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Abstract 

This report presents as series of eight papers on methods for planning, designing, and 

scheduling the implementation of improvements in urban transportation systems. Five of the 

papers (1 – 4 and 6) focus on methods for evaluating, sequencing and scheduling interrelated 

improvements in transportation networks while the others present methods for designing 

flexible route services (5 – 7) and improving the reliability of rail transit networks (8). Due to 

the complexity of the relevant functions for evaluating interrelated network improvements, 

which cannot be optimized with classical calculus techniques, the proposed methods rely on 

customized genetic algorithms for optimizing the selection, sequencing and scheduling of the 

interrelated alternatives. Applications to urban transportation networks are presented in papers 

for journals, which are included in appendices. The papers demonstrate the applicability of 

the developed methods to urban road networks, intersections in urban road networks, urban 

rail transit networks and flexible-route transportation systems. 

 

Executive Summary 

 

This project developed methods for planning, evaluating and scheduling improvements in 

transportation networks in order to optimize the development of such networks in response to 

evolving demand and societal objectives. The work was performed at the University of 

Maryland, College Park, in the years 2017 to 2020, with funding from the Urban Mobility & 

Equity Center led by Morgan State University, as well as from other sources. The work was 

directed by Professor Paul Schonfeld from the University of Maryland’s Department of Civil 

and Environmental Engineering. Important contributors included his students Elham Shayanfar, 

Uros Jovanovic, Ya-Ting Peng, Joshua Levy, Fei Wu, and Jie Liu, as well as Professor Zi-Chun 

Li from the Huazhong University of Science and Technology in Wuhan, China; Drs. Shuguang 

Zhan, Qiyuan Peng and Yong Ying, from Southwest Jiaotong University in Chengdu, China; 

and Dr. Myungseob (Edward) Kim from Western New England University. 

 

     This report includes an executive summary and eight appendices with papers prepared for 

journals. The papers in Appendices 1– 5 have already been published in well-known journals 

while those in Appendices 6 – 8 are still under review. The report presents newly developed  

methods for planning, designing, and scheduling the implementation of improvements in urban 

transportation systems. Five of the papers (1 – 4 and 6) focus on methods for evaluating, 

sequencing and scheduling interrelated improvements in transportation networks while the 

others present methods for designing flexible route services (5 – 7) and improving the reliability 

of rail transit networks (8). 

 

     The problems of selecting and scheduling improvements in transportation networks are 

greatly complicated by the pervasive interrelations among candidate alternatives. In 

engineering economics and other fields, the alternatives are classified as (a) mutually 

exclusive, (b) independent, and (c) interrelated. The alternatives are considered mutually 

exclusive if only one alternative may be chosen, the others being necessarily rejected.  They are 

independent if the benefits and costs of each alternative do not depend on which other 

alternatives are selected or when the other alternatives are implemented. If the benefits or costs 

of alternatives depend on which others are selected and when all are implemented, the 
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alternatives are classified as interrelated. While generally accepted methods for analyzing 

mutually exclusive and independent alternatives can be found in standard textbooks, no such 

general methods are found for analyzing interrelated alternatives. Furthermore, even the 

methods that have been designed for analyzing interrelated alternatives in some specific 

applications have deficiencies in their abilities to deal with complex interrelations, dissimilar 

types of alternatives, multiple uncertainties, scheduling decisions, realistic problem sizes and 

other important factors. 

     The deficiencies of methods for analyzing interrelated alternatives constitute a major gap in 

the state of the art in engineering economics, operations research, and related fields. This is 

especially unfortunate since interrelated alternatives pervade the world. For example, in 

transportation systems, which are the primary focus of our study, improvements to a network’s 

various links and nodes are interrelated partly because such improvements redistribute flows in 

networks. Each improved link may divert traffic from parallel links, shift congestion and 

capacity bottlenecks to other links in-series, reduce the need for other improvements, and thus 

affect the benefits obtainable from improving other network components. Hence the benefits of 

various improvements may add up non-linearly. Some improvement projects may be 

synergistic while others may be largely wasted or even counterproductive (e.g., according to 

the Braess Paradox) when combined with other improvements. 

     Beyond interrelations due to non-linearly additive benefits (including some externalities), 

alternatives may be interrelated through their costs (e.g., through economies of jointly 

constructing several projects), their budget constraints and other financial relations, their 

constructability or operability requirements, political or equity considerations, and in other 

ways.  

     In addition, decisions regarding infrastructure maintenance or development are subject to 

substantial uncertainties regarding future demand or usage, costs, finances, implementation 

schedules, and future component performance (including capacity, delay, deterioration, and 

failures). Methods have been developed for dealing with uncertainties in capacity expansion 

and maintenance for infrastructure projects, but these are far from adequate in dealing with 

realistic numbers of interrelated projects and their applicability is limited. 

