed model. Chiariotti et al. proposed a dynamic model using birth-death 

processes (Chiariotti et al., 2018). They predicted stations’ statuses and then determined the 

optimal time for repositioning operations. The graph theory was used to choose the optimal path 

to order service vehicle destinations.  

Although the DBRP has advanced repositioning operations substantially, all existing approaches 

assume the stations are fixed, ignoring the dynamic spatial-temporal demand.  For example, recent 

studies have shown the pattern of use differs significantly on weekdays and weekends, making 

some stations useless at certain times and days (Almannaa et al., 2017; Kaltenbrunner et al., 2010). 

In addition, (Mohammed H Almannaa et al., 2017) showed that some stations experience 

imbalance only during specific weekdays but have low-demand on the other days of the week. As 

a real-life example, a BSS in the San Francisco Bay Area (now operated by Ford as the GoBike 

BSS) opened in 2013 and the locations of stations have changed significantly since then . That is 

due to the fact the city changes dynamically and thus the trips’ distribution evolves, following new 

business and entertainment locations. 

To the best of our knowledge, the stations’ relocations were rarely based on academic research 

(Walteros & Swamy, 2017). In (Walteros & Swamy, 2017) , the authors proposed a mathematical 

http://www.mdpi.com/search?authors=Federico%20Chiariotti&orcid=0000-0002-7915-7275
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model to formulate bike movements between stations as a scheduling problem using a mixed 

integer programming approach.  However, the proposed approach is not applicable to BSSs 

because the developed model cannot accommodate their complex dynamics, which include 

bottlenecking in operations as well as uncertainty. To fill this gap, an agent-based simulation 

approach is proposed to address these issues. Computational experiments demonstrated obtainable 

high-quality solutions that are applicable in industry-scale applications. Based on the obtained 

results, several insights and recommendations were made regarding the use of portable stations. 

 Dataset 

This study used the Bay Area’s BSS trip dataset, containing data collected from August 2013 to 

August 2015 in the San Francisco Bay Area. During that period, the BSS had 70 stations covering 

five cities (see Figure 3-1): San Francisco (35 stations), Palo Alto (5 stations), Mountain View (7 

stations), Redwood City (7 stations), and San Jose (16 stations). The dataset contains 669,960 trips, 

each of which includes bike ID, trip duration, trip start day and time, trip end day and time, trip 

start ID station, and trip end ID station. Another file called “station” was also used; this file 

contains geographic and operating information of each station, including latitude, longitude, 

capacity, city, and installation date. 

During the analysis phase, we found that the demand during off-peak hours was stable (Figure 

9-2), so we only considered the hours of 6:00 a.m. to 8:00 p.m. when simulating the network. That 

is, we assumed the level of demand at stations at the end of the day (i.e., 8:00 p.m.) was the same 

as at the beginning of the day (i.e., 6:00 a.m.). Also, for simplicity purposes, we used only trips 

that occurred on Mondays (104 days). We also only used stations located in San Francisco, as our 

analysis showed it had the highest imbalance compared to the other four cities. 

During data preparation, a source-destination matrix was built to count all trips for each hour 

between each pair of stations, and then a probability transition matrix was created. This was done 

for all Mondays during the period from 6:00 a.m. to 8:00 p.m. Similarly, the associated travel times 

with source-destination matrix were extracted from the trips dataset. Given the presence of outliers 

in the trip dataset (either very short or long trips), we only extracted 95% of the trips, meaning we 

excluded the shortest and longest 2.5% of trips. 
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Figure 9-2. Bike counts for randomly selected station during one day. 

 Agent-Based Simulation Model 

We developed a BSS simulator using MATLAB software. The simulator was used to simulate the 

BSS in downtown San Francisco (35 stations; Figure 9-3). We investigated the proposed portable 

station by simulating two scenarios. In the first scenario, we added only one portable station to 

downtown San Francisco. In the second scenario, we increased the number of portable stations by 

one. Due to the lack of socioeconomic information for the study area, we assumed the portable 

station could only be linked to the existing stations, meaning it could not be standalone. That is, 

we did not know the arrival rate for other points of interest; we knew only the bike stations’ 

locations. We assumed the capacity of the portable station to be 𝑄 bikes, and that it moved at a 

speed of 15 mph given that it is moving in a congested business area. 

Our simulation model assumed the following: 

1. The arrival of bikers at stations to pick-up bikes follows a Poisson process in which the 

hourly arrival rate was estimated based on 2-year historical data. 

2. Bikers’ travel time follows a Gamma distribution, where the Gamma distribution’s 

parameters were estimated using the 2-year historical data between each pair of stations. 

3. The bikers chose their destination based on a multinomial distribution whose parameters 

were estimated using the 2-years of data. In other words, we estimated a transition matrix 

with independent rows. Each row 𝑖 in this matrix contains multinomial probabilities which 

control the transition from station 𝑖 to station 𝑗 where 𝑖, 𝑗 ∈ {1,2, … ,34,35}. 

4. In the case of a full station, bikers neither wait nor leave the bike unlocked. Instead, they 
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start searching the BSS app for the nearest station with an empty rack to drop off the bike.  

5. In the case of an empty station, the biker will find another mode of transportation.  

6. Each station in the BSS starts the day at a half-capacity level. That is, we assume the 

chances are similar for both imbalanced states: empty and full. Therefore, the goal is for 

stations to remain at the same level so that there is no need for rebalancing in order for the 

system to operate the next day. 