    Appendices 1 – 4 and 6 of this report present five papers on the analysis of interrelated 

alternatives for transportation networks. The first paper (in Appendix 1) by E. Shayanfar and 

P. Schonfeld, entitled “Selecting and Scheduling Interrelated Projects: Application in Urban 

Road Network Investment,” presents a metaheuristic method based on a genetic algorithm for 

optimizing network development problem. The metaheuristic approach is needed because for 

realistic problem sizes the objective function is very unsmooth and not solvable with either 

classical methods of mathematical analysis or mathematical programming approaches. The 

paper shows how a genetic algorithm can be formulated and applied to efficiently solve this 

problem. In effect, the method consists of expressing all possible sequences for implementing 

alternatives as genetic chromosomes, translating the sequences into exact development 

schedules (in continuous time rather than discrete periods) by applying the binding constraints 

(which, in this case, are the budget constraints) and using a relatively simple traffic assignment 

algorithm to estimate traffic speeds and volumes throughout a multi-year analysis period for 

any development schedule. The traffic speeds and volumes can then be used to estimate other 

effectiveness measures, including travel times and user costs, throughout the analysis period. 
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     Since heuristic methods do not guarantee that a global optimum is always found, the paper 

shows how a statistical test can confirm the infinitesimal probability of finding significantly 

better solutions than those found by the proposed heuristic method. Thus, it can be demonstrated 

that any errors due to the proposed algorithm are negligible compared to unavoidable errors in 

estimating inputs regarding the actual transportation system and its future demand 

characteristics. 

     The paper in Appendix 2 by U. Jovanovic, E. Shayanfar and P. Schonfeld, titled “Selecting 

and Scheduling Link and Intersection Improvements in Urban Networks,” shows how the 

analysis, selection and scheduling of interrelated components in urban road networks can be 

extended to include improvements at intersections, i.e., widening the intersections with 

additional lanes through them. To accomplish this, the traffic assignment model had to be 

adapted to analyze intersection flows and delays. This was accomplished by introducing into 

the previously used Frank Wolfe assignment algorithm pseudo-links for each turning and 

through movement at each intersection, e.g., 12 pseudo-links at each full four-leg intersection. 

Delays on the pseudo-links were estimated with a model developed by Akcelik. 

     The paper in Appendix 3 by Y.T. Peng, Z.C. Li and P. Schonfeld, titled “Optimal 

Development of Rail Transit Networks over Multiple Periods,” shows how the analysis, 

selection and scheduling of interrelated network components can be extended to optimize the 

phased development of a rail transit network. In this problem it is assumed that the locations of 

rail lines and stations in the network are pre-determined. The remaining decisions are about 

which links and stations should be added at what time, depending mainly on demand growth, 

available external budgets and usable fare revenues from network segments that are already 

operating. 

     The paper in Appendix 4 by E. Shayanfar and P. Schonfeld, titled “Selecting and Scheduling 

Interrelated Road Projects with Uncertain Demand,” extends the paper in Appendix 1 by 

considering multiple ways of determining road and lane widths, as well as optimizing the 

network development based on multiple probabilistic demand growth rates rather than a single 

estimated average growth rate. This approach avoids the “flaw of aver averages,” which can 

distort decisions in damaging ways. 

     The paper in Appendix 5 by M. Kim, J. Levy and P. Schonfeld, titled “Optimal Zone Sizes 

and Headways for Flexible-Route Bus Services,” shows how service zone sizes and frequencies 

can be jointly optimized for flexible route bus services, depending on demand densities, unit 

costs, speeds and distances from major trip generators of transfer terminals. The model 

presented there applies directly to many-to-one demand patterns but can also be modularly 

applied to many-to-many demand patterns, especially if transfers are made at major 

transportation terminals. 

      The paper in Appendix 6 by F. Wu and P. Schonfeld, titled “Optimized Two-directional 

Phased Development of a Rail Transit Line,” provides a model for determining which rail 

transit links and stations should be added at what times over an extended analysis period. The 

model optimizes net benefits by estimating user benefits from demand functions according to 

which demand grows over time as well as with completion of additional rail transit stations. 

This model may be extended later to consider entire rail transit networks and multi-modal public 

transit systems. 
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   The paper in Appendix 7 by Y. Choi and P. Schonfeld, titled “Review of Length 

Approximations for Tours with Few Stops,” provides improved approximation models for 

estimating multiple-stop (i.e. “travelling salesman”) tour distances for flexible-route public 

transit services as well as for freight deliveries. Such approximations are critical in designing 

flexible-route services, such as those analyzed in Appendix 5. 

The paper in Appendix 8 by J. Liu, P. Schonfeld, S. Zhan, Q. Peng and Y. Yong, titled “The 

Value of Reserve Capacity Considering the Reliability and Robustness of a Rail Transit 

Network,” evaluates the value of reserve trains in an urban rail transit system from the 

viewpoints of passengers and operators. The analysis considers the value of reserve capacity in 

normal as well as disrupted operations. The number of reserve trains is optimized to maximize 

their net value. 

The methods developed and tested in this project are already usable for evaluating, selecting 

and scheduling interrelated network improvement projects. Beyond the accomplishments of 

this project, desirable improvements would include improved consideration of uncertainties 

(e.g., in demand, costs, budgets and construction times) and extensions to multi-modal 

transportation systems. Other methods developed in this project are applicable for planning 

flexible-route passenger transportation and freight delivery systems, as well for evaluating and 

optimizing the reserve capacity of urban rail transit systems. Although this project is completed 

the researchers involved in it are continuing to pursue improvements to the methods presented 

in this report. 
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Appendix 1 -  Shayanfar, E. and Schonfeld, P. “Selecting and Scheduling 

Interrelated Projects: Application in Urban Road Network Investment,” 

International J. of Logistics Systems and Management, 29-4, 2018, pages 436-454. 

 

Selecting and Scheduling Interrelated Projects: 

Application in Urban Road Network Investment 

 
Elham Shayanfar and Paul Schonfeld 

 

ABSTRACT 

Decisions about the selection of projects, alternatives, investments, operating policies and 

their implementation schedules are major subjects in various fields including operations 

research, financial analysis, business management, engineering economy and transportation 

planning. In these various disciplines sufficiently good methods have been developed for 

planning and prioritizing projects when interrelations among those projects are negligible. 

However, methods for analyzing interrelated alternatives are still inadequate. We propose a 

combinatorial method for evaluating and scheduling interrelated road network projects. 

Specifically, this paper demonstrates how a traffic assignment model can be combined 

effectively with a Genetic Algorithm (GA) in a multi-period analysis to select and schedule 

road network projects while capturing interactions among those projects. The goal is to 

determine which projects should be selected and when they should be funded in order to 

minimize the present value of total system cost over a planning horizon, subject to budget 

flow constraints.  

 

KEYWORDS: Project selection and scheduling, Genetic Algorithm, GA, Project 

interrelations, User equilibrium, Project evaluation, System optimization, Planning and 

prioritizing projects, Minimizing system cost 
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1. INTRODUCTION 
Evaluating transportation infrastructure projects and determining which should be implemented at 
what time has been the subject of ongoing studies for decades. Commonly used evaluation practices 
aggregate linearly the project impacts in the objective function, which is then optimized. Such 
practices are often inadequate, especially for projects in transportation networks, since they 
disregard possible interrelations among projects due to non-linearly additive benefits, costs, budget 
constraints, constructability or operability requirements, and other possible factors. This paper deals 
with road expansion projects as an example of interrelated projects. However, the method proposed 
here for project selection and scheduling may be used to analyze interrelated alternatives in general 
cases if methods for evaluating objective functions are available. 

In various disciplines sufficiently good methods have been developed for dealing with 
projects which are not interrelated. In general, alternatives are classified as (a) mutually exclusive, (b) 
independent and (c) interdependent or “interrelated”. The alternatives are considered mutually 
exclusive whenever implementing one project automatically excludes the others.  Alternatives are 
independent if their benefits and costs do not depend on which other alternatives are selected or 
when the other alternatives are implemented. Otherwise, the alternatives are classified as 
interdependent. Although generally accepted methods for analyzing mutually exclusive and 
independent alternatives are available in the literature, no such general methods are found for 
analyzing interrelated alternatives. Even the methods that have been designed for analyzing 
interrelated alternatives in some specific applications have been incapable of dealing with enough 
interrelations and realistic problem features. 

The problem of evaluating and selecting interdependent alternatives exists in various fields 

including economics, operations research, business, management, transportation and portfolio 

management. In portfolio management, interrelations between choices (stocks) were identified and 
modelled as early as the 1950s in pioneering work by Markowitz (1952). Since then more recent 
studies have addressed the problem of portfolio selection among interdependent projects (Cruz et 
al., 2014; Li et al., 2016). However, the literature review shows both insufficient studies on this 
problem and lack of comprehensive applicable methods for real world problems especially in the 
field of transportation. 

This study demonstrates how a relatively simple method, namely a traffic assignment 

algorithm, can be efficiently used to evaluate the objective function of an investment planning 

optimization problem and thereby compute the relevant interrelations among many projects 

that are implemented at various times. However, more complex methods for evaluating the 

objective functions, such as microscopic simulations, can also be combined with the Genetic 

Algorithm (GA) used here for optimizing the project selection and schedule. In recent years, 

meta-heuristics have been widely used for finding optimal or near-optimal solutions. The 

work presented in this paper is an extension of a previous study conducted by Shayanfar et al. 