7. The portable station can start from any station at the beginning of the day, then keeps 

moving between stations until the end of the day. 

8. Before a portable station leaves the station it is linked to, it tries to make the number of 

available bikes as close as possible to half capacity by picking up or dropping off bikes. 

9. The portable station decides on the next station and moves to that station at the beginning 

of each hour with a speed of 15 mph. 

Simulation was conducted every deci-second. 

The portable station chooses the next station in a greedy way based on (9-1) and (9-2) as follows: 

𝑅𝑡+1 = 𝑆𝑡 − 𝜆𝑡+1 + 𝑃𝑡+1
𝑇 𝑇

𝜆𝑡+1        (9-1) 

 

minarg
𝑖

(|
𝑄𝑗

2
| − 𝐻𝑗 + 𝑟𝑖)                      (9-2) 

 

Where  

 𝑆𝑡 is a column vector where each element 𝑖 is current available bikes at station 𝑖  

 𝜆𝑡+1 is a column vector where each element 𝑖 is the arrival rate of bikers per hour at station 

𝑖 at time 𝑡 + 1 

 𝑃𝑡+1 is the transition matrix at time 𝑡 + 1 

 𝑄𝑗 is the capacity of portable station j 

 𝐻𝑗 is the number of bikes loaded on the portable station at time 𝑡 

 𝑟𝑖 is the 𝑖𝑡ℎ element of the 𝑅𝑡+1 

Equation (9-1) predicts the number of bikes at each station at time 𝑡 + 1 when the initial number 

of bikes at time 𝑡 is 𝑆𝑡. As shown in Equation (9-2), the portable station prefers the station that 

will keeps it loaded at half capacity after it visits the station. 
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Figure 9-3. Locations of 35 bike stations in downtown San Francisco (Source: Google 

Maps). 

 Model Testing  

9.5.1 Evaluation Criteria 

We ran the simulation 35 times with and without the portable station. Two measures were used to 

quantify the benefits of the portable station. The first measure was the sum of missed bike pick-

ups, which is the count of bikers arriving at BSS stations who are unable to find available bikes. 

Missed pick-ups due to BSS imbalances threaten the reliability and sustainability of BSSs and 

could result in reduced customer satisfaction. The BSS’s operating agency loses its revenue and 

the bikers who are unable to use the BSS go back to using their own car, contributing to city 

congestion. 

The second measure was the sum of the absolute difference between the initial number of bikes 

available (start of the day) at each station and the number of bikes available at the end of the 

operation period/day (9-3) 

∑ |𝐵𝑖
𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦

− 𝐵𝑖
𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦

|35
𝑖=1         (9-3) 
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where 𝐵𝑖
𝑡is the number of available bikes at station 𝑖 at time 𝑡. This measure is important as it is 

related to the number of bikes that need to be relocated during the rebalancing process. We should 

highlight that the main goal of the portable stations is to increase user satisfaction with a byproduct 

of reducing the rebalancing effort at the end of the day. 

9.5.2 Results  

We ran a simulation of the proposed portable station 35 times, with each repetition representing a 

24-hour day simulation with a different portable station starting point. The varied starting point 

was intended to add a randomness to the results and avoid any effects of a particular initial starting 

point. The aggregate results show that adding one portable station to the network can reduce missed 

pick-ups and thus enhance customer satisfaction by approximately 10% on average compared to 

the traditional SBRP approach (Figure 9-4 and Figure 9-5).  

 

Figure 9-4.  Box plot of the average missed bike pick-ups per day for the two approaches: 

portable stations and SBRP. 
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Figure 9-5.  Box plot of the average deviation from the optimal status for the two 

approaches: portable stations and SBRP. 

To test the significance of the results, a permutation test (resampling test) was utilized. This test 

draws randomly from a set of the datapoints with a goal of estimating the precision of a sample. 

The test revealed that the results of these two approaches were significantly different, with a p-

value of 0.0004 (at 0.05 level). 

In exploring the portable station’s path, we observed the following:  

1. Although the path changed significantly with each starting station, this did not seem to play 

a role in the final imbalance results given the high degree of connectivity between stations.  

2. The portable station was more likely to leave its location each hour, suggesting that the 

length of stay might be reduced to be a variable instead of constant.  

3. The majority of the imbalanced conditions for all stations occurred during the second half 

of the day (1:00–8:00 p.m.; Figure 9-6), suggesting that portable stations should be 

deployed at certain times of day instead of throughout the entire day  

4. Four stations carried almost 50% of the missed pick-ups (Figure 9-7, circled in red). This 

can be explained by the fact that these four stations are close to either a public 

transportation service or a hub for other bike stations, indicating that the downtown area 

should be divided into four areas, with each area having its own designated portable station. 
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Figure 9-6. Average accumulated missed bike pick-ups per day when using portable 

station. 

 

Figure 9-7. Four stations circled in red had 50% of missed bike pick-ups. 

To consider other simulation scenarios in terms of the size and the number of portable stations, we 

conducted a sensitivity analysis with respect to both customer satisfaction (represented by missed 

bike pick-ups) and imbalanced operation (represented by deviation from the optimal status). First, 
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we investigated the effect of the size of the portable station on the reduction of missed bike pick-

up (Figure 9-8). The reduction of the missed pick-ups increased two times when the number of 

bikes at the portable station increased from 20 to 30. Second, we analyzed the impact on both 

customer satisfaction and repositioning operation of increasing the number of portable stations 

from one to two (Figure 9-9). Adding one more portable station increased the percentage of the 

reduction in missed pick-ups to almost 25%. The sensitivity analysis also showed that adding a 

portable station could increase the reduction in the deviation from the stations’ optimal status as 

much as three times. 