(2016). That study applied three meta-heuristic algorithms including a GA, Simulated 

Annealing (SA) and, Tabu Search (TS) in seeking efficient and consistent solutions to the 

selection and scheduling problem. Its main contribution was to compare three meta-heuristics 

for this problem in terms of solution quality, computation time and consistency. The 

comparative analysis was especially useful in determining which algorithm was preferable in 

various circumstances. In summary, the results indicated that the GA yielded a better (lower 

total cost) solution than the other two algorithms and yielded the most consistent solutions 

(i.e. with the lowest coefficient of variation), indicating that different replications of the GA 

yield almost similar final solutions after sufficient iterations.  

Therefore, the current paper incorporates the GA used in Shayanfar et al. (2016) while 

enhancing its assumptions and contributing to the literature in several ways. First, we 

demonstrate how a traffic assignment model can be combined effectively with a GA for 

planning and prioritizing purposes while capturing more interactions among projects, i.e. 

beyond the previously considered pairwise interactions. Second, we modify the algorithms’ 
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assumptions to account for the possibility that candidate projects may become economically 

justified or unjustified after the implementation of previous projects. This may occur due to 

project interrelations and the possibility that the cost savings from completing a project are 

affected by earlier project implementations. Third, a multi-period analysis is incorporated in 

this study to distinguish between peak and off-peak traffic flows. Fourth, the budget 

constraint is reformulated to include possible internal funding from fuel taxes. Fifth, we 

assume that the demand changes over time during the planning horizon (growing 

exponentially in our example).  Finally, we demonstrate this methodology on two example 

networks and present a statistical test of the goodness of the heuristic results. Generally, the 

methodology presented in this work should also be applicable to other prioritization problems 

with interrelated alternatives, which abound in transportation and other activities. 

2. LTERATURE REVIEW 
In engineering economics, a number of studies have developed methods to address the 

problem of project scheduling. Beenhakker and Narayanan (1975) formulated the scheduling 

problem as a simple integer program assuming projects are independent. The formulation 

maximized the total net benefit of all projects subject to a budget constraint. Chiu and Park 

(1998) proposed a capital budgeting model under uncertainty in which cash flow information 

was considered as a special type of fuzzy number. To prioritize fuzzy projects based on the 

present worth of each fuzzy project cash flow, a branch and bound procedure was suggested. 

Koc et al. (2009) proposed a model that forms an optimal priority list of projects, 

incorporating multiple scenarios for input parameters. For this purpose, a greedy heuristic 

algorithm was developed to create the prioritize list. Our research indicates that in the field of 

engineering economics and capital investment planning, the methods developed for selecting 

and scheduling do not adequately deal with    possible interrelations among alternatives. 

One of the first works we could find that considered interdependent alternatives was 

that of Markowitz (1952) on portfolio management. This study formulated a multi-objective 

function minimizing the sum of purchase cost and risks. In this case, a “dependence matrix” 

which captures two-way, three-way or n-way interrelations was introduced to model the 

interdependence among a set of choices. This method and its variants can also be found in 

more recent works. Dickinson et al. (2001) developed a model to optimize a portfolio of 

development improvement projects for the Boing Company. The authors used a dependence 

matrix to quantify the interdependencies among projects. Then a non-linear, integer program 

model was developed to optimize the project selection. Sandhu (2006) introduced a 

dependency structure matrix that captured the project logistic interdependencies. Durango-

Cohen and Sarutipand (2007) formulated a quadratic programming for optimizing 

maintenance and repair (M&R) policies for transportation infrastructure systems. The 

quadratic objective of their work included the pairwise economic dependencies capturing the 

costs and benefits of improving adjacent facilities. Bhattacharyya et al. (2011) also considered 

n-way interdependencies in the Research and Development (R&D) project portfolio selection 

problem. 

Two main issues arise from using a dependence matrix. First, as Disatnik and 

Benninga (2007) argue, the estimation and manipulation of a dependence matrix becomes 

computationally difficult as the project space grows. Second, the pairwise and n-way 

dependencies do not completely represent the complex interrelations and fall short of the 

desired relations among alternatives. Instead of a dependence matrix, complete system 

models, such as queueing approximations (Jong and Schonfeld, 2001), equilibrium 
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assignment (Tao and Schonfeld, 2005), microsimulation (Wang and Schonfeld, 2008) and 

neural networks (Bagloee and Tavana, 2012), are better suited for modeling interrelations. 

This section reviews the current literature on evaluating and prioritizing interdependent 

projects.  

           The SA algorithm developed by Bouleiman and Lecocq (2003) for the resource-

constrained project scheduling problem aimed to minimize the total project duration. To this 

end, they replaced the conventional SA search scheme with a more novel design mindful of 

the specificity of the solution space of project scheduling problems. Tao and Schonfeld (2005) 

developed a GA to solve the Lagrangian problem, and optimized the selection of 

interdependent projects under cost uncertainty. They employed a traffic assignment model to 

evaluate the objective value of the Langragian problem and assess the project impacts. 