 

Figure 9-8. The effect of the size of the portable station on the missed bike pick-ups. 
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Figure 9-9. The effect of the number of portable stations on missed bike pick-ups and 

deviation from stations’ optimal status. 

Along with improving both user satisfaction and imbalanced operation with the addition of only 

one or two portable stations, this approach addresses shortcomings of the other two main 

rebalancing approaches (static and dynamic). First, the portable station does not have to spend 

time looking for a parking sport. Second, no loading or unloading bikes of is needed given that 

bikers would be able to drop off/pick-up the bike directly from the portable station without any 

assistance from operating agency personnel. Third, while the other two approaches require a depot 

for the service truck, this approach does not, as the portable station could be part of the BSS. 

Fourth, it makes the best use of the BSS’s stations by moving the low-demand stations to high-

demand areas, capturing the dynamic growth of the city without changing the infrastructure. 

We believe the results of this approach could be improved significantly if assuming the portable 

stations can be standalone, making the length of stay a variable, and by developing an optimal 

technique to give high priority to stations in need of urgent-help when moving the portable stations. 

 Conclusions 

BSSs have expanded rapidly worldwide due to their significant benefits to environmental, 

transportation, and health sectors. Yet logistical issues threaten BSSs’ ability to continue growing 

and maintain their customers. If users cannot rent or drop off a bike because the station is either 

empty or full they will be less likely to participate in a BSS. Previous studies have investigated 

two main approaches to rebalancing—static and dynamic—both of which assume all stations are 

fixed. In this chapter, we investigated the advantage of having portable bike stations, using an 

agent-based simulation approach as a proof-of-concept. We used data from a period covering 2 

years of BSS operation in the San Francisco Bay Area. Results revealed that adding one portable 
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station could decrease missed pick-ups by approximately 10%, leading to enhanced customer 

satisfaction and operation repositioning. Sensitivity analysis showed that adding one more portable 

station could increase the percentage in the reduction of missed pick-ups to almost 25%. Finally, 

the obtained results showed that adding one portable station could increase the reduction in the 

deviation from the optimal status of stations as much as three times. 

In the future, we will enhance the proposed rebalancing approach by  

1. Investigating the possibility and advantage of making portable stations’ length of stay 

variable instead of constant. 

2. Developing an optimal way to move the portable stations instead of using the greedy 

approach, enhancing both repositioning imbalance and customer satisfaction. 

3. Considering spatial and temporal clustering techniques when assigning and timing portable 

stations. 

4. Using the Markov chain process to identify optimal bike counts at the start of the day 

instead of assuming that stations are at half capacity. 

5. Adapting a predictive model to anticipate instantaneous demand. 

6. Analyzing downtown San Francisco’s socioeconomic information to estimate the number 

of trips at each point to determine if the portable station can operate as a standalone station. 
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 Bike Share Travel Time Modeling: San Francisco 

Bay Area Case Study 

  Introduction and Motivation 

BSSs are emerging as a new trend in many urban areas to provide a last-mile solution for short-

distance transfers between different private and public transportation modes (Ram et al., 2016). 

BSSs are not a new service; in fact, they have been in existence for almost five decades (DeMaio, 

2009). As of 2014, BSSs were in use in over 700 cities in 50 countries, their numbers having grown 

rapidly over the past 3 years (Shaheen, Martin, Cohen, Chan, & Pogodzinski, 2014). In the U.S., 

several major cities, such as New York, NY, Chicago, IL and Seattle, WA, have recently started 

BSSs. BSSs have also been adopted in populous places such as the Bay Area in CA. These are all 

examples of BSSs serving areas with high urban densities. 

As the number of BSSs across the nation increases, more planning is required to support biking as 

a trending transportation mode. In order to encourage the increased use of bikes as a mode of 

transportation, tools, measures, and planning techniques similar to those used for other 

transportation modes need to be developed. Increased use of bikes and BSSs has many benefits, 

including lower congestion levels, reduced effects of environmental pollution, and improved BSS 

user lifestyles. 

Roadway congestion levels began to rise again along with the US economy’s recovery from the 

most recent recession. Congestion levels have not only returned to the pre-recession levels of 2000 

and before, but they are now even greater, causing more congestion problems. By 2014, congestion 

had caused travel delay to increase to 6.9 billion hours per year, up from 5.2 billion hours per year 

in 2000. Additionally, congestion costs increased by nearly $46 billion between 2000 and 2014, 

reaching $160 billion in 2014 (Scorecard, 2015). Ideally, the increased presence and use of BSSs 

will mean decreased congestion levels. 

With growing warnings and worries about climate change and increased recommendations to 

reduce fossil fuel consumption, people are more open to using sustainable transportation modes. 

Shifting from using motorized transportation modes to the use of sustainable transportation modes, 

such as driving electric vehicles, biking, and walking, can benefit the environment in many ways, 

including reducing toxic gas emissions and noise levels. Biking, in particular, can also be an 

important part of a healthy lifestyle, as it incorporates physical activity into the biker’s daily 

routine. 

Many cities in the US are striving to offer better services to BSS users. They offer cheap rates for 

trips ranging between 30 and 45 minutes if users subscribe to the system, allowing one bike to 

serve many users per day. In addition, in order to improve their BSSs, cities and counties are 

offering public use of their BSS datasets to encourage researchers to analyze them. One of the 

most important pieces of data in these datasets is travel time. 