Similarly, Wang and Schonfeld (2005) developed a GA to solve the problem of selecting and 

scheduling interrelated lock improvements for a waterway network. They designed a 

microscopic waterway simulation model (i.e. which traced every vehicle movement) to assess 

the performance of the waterway system while evaluating the project interdependencies. 

Dueñas-Osorio et al. (2007) incorporated the interdependence response among network 

elements based on geographic proximity i.e. the response of one network given the state of 

another network was monitored for various levels of coupling among them.  They studied the 

network response subject to external and internal disruptions such as attacks, lack of 

maintenance and breakdown due to aging. Their work indicated that responses that are 

destructive to networks are greater when interdependencies are considered after disruptions. 

Tao and Schonfeld (2007) developed island model variants of GA’s for optimizing project 

selection and scheduling, and used these models to solve a stochastic optimization problem. 

Their work considered how uncertainties in travel times and construction costs affect total 

system costs. 

Szimba and Rothengatter (2012) developed a framework for integrating the 

interdependence among infrastructure projects in classical benefit-cost analysis. They 

addressed the complexity of a large-scale interdependence problem by introducing a heuristic 

method to optimize the dynamic mixed integer program. In this approach, the number of 

projects and their interrelations were reduced stepwise, resulting in a fewer interdependence 

cases. They used two procedures to measure the magnitude of interdependencies. In the first, 

projects were added to a minimum network configuration. In the second, projects were 

deleted from a maximum network configuration. Bagloee and Tavana (2012) used the 

Traveling Salesman Problem (TSP) to formulate the prioritization problem. They used a 

Neural Network to consider the interdependence among projects, and developed a search 

engine influenced by Ant Colony (AC) hybridized with GA to optimize the problem. Li et al. 

(2013) developed a multi-commodity minimum cost network (MMCN) to evaluate the impact 

of projects, i.e. to estimate the benefits of projects through a life-cycle-cost analysis. They 

further proposed a hypergraph knapsack model to maximize these benefits for a set of 

interdependent projects. Rebiasz et al. (2014) developed a hybrid method which combined 

stochastic simulation with arithmetic on interactive fuzzy numbers and nonlinear 

programming. The goal was to solve the problem of capital budgeting, accounting for both 

stochastic and economic interdependency between projects. 

Chen et al. (2015) reformulated the mixed network design problem (MNDP) to 

identify optimal capacity expansions of existing links and new link additions. Their model 

was designed to minimize the network cost in terms of the average travel time affected by the 

expansion of existing links and the addition of new candidate links. In this case a surrogate-

based optimization framework was proposed to solve the MNDP. Bagloee and Asadi (2015) 

developed a hybrid heuristic method to optimize the prioritization problem while considering 

demand uncertainties. They formulated the objective function as the reduction in users’ travel 
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time and, introduced a policy based on “gradient maximization” to find solutions. Tofighi and 

Naderi (2015) developed a mixed integer linear program to formulate the selection and 

scheduling of projects maximizing total expected benefits. They also proposed an ant colony 

algorithm to optimize the objective function. This paper defined the interdependencies among 

projects with a simple dependence matrix, which is insufficient in capturing the full 

interrelations among projects in transportation networks and various other complex systems.  

3. PROBLEM FORMULATION 
Roadway improvement projects are usually interrelated since delays at one link are affected by 
operations at other links, both upstream and downstream. Conceptually, if the capacity increases in 
one link of a network, congestion and average travel times tend to increase in other links that are “in 
series” with it and decrease in its “parallel” links. Therefore, the total cost saved from multiple 
projects is not a linear summation of savings from individual links. Additionally, the interrelation 
among links is reflected in our budget constraint since the budget is partly supplied by internal taxes, 
which may change after each project implementation, thus complicating this problem. 

The objective function for problems such as prioritizing interrelated projects has a 

surface that is “noisy” (i.e. containing numerous local optima) and non-convex.  Moreover, as 

the number of candidate projects increases, the problem’s solution may soon exceed the 

capabilities of conventional mathematical optimization methods. Consequently, heuristic 

methods have become the preferred approach for solving such problems. In this study a GA is 

very useful in effectively finding near-optimal solutions for such a large solution space and 

noisy objective function. Our objective function is the net present value of total cost including 

both (i) total road user and (ii) total supplier cost subject to budget constraints. The goal is to 

specify which links should be selected for expansions in what order, and when they should be 

started and completed over the horizon period T.  

Therefore, the formulated objective function minimizes the present value of total user 

and supplier cost, over a specified planning horizon, subject to a budget flow constraint over 

that entire horizon. In this context, the user cost is the total delay for users in the system 

multiplied by their value of time. The supplier cost is the present value of implementation 

costs for all projects. An additional improvement over some previous studies is the inclusion 

of project costs in the objective function. This is necessary since not all selected projects are 

guaranteed to fit in the budget and be implemented within the analysis period. In fact, some 

projects may be discarded from the sequence as they may become unjustified sometime 

during the analysis. Therefore, different solutions (i.e. different sequence of projects) may 

entail different project costs which should be considered in the objective function. The 

objective function Z to be minimized is the present value of total cost: 

  

 𝑚𝑖𝑛 𝑍 =  ∑{
𝑣

(1 + 𝑟)𝑗
∑𝑤𝑖𝑗

𝑛𝑙

𝑖=1

}

𝑇

𝑗=1

+∑
𝑐𝑖𝑥𝑖(𝑡)

(1 + 𝑟)𝑡

𝑛𝑝

𝑖=1

 (1) 

{
𝑥𝑖(𝑡) = 0   𝑖𝑓 𝑡 < 𝑡𝑖 

𝑥𝑖(𝑡) = 1   𝑖𝑓  𝑡 > 𝑡𝑖
 

 

In this formulation 𝑡𝑖 is the time when project i is completed and ready for use while 𝑥𝑖(𝑡) is a 

binary variable specifying whether project i is finished by time t. In the objective function, 

𝑤𝑖𝑗 denotes the travel time over link i in year j, and 𝑐𝑖 is the present value of the cost of 

project i. 𝑛𝑝, 𝑛𝑙, 𝑣 are the number of projects implemented, total number of links and value of 

time, respectively, while r is the interest rate.  
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In this problem an internal budget source is considered for funding future projects. 

Specifically, throughout the analysis period, fuel taxes collected from users are added to an 

external budget in determining the overall investment budget. This assumption is realistic, as 

fuel taxes and toll collections contribute substantially to highway improvement budgets.  The 

internal budget is estimated as: 

𝑏(𝑡𝑖)𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑉𝑀𝑇(𝑡𝑖−1) ∗ 𝑓𝑟 ∗ 𝑓𝑐 ∗ 𝑓𝑡 

where 𝑓𝑟, 𝑓𝑐, 𝑓𝑡  denote fuel consumption rate (gal/veicle.mile), fuel cost ($/gal), and gas tax rate 

(percentage of tax collected from dollar spent on gas) respectively. This formulation shows that 

fuel taxes collected in period 𝑡𝑖−1 contribute to the budget available in period 𝑡𝑖. 𝑉𝑀𝑇(𝑡𝑖−1) 
presents the vehicle miles travelled during the time project 𝑖 − 1 is completed. Jong and 

Schonfeld (2001) formulated the selection and sequencing problem by defining the decision 

variables as the completion time of projects. In this formulation the budget constraint is defined 

as follows: 

 

 ∑𝑐𝑖𝑥𝑖(𝑡) ≤ ∫ 𝑏(𝑡)𝑑𝑡,    0 ≤ 𝑡 ≤ 𝑇
𝑡

0

𝑛𝑝

𝑖=1

 (3) 

More specifically, under a limited budget, which is continuously distributed over time, 

it is efficient to fund and complete projects one at a time, because the system gains immediate 

benefits as soon as each additional project is completed and ready for use. The budget 

constraint is almost invariably binding because, in actual cases, there are always some 

justifiable projects waiting for funding. In fact, funding multiple projects concurrently 

increases their completion time, meaning that their benefits are postponed. Therefore, 

considering budget limitations, it is preferable to avoid funding overlaps, and fully fund 

projects before starting to fund the next ones, and finish each project one at a time. It should 

be noted that construction times of projects may overlap even if their budget accumulation 

periods do not, if constrained budget flows can be shifted over time (e.g. through lending). 

Thus, the optimized schedule of each project is uniquely and easily determined from the 

optimized sequence by considering the budget flow.  

To date, similar studies have assumed that the set of candidate projects remains 

unchanged throughout the analysis period, thus disregarding that due to interrelations, 

previous project implementations alter the benefits from completing succeeding projects, 

possibly making them economically unjustifiable. It is also possible that initially unjustifiable 

projects (i.e. with higher costs than benefits) may become economically desirable, e.g. after 

bottlenecks in networks are cleared. Accordingly, in this paper, the undesirable projects (i.e. 

whose benefits < costs) are temporarily removed from the list of candidate projects, with the 

possibility of reentering the sequence after their benefits exceed their costs. In other words, 

the set of candidate projects is constantly updated, and acceptableprojects may replaced 

unacceptable ones at different stages of analysis. 