This paper focuses on predicting BSS travel time considering different predictors, including trip 

distance, time-of-day, weather conditions, and biker experience. We chose to focus on travel time 
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for a number of reasons. First, many transportation studies addressing multi-modal trip planning 

and routing try to find a path between points that is optimal according to some criteria. The most 

obvious of these criteria is optimizing for the shortest path. However, other criteria, including 

energy cost, number of transfers, and travel time have also been used (Booth, Sistla, Wolfson, & 

Cruz, 2009). Consequently, predicting bike travel time is vital to these studies. Second, BSS 

service levels are dependent on the availability of bikes for a pick-up and the availability of docks 

for a return. In order to maintain the system in a balanced state, bikes need to be moved from 

stations with more bikes to stations with fewer bikes regularly, in a process called rebalancing. 

Maintaining a BSS in a balancing state is an NP-hard problem. Many algorithms have been used 

to solve this problem in an efficient way. However, this requires a great deal of work due to the 

recurring nature of the problem. Incentivizing BSS users to move bikes between stations as 

proposed in (Singla et al., 2015) reduces the cost and work of the rebalancing process. Predicting 

bike travel time can help in the process of incentivized rebalancing by providing an idea about 

when and where bikes will be available. Third, bike share travel time, to the best of our knowledge, 

has not been studied a great deal, despite the growing body of literature that focuses on BSSs. 

Fourth, although some studies have addressed bike speed, none of them have addressed weather 

conditions, which we argue can have an effect on bike travel time. Going forward, this paper will 

refer to BSS travel time as bike travel time. 

The remainder of this chapter is organized as follows. Related work is discussed in section 2. In 

section 3, we describe the dataset used. In section 4, we present the methods used for travel time 

prediction. We show the results and analyses in section 5. Finally, conclusions and future work are 

discussed in section 6. 

 Related Work 

Travel time is considered an intuitive performance measure in many Advanced Traveler 

Information Systems and Advanced Traffic Management Systems. A traveler needs to estimate 

the trip travel time in order to plan for departure times and make different route decisions by 

avoiding congested routes. With precise information about the trip travel time, route planner 

systems can suggest optimal alternative routes. Moreover, transportation agencies can use travel 

time to manage and control traffic congestion. For the aforementioned reasons and many others, 

travel time prediction has been considered a hot research topic over the past several decades. Many 

studies have focused on predicting travel time for vehicular transportation modes (Billings & 

Yang, 2006; Myung, Kim, Kho, & Park, 2011; Van Lint, Hoogendoorn, & van Zuylen, 2005; C.-

H. Wu, Ho, & Lee, 2004; J.-S. Yang, 2005), an obvious choice due to the huge number of vehicles 

in use around the world. Non-vehicular transport modes, however, have not attracted the same 

level of interest. To the best of our knowledge, bike travel time has been only sparingly addressed 

in a few studies in the existing body of relevant literature. 

Studies addressing travel time prediction either used travel time as the state variable or used 

variables such as speed, density or flow as the state variables. El-Geneidy et al. studied bike speed 

in different types of environments found in urban areas, such as off-street, on-street, and mixed 

traffic (El-Geneidy, Krizek, & Iacono, 2007). The authors conducted an experiment to collect bike 
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speed data along these different types of facilities, then developed regression models to predict 

bike speed for different trip characteristics, including biker gender, presence of off-street facility, 

and biker comfort level. One limitation to their study was that it did not consider the effect of 

weather conditions on bike speed. Another major drawback was that the study used linear 

regression models, which assume the normality of the data. 

Although the U.S. is considered a relative latecomer to implementing BSSs, according to the 

Bureau of Transportation Statistics, there were 3,378 BSSs in 104 U.S. cities as of April, 2016 

(Firestine, 2016). By comparison, only 54 U.S. cities had deployed BSSs as of April, 2015 

(DeMaio, 2009). These numbers show the huge growth in BSSs in the U.S. This growth in BSSs 

dictates the need for new tools, measures, and planning techniques to be developed for bikes for 

the benefit of both cities and travelers. First, cities need information about travel demand and bike 

availability to maintain BSSs in such a way that they offer a certain level of service. The 

continuously changing nature of a BSS makes maintaining it in a balanced state a difficult task 

that needs to be addressed periodically by moving bikes between stations, a process referred to as 

“rebalancing.” Second, this information will enable travelers to better plan their trips, make better 

routing decisions, and reduce associated costs. 

The BSS rebalancing process aims at maximizing service availability; i.e., bike availability for 

pickups and the existence of an empty bike slot for returns. Understanding bike demand and trip 

patterns is crucial to BSS balancing. Recent studies tried to tackle this problem in different ways. 

Ram et al. presented a system called SMARTBIKE, which was implemented in Fortaleza, Brazil 

(Ram et al., 2016). It uses a k-means clustering technique to understand bike demand from 

historical bike trips and bike station statuses. This system uses a network analysis approach to 

learn trip flow patterns from historical trip data, then uses these patterns to help BSS managers 

with the rebalancing process. Singla et al. addressed the same problem by designing a dynamic 

incentives system for bike rebalancing (Singla et al., 2015). This system uses a smartphone app to 

get BSS users to engage in the rebalancing process by incentivizing them to move bikes from 

stations with a higher number of bikes to stations with a lower number of bikes. 