4. EVALUATION MODEL 
This paper applies the convex combination algorithm of Frank-Wolf (1956) as an evaluation 

model to assess the effects of each expansion project on the network. The Frank–Wolfe 

algorithm is an iterative first-order optimization algorithm for constrained convex 

optimization widely used for solving traffic assignment problems. In each iteration, the 

https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/First-order_approximation
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Constrained_optimization
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Convex_optimization
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Frank–Wolfe algorithm considers a linear approximation of the objective function, and moves 

slightly towards a minimizer of this linear function. The algorithm starts with an initial flow 

x. Subsequently, each iteration performs a direction search by solving a linear approximation 

of the objective function which determines the step size and moves in that direction. Finally, 

the algorithm terminates when it satisfies a convergence criterion based on the similarity of 

successive solutions. In this case, the traffic assignment algorithm provides a relatively simple 

model for evaluating solutions (i.e. computing the objective function value), and estimating 

link travel times, speeds, volumes, and hence user costs.  

5. OPTIMIZATION MODEL 
In general, simulation methods are reserved for complex problems which are not solvable 

analytically. However, it may be computationally expensive to insert simulation modules 

directly into optimization loops. Hence, various approximation methods have been substituted 

for simulation (Dai and Schonfeld, 1998, Wei and Schonfeld, 1994). By now meta-heuristics, 

especially population-based ones such as GA’s, along with faster computers, can solve 

complex optimization problems with unsmooth objective functions, even when simulation is 

used to evaluate the objective function (Balamurugan, 2006; Haq and Kennan, 2006; Wang 

and Schonfeld, 2005).  In this paper a GA is used to find the optimal or near-optimal solution 

to the selection and scheduling problem. To test this approach, a Frank-Wolfe traffic 

assignment algorithm is used to compute the objective function. This algorithm can be 

replaced later with a detailed simulation model.  

A GA (Genetic Algorithm) is a metaheuristic method that imitates the biological 

evolution and is based on the natural selection process (Michalewicz and Janikow, 1991). At 

first, GAs create a set of possible solutions which form the “initial population”. This process 

mostly creates the initial population randomly. A string of encoded genes called a 

“chromosome” specifies each individual in the population. In this algorithm some individual 

solutions with the best “fitness” value (i.e. objective function value) are chosen to reproduce 

new offspring. This is usually a probabilistic process in which the individuals with better 

fitness values have a higher probability of being selected for creating the next generation. 

Then a series of mutation and crossover operators mate the selected solutions and change their 

attributes to maintain the population’s diversity, and create the new generation (Golberg, 

1989). In this study, each individual is defined as a string of numbers each corresponding to a 

specific project to be implemented (FIGURE 2). In addition to random order solutions, a 

greedy-order solution, a bottleneck-order solution form the initial population. In this context, 

the greedy-order solutions represent the sequence of projects ordered by their benefit-cost 

ratio, disregarding their interrelations. In bottleneck-order solutions, projects are ranked based 

on their link volume-capacity ratios, which measure their congestion severity. This assumes 

that more congested links should have higher priority for improvement. 

The fitness function is equal to the value of the objective function which, as stated 

earlier, is computed through the traffic assignment model. In maximization problems, the 

selection probability corresponds to the value of the objective function. In minimization 

problems the selection probability correlates inversely with the objective function value. To 

avoid prematurity properties, a ranking method proposed by Michalewicz (1995) is used. In 

this method the population is ordered from best to worst. Then, based the exponential ranking 

value, the selection probability of each chromosome is assigned, assuming the lowest fitness 

value is one (Michalewicz, 1995). Letting q be the selective pressure∈ [0,1], the selection 

probability is defined as follows: 

https://en.wikipedia.org/wiki/Linear_approximation
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 𝑃𝑖 = 𝑐 ∗ 𝑞(1 − 𝑞)

𝑖−1,       𝑐 = 1/[1 − (1 − 𝑞)𝑃𝑜𝑝𝑆𝑖𝑧𝑒] (4) 

 

Next, a roulette wheel approach is used to choose appropriate parents based on their 

selection probabilities (Michalewicz, 1995). This process is conducted by spinning the 

roulette wheel once for each individual in the population. Each time a random number r [0,1] 

is generated, the 𝑖𝑡ℎ chromosome is selected so that 𝑤𝑖−1 < 𝑟 ≤  𝑤𝑖 , where 𝑤𝑖 is the 

cumulative probability for each chromosome. Then the crossover and mutation operators are 

applied to reproduce offspring and create the new population. Common methods of mutation 

and crossover are fairly inefficient for sequencing problems since they construct many 

infeasible solutions with repetitive project numbers within one sequence. To avoid producing 

such solutions, some other genetic operators are employed to solve the project sequencing 

problem. These operators, adapted from Wang (2001), include Partial Mapped Crossover 

(PMX), Position Based Crossover (PBX), Order Crossover (OX), Order Based Crossover 

(OBX), Edge Recombination Crossover (ERX), Insertion Mutation (IM), Inversion Mutation 

(VM) and Reciprocal Exchange Mutation (EM). 