Predicting bike travel time is vital to BSSs management. In general, travel time prediction is 

affected by several predictors, such as traveling speed, traffic flow, and occupancy, all predictors 

that are highly sensitive to weather conditions and traffic incidents. Bike travel time is also 

dependent on other important predictors, such as biker experience and physical ability, as shown 

in (El-Geneidy et al., 2007). For these reasons, predicting travel time accurately, in general, and 

bike travel time, in particular, is a fairly complex and difficult task requiring a large amount of 

traffic data. Especially in areas with rapidly changing conditions, an accurate travel time prediction 

model is essential (van Grol, Lindveld, Manfredi, & Danech-Pajouh, 1999). 

In summary, the existing body of literature lacks studies addressing bike travel time, particularly 

in the context of BSSs. In this paper, we developed different bike travel time prediction models 

using machine learning techniques. The main contribution of this paper is finding the best 

predictors to explain bike travel time variability. The techniques used in this paper do not require 

any assumptions about the data. 
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 Dataset 

As many cities and municipalities adopt BSSs, they are opting to share their datasets publicly to 

encourage researchers to analyze them. Applying machine and deep learning approaches, artificial 

intelligence techniques, and statistical analysis are all widely used methods to provide deep 

insights into the information contained in these datasets. These insights are beneficial for 

enhancing the BSSs in different ways, including determining the placement of new stations, the 

number of docks at each station, and the travel patterns associated with different times or days 

(weekdays or weekends), etc. In the next subsections, we will describe the dataset used in this 

paper in more detail. 

10.3.1 Bay Area BSS Dataset 

Among the different BSS datasets that are publicly avail-able, we found the Bay Area BSS dataset 

to be the richest in content. This dataset is described in detail in Section 3.4 of this report.  

In addition to the available trip data, the dataset also includes weather information per day per 

service area and bike and dock availability per minute per station. This data is available in files 

named “weather” and “status,” respectively. Additionally, the dataset includes a file named 

“station,” which contains such information about stations as latitude, longitude, dock count, city, 

and installation date. Prior to its use, the dataset needed to be preprocessed, cleaned, and imputed 

for missing data. In the next subsections, we describe how we prepared each file for the analysis 

stage. 

10.3.2 Weather Data 

The weather data is only available for five service areas of the Bay Area: San Francisco, San 

Mateo, Mountain View, Palo Alto, and San Jose. The weather dataset had many discrepancies and 

missing values. First, we imputed the weather data to fill missing fields. To accomplish this, we 

used a KNN imputer function written in the R language to impute data with the weighted average 

of the nearest K = 5 neighbors. Second, we cleaned the precipitation values, as they contained both 

categorical and numerical data. We replaced all T values with the minimum precipitation value 

equal to 0.01. 

10.3.3 Station Data 

The station file contained information about 70 stations distributed among the five aforementioned 

service areas. Since weather data was only available in these five service areas, denoted by the 

service area zip code, we assigned each station to one of the five service areas in order to use the 

weather data at that service area for trips to/from that station. We searched for each station’s zip 

code in circles of a 2 miles radius around the five service areas. We wanted the radius to be as 

small as possible so that a single station would be assigned to only one service area. Thus, 67 

stations were automatically assigned to one service area. The remaining three stations were 

assigned manually to their closest service areas. 

10.3.4 Trip Data 

The trip data includes data from about 669,960 trips. We began by merging the service area 
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weather data to the trips to/from stations within that service area. We found that there were 1,042 

trips between stations from different service areas. In this case, we had two sets of weather data 

(for the source and destination stations) that could potentially be used for these trips. Since we did 

not have the trajectories of these trips, we could not determine which weather data to use. As a 

result, we discarded those trips, as they constituted less than 1% of the total trip data. We also 

excluded trips with the same source and destination, as this would not be relevant to travel time 

analysis. 

Table 10-1. Descriptive statistics of trips data. 

 Maximum Mean Minimum 

Travel Time (sec) 11455.0 514.1 60.0 

Distance (m) 4968 1832 54 

Expected Travel Time (sec) 1253.0 479.8 39.0 

 

In order to make an estimation about the trip distance, we used the Google Maps Directions API 

to get the distance and duration for each trip using bicycle as the travel mode. Of course, this did 

not actually correspond to the trip route, but was rather used to provide an estimate of the trip 

distance and duration. We found that there were many trips where the travel time was significantly 

greater than the estimated duration from Google. Accordingly, we further investigated trips 

between each source-destination pair of stations. For trips between each pair, we determined the 

median travel time and the median absolute deviation (MAD) in travel time. We excluded trips 

whose travel time was greater than (median + 3 × MAD). Using median and MAD is more robust 

than using mean and standard deviation because the latter pair are more sensitive to outliers, as 

described in (Leys, Ley, Klein, Bernard, & Licata, 2013). Using median and MAD allowed us to 

filter outlier trips in which the users kept the bikes for a very long time. These bikes were most 

likely abandoned before they were restored in the system. We listed more descriptive statistics of 

the trips data in Table 10-1. 

 Methods 

To develop the most accurate travel time prediction model, we tried several statistical and machine 

learning techniques. Initially, we used MLR, then went on to investigate the use of RF, boosting 

LSBoost, and artificial neural networks (ANN), comparing the techniques in order to find the most 

accurate model. In this section, we will describe the methods used to analyze the data. 

10.4.1 Random Forest 

RF, first proposed in (Breiman, 2001; Dressel & Farid, 2018), is one of a number of machine 

learning ensemble methods. Seni, Elder, & Discovery stated  that, “Ensemble methods have been 

called the most influential development in Data Mining and Machine Learning in the past decade” 

(Seni, Elder, & Discovery, 2010). In order to get more precise prediction of the target variable, 

ensembles combine multiple models. RF starts by creating many top-down decision trees. Each 
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tree works on a bootstrapped sample of the original data, and the root node of each tree contains 

all the data. To grow these trees, RF utilizes a greedy approach referred to as recursive binary 

splitting. It randomly chooses from the independent variables to split the data in one node to two 

groups, trying to minimize an objective function. This randomness minimizes the correlation 

between independent variables. The two groups are considered to be two child nodes of their parent 

node. This splitting is performed recursively to the largest extent possible. The target variable is 

predicted by aggregating the predictions of all the trees. In practice, MSE is used for regression. 

10.4.2 Least Square Boosting 

LSBoost (Freund, Schapire, & Abe, 1999) is also an ensemble method. It refers to a group of 

algorithms that combine the predictions of individual weak (base) learners into a single strong 

learner. A weak learner can be as simple as a two terminal node classifiers. LSBoost combines the 

prediction of weak learners using several methods, such as averaging or weighted averaging. It 

applies the base learning algorithms iteratively to different versions of the data and builds a learner 

community 𝐿𝑘(𝑥), 𝐾 =  1, 2, . . . , 𝐾. LSBoost (J. H. J. A. o. s. Friedman, 2001) fits regression 

models by minimizing the mean-squared error objective function. At each iteration 𝑀, LSBoost 

fits a new regression model to the difference between the true response and the sum of the 

prediction of all the 𝑀 − 1 regression models fitted previously. 

10.4.3 Artificial Neural Networks 

ANNs are used to estimate or approximate unknown linear and non-linear functions that depend 

on a large number of inputs. ANN is defined in (Hecht-Nielsen, 1992) as a “parallel, distributed 

information processing structure consisting of processing elements (neurons) interconnected 

together with unidirectional signal channels called connections.” These neurons are organized in 

layers with the outermost layers being the input layer and the output layer, and the in between 

layers the hidden layers. Neurons connections allow information to flow in the direction from the 

input layer to the output layer. As the ANN is trained, the weights of the connections between 

neurons are modified. ANN uses a learning rule, such as back propagation, to learn these weights. 

 Analysis 

The Bay Area dataset has 33 different predictors, including weather conditions, distance, time-of-

day, day-of-week, and subscription type. We used MLR to model the bike travel time to determine 

which predictors significantly affect bike travel time. However, we found that the studentized 

residuals violated the normality assumptions of homoscedasticity. Hence, the model could not be 

used for making an inference about the predictors. However, it could still be used for prediction 

purposes. The MLR model could also be used for interpreting the relationships between bike travel 

time and the predictors. For instance, from physics laws, we know that the distance coefficient 

should be equal to the reciprocal of the bike speed. To verify the model’s correctness, we calculated 

a distance coefficient of 0.2225 sec/m, which when reciprocated, equals 4.49 m/sec, which is close 

to the average bike speed used in the literature. 
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Figure 10-1. Multiple linear regression coefficients estimates. 

The estimated coefficients of the MLR model are shown in Figure 10-1. The MLR model has a 

MAE of 100.36 sec and a MAPE of 21.3%. Its R2 is 0.61, which shows that the model explains 

only 61% of the bike travel time variability. Due to the MLR model’s inadequacy, we decided to 

adopt different machine learning techniques to predict the bike travel time. 

10.5.1 Random Forest 

RF does not assume normality of the data. RF improves the decision tree by growing more trees, 

which work on different bootstrapped samples of the data, thus decreasing the correlation between 

trees, which in turn decreases the variance of the RF model. The number of trees is one of the RF 

parameters that requires tuning. Breiman recommended using P/3 trees for models with P 

predictors when RF is used for regression. To identify the optimum number of trees, we varied the 

number of trees and also tried to enhance the models by using log transformation to reduce the 

skewness of the bike travel time distribution. We found that the models of the log-transformed 

data had a lower prediction error. To validate our models, we used K-cross validation with K = 5. 
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The RF models’ MAEs and MAPEs are shown in Figures 2 and 3, respectively. As the number of 

trees in the model increases, the prediction error decreases. Increasing the number of trees beyond 

100 does not seem to decrease the prediction error. As the figures show, the models of the log-

transformed bike travel time have a lower prediction error. The RF model of log-transformed data 

and 100 trees has a MAE and MAPE of 84.01 sec and 16.92%, respectively, whereas the model of 

the original data and the same number of trees has a MAE and MAPE of 85.28 sec and 18.10%, 

respectively. 

10.5.2 Least Square Boosting 

We used Matlab to build the LSBoost models and chose the tree as the weak learner. The number 

of weak learners is an LSBoost parameter that needs to be tuned. We performed a sensitivity 

analysis to calibrate the number of trees. As done earlier, we used a log transformation to see 

whether it would improve the prediction models. We also used 5-fold cross validation. 

 

 

Figure 10-2. Random forest and LSBoost MEA\absolute error at different number of trees. 
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Figure 10-3. RF and LSBoost MAPE at different number of trees. 

The LSBoost models’ MAEs and MAPEs are shown in Figure 10-2 and Figure 10-3, respectively. 

Unsurprisingly, the models of log-transformed data outperformed the models of the original data. 

As indicated in both figures, the RF models have a lower prediction error compared to the LSBoost 

models. The LSBoost model of log-transformed bike travel time and 100 trees has a MAE and 

MAPE of 95.42 sec and 19.07%, respectively. 

10.5.3 Artificial Neural Network 

For the sake of comparison, we implemented a feed-forward ANN with two hidden layers. For 

simplicity, we used an equal number of neurons in each hidden layer. We varied the number of 

neurons from two to nine. The implemented ANN was trained using the discriminative pre-training 

technique (D. Yu, Deng, Seide, & Li, 2016). The prediction error of the ANN for both travel time 

and the log-transformed travel time as the response are shown in Table 10-2. 

Comparing the prediction errors of the previous three learning algorithms, we found that the RF 

models outperformed the other models. Consequently, we decided to adopt an RF model for bike 

travel time prediction. The large number of predictors motivated us to reduce the RF model 

because, most likely, these predictors will not be readily available. In the next subsection, we will 

describe the model reduction procedure. 
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Table 10-2. Mean absolute error for artificial neural network model. 

MAE (sec) 

Number of Neurons 2 3 4 5 6 7 8 9 

Travel Time 99.79 99.55 99.56 99.47 99.04 99.05 100.01 99.18 

Log(Travel Time) 97.36 97.05 96.65 96.67 96.61 96.30 96.38 96.25 

MAPE (%) 

Travel Time 21.08 21.08 21.13 21.13 20.88 20.94 21.32 21.00 

Log(Travel Time) 19.61 19.56 19.48 19.47 19.47 19.39 19.43 19.37 

 

10.5.4 Model Reduction 

We noticed that the models developed in the previous subsections used many redundant weather 

predictors, such as mean, minimum, and maximum temperature, etc. Consequently, we decided to 

choose the most intuitive weather predictors, such as mean temperature, mean humidity, mean 

visibility, and precipitation. We used RF to rank the new subset of 18 predictors including only 9 

weather predictors. The predictors’ importance is shown in Figure 10-4. 

 

Figure 10-4. Importance of reduced set predictors. 

Finally, we used forward stepwise regression to select the best subset of predictors to model the 

bike travel time. As shown in Figure 10-5, we found that the least error occurred with a subset of 

seven predictors. Based on our analysis, the best predictors of bike travel time were distance, 

subscription type, time-of-day, Saturday, mean temperature, mean humidity, and Sunday, 

respectively. That distance was the most important predictor is clearly explained by the laws of 

physics. The subscription type predictor is indicative of the bikers’ familiarity with the road 
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network and ability to exert power, directly affecting bike travel time. This is consistent with the 

conclusions of (El-Geneidy et al., 2007) that time-of-day, Saturday, and Sunday predictors affect 

the travel time can be clearly attributed to traffic conditions. 

 

Figure 10-5. Stepwise MAE for different number of predictors. 

The model shows that weather conditions, specifically, mean temperature and mean humidity, 

have a large impact on the bike travel time. This is because the body loses fluids when exerting 

effort (biking), especially when it’s hot and humid. This is in accordance with the findings of 

different studies (Barr, 1999; Murray, 2007). The model using only these seven predictors reduced 

the MAE to 82.04 sec and the MAPE to 16.2%. 

 Conclusions 

We used RF, LSBoost and ANN techniques to build bike travel time prediction models. We 

determined that RF models outperform the other models. We used RF and forward stepwise 

regression to reduce the number of predictors that explain the bike travel time variability, and 

found that the most important subset of predictors includes intuitive predictors. These predictors, 

ordered by importance, are travel distance, subscription type, time-of-day, Saturday, mean 

temperature, mean humidity, and Sunday. We also found that different weather conditions, 

particularly temperature and humidity, have an effect on bike travel time. 
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 Overall Study Conclusions 
In this report, we defined and showed how smart bike sharing systems are important for connecting 

different transportation networks in a smart city in order to establish smart transportation. 

Moreover, we made eight contributions toward building a toolbox of models and algorithms to 

convert a current BSS into a smart bike sharing system.  

The first contribution (Chapter 1) proposes a two-layer hierarchical framework classifier to 

distinguish between five transportation modes using new extracted frequency domain features 

pooled with traditionally used time domain features. We investigated the possibility of improving 

the classification accuracy using pooled features in the proposed framework by applying several 

techniques: KNN, CART, SVM, RF, and RF-SVM. The results show that using pooled features in 

the proposed framework increased the classification accuracy for all the applied classifiers. For 

the same data, the highest reported accuracy was 95.10% using the traditional approach for 

detection, whereas the proposed approach in this study achieved an accuracy of 97.02%. 

The second contribution (Chapter 2) proposes a new supervised clustering algorithm that will 

potentially assist agencies and researchers anticipate bike availability at stations with respect to a 

time event. The proposed algorithm, tested on a BSS in the San Francisco Bay Area, clusters bike 

availability data at 15-minute intervals across the network and finds the similarity between them 

according to day of the week and hour of the day. Subsequently, it provides an expected pattern of 

bike usage for each cluster. The algorithm provides insight into the usage patterns of the San 

Francisco Bay BSS that operators can use to anticipate imbalances in the system and plan 

accordingly. Moreover, the clustering results show that the days of the week can be grouped into 

three clusters: one for weekends and the other two for weekdays. The time of day is clustered into 

two groups: peak and off-peak hours. Given that each cluster has an associated pattern of bike 

availability, a prediction can be made to identify the imbalance in the system for each day of the 

week and each hour of the day. An exploratory spatiotemporal analysis was conducted, leading to 

different suggestions on how to rebalance the system with minimum cost and effort, thus making 

the network a more-effective component of the smart transportation system in smart cities.  

The third contribution (Chapter 3) describes the development of a bike availability model for the 

San Francisco Bay Area BSS. Since the demand of bikes in stations is still not well studied, this 

contribution introduced a fast, effective approach, which is also accurate and reasonable, to 

quantifying the effect of various features on bike counts at different stations. The results revealed 

that the bike count changes with the month-of-the-year, day-of-the-week, time-of-day, and some 

weather variables. This model could also be used to improve the redistribution of bicycles, which 

is important for rebalancing the network over a period of time. 

The fourth contribution (Chapter 4) builds a Markov chain model for each station and day of the 

week. We investigated the daily imbalances and identified an optimal inventory level to minimize 

the probability of a station reaching an empty or full state. Our analysis showed that the optimal 

initial conditions vary from one day of the week to another for the same station, and thus we present 

the optimal initial conditions for each day of the week. The results show that San Francisco has 

the highest percentage of category “Imbalance probability > 25% for > 45% of the initial 
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conditions,” followed by San Jose. This demonstrates that the San Francisco BSS stations 

experience high bike demands, and thus are more likely to have an imbalance problem during the 

day. Our proposed approach would be less effective for the San Francisco BSS and more effective 

for the other cities given that the daily evolution of states for San Francisco varies considerably. 

The fifth contribution (Chapter 5, Chapter 6, Chapter 7) adapts state-of-the-art machine learning 

and statistical algorithms to model the number of available bikes. We applied these algorithms to 

the Bay Area Bike Share stations in San Francisco. First, we tried two approaches: using univariate 

regression algorithms, RF and LSBoost, and using a multivariate regression algorithm, PLSR. The 

univariate models were used to model the number of available bikes at each station. RF, with an 

MAE of 0.37 bikes/station, outperformed LSBoost, with an MAE of 0.58 bikes/station. On the 

other hand, the multivariate model, PLSR, was applied to model available bikes at spatially 

correlated stations of each region obtained from the trip’s adjacency matrix. Results clearly 

showed that the univariate models produced lower error predictions compared to the multivariate 

model, in which the MAE was approximately 0.6 bikes/station. However, the multivariate model 

results might be acceptable and reasonable when modeling the number of available bikes in BSS 

networks with a relatively large number of stations. Investigating BSS networks in terms of 

determined regions gives new insights to policy makers. The fact that stations in each region 

derived by the multivariate analysis share the same zip code implies that most of the trips were 

short distance trips. This may be influenced by the overtime fees applied when trips are longer 

than 30 minutes. With the most effective prediction horizon being 15 minutes, determining 

prediction horizon is beneficial to policy makers and technicians for learning how to manage BSSs 

more responsively, and achieving better prediction performance.  

Second, we adapted dynamic linear and incremental learning models with a goal of finding a good 

model in terms of both prediction accuracy and computational time without any other external 

variables, such as weather or spatiotemporal information. We compared the results of the online 

and incremental learning algorithms with the machine learning algorithms RF and LSBoost. The 

results show that all algorithms returned a comparable prediction accuracy under 15-minute and 

30-minute prediction windows, with the exception of LSBoost. For the rest of the prediction 

windows, RF outperformed all other algorithms. However, when comparing the computational 

time for the five algorithms, RF had the largest running time, followed by LWR. MBGDLR had 

the smallest computational time, followed by DLM. Although RF gives the smallest prediction 

accuracy, it takes longer to predict (77 times longer than MBGDLR and 12 times longer than 

DLM). Based on the previous comparison considering both prediction accuracy and computational 

time, we can conclude that MBGDLR is better than the rest of the algorithms due to its ability to 

predict with a relatively small prediction error in a very short time. That makes MBGDLR a 

promising algorithm for implementation in BSS apps that inform bikers about station statuses in 

advance. 

The sixth contribution (Chapter 8) investigates the traditionally-known QoS measurement. We 

found QoS to be largely indiscriminate at the station level and not reflective of the spatial 

correlations. For that reason, we introduced a new QoS measurement: Optimal Occupancy. The 

Optimal Occupancy at a station is formulated in terms of two types of services: (1) picking up 
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bikes and (2) returning bikes. Our results from ANOVA analysis clearly demonstrate that the 

traditionally-known QoS cannot be used to discriminate between the stations, whereas the Optimal 

Occupancy is found to be sufficiently discriminative. Recognition of the differences between the 

QoS of stations benefits the effective management of the system, and appears to reflect the 

dynamic nature of the BSS. 

The seventh contribution (Chapter 9) investigates the advantage of having portable bike stations, 

using an agent-based simulation approach as a proof-of-concept. Our results revealed that adding 

one portable station could decrease the missed pick-ups by approximately 10%, leading to 

enhanced customer satisfaction and operation repositioning. Sensitivity analysis showed that 

adding one more portable station could increase the percentage in the reduction of missed pick-

ups to almost 25%. Finally, the obtained results showed that adding one portable station could 

increase the reduction in the deviation from the optimal status of stations as much as three times. 

The eight contribution (Chapter 10) builds bike travel time prediction models using RF, LSBoost 

and ANN techniques. We determined that RF models outperform the other models. We used RF 

and forward stepwise regression to reduce the number of predictors that explain bike travel time 

variability, and found that the most important subset of predictors includes intuitive predictors. 

These predictors, ordered by importance, are travel distance, subscription type, time-of-day, 

Saturday, mean temperature, mean humidity and Sunday. We also found that different weather 

conditions, particularly temperature and humidity, have an effect on bike travel time. 
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