6. ANALYSIS FRAMEWORK 
The framework of the general proposed method for selecting, sequencing and scheduling 
interrelated road projects is presented in Figure 1. The proposed combination of traffic assignment 
and metaheuristic algorithms may be used to evaluate any sequence of projects and find a near-
optimal solution to the project selection and scheduling problem.  

The pseudo algorithm provided in this section explains step-by-step how this problem is 

tackled. First, the traffic assignment algorithm known as Frank-Wolfe, which is also used in 

this study to evaluate the system at various stages, is described. This user equilibrium model 

distributes flow in the network in a way that no individual user can reduce its trip cost by 

switching routes. The second part describes the optimization algorithm. It also explains how 

the user equilibrium algorithm is used within the GA to evaluate the objective function i.e. 

fitness value of the population. In this case, each chromosome presents a string of numbers 

which is the sequence of projects. The fitness value i.e. the objective function for each 

chromosome is estimated by re-running the user equilibrium model at relatively short 

intervals during the analysis period, and thereby estimate the effects of additional projects on 

traffic volumes and speeds throughout the system.. This in fact captures the interrelation 

among projects. Equation 1 yields the present value of total cost which is also the fitness 

value for the chromosome. Accordingly, new generations are created and evaluated until the 

GA’s termination condition is met. 

Evaluation Model – User Equilibrium (Frank-Wolfe) 
Given a current travel time for link a, 𝑡𝑎

𝑛−1 the nth iteration of the convex combination algorithm is 
summarized as follows: 

1. Initialization: all or nothing assignment assuming 𝑡𝑎
𝑛−1 which yields 𝑥𝑎

𝑛. 

2. Updating travel time: use a BPR function 𝑡𝑎
𝑛 = 𝑡𝑎(𝑥𝑎

𝑛) = 𝑡0(1 + 0.15 (
𝑣

𝑐
)4). 

3. Direction finding:  
- Find shortest paths using Dijkstra Algorithm based on 𝑡𝑎

𝑛 
- All or nothing assignment considering 𝑡𝑎

𝑛 which yields auxiliary flow 𝑦𝑎
𝑛. 

4. Line search: find 𝛼 that solves  𝑚𝑖𝑛∑ ∫ 𝑡𝑎(𝜔)𝑑𝜔
𝑥𝑎
𝑛+𝛼(𝑦𝑎

𝑛−𝑥𝑎
𝑛)

0𝑎 . 

5. Move: set 𝑥𝑎
𝑛+1 = 𝑥𝑎

𝑛 + 𝛼𝑛(𝑦𝑎
𝑛- 𝑥𝑎

𝑛),  ∀𝛼. 
6. Convergence test: If a convergence criterion met, stop. Otherwise set n=n+1 and go to step 1. 
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Optimization Model – Genetic Algorithm 

1. t ← 0 
2. Initial population: Set initial population [P(t)]. 
3. Evaluate population:  

- For each chromosome (sequence of projects), run User Equilibrium after each project 
(gene) is implemented. 

- Obtain travel time 𝑤𝑖𝑗, volume, VMT. 

- Compute the fitness value through eq.1. 
4. While not termination, do 

- Select parents [P𝑝(𝑡)] 

- Reproduce offspring by crossover operators [P𝑐(𝑡)]← [P𝑝(𝑡)] 

- Mutate [P𝑐(𝑡)] 
- Create next generation [P(t+1)] 
- t ← t+1 

End. 

5. Obtain optimized sequence of projects. 

 

7. CASE STUDY 
In the literature, simple examples of related problems have been published, e.g. by Tao and 
Schonfeld (2006). A more complex example, namely the Sioux Falls network (LeBlank et al., 1975) is 
used as a case study here. Sioux Falls is the largest city in the U.S. state of South Dakota. Its simplified 
network with 24 nodes and 76 links, shown in Figure 3, is used here for testing purposes. It is 
assumed for this example that the demand grows exponentially over the planning horizon:  
 

 𝑑𝑖𝑗
𝑡 = 𝑑𝑖𝑗

0 ∗ (1 + 𝑟)𝑡 (5) 

 

where 𝑑𝑖𝑗
𝑡  is the demand between origin 𝑖 and destination 𝑗, 𝑑𝑖𝑗

0  is the base demand for the 𝑖𝑗 origin 

and destination (O/D) pair at time 0, and 𝑟 is the growth rate per period. 
After running the traffic assignment model, the critical lanes with high volume-capacity ratios 

are selected as an initial set of candidate projects. Our model allows volume-capacity ratios above 
1.0 since we use a BPR function for estimating link performances. Since the demand matrix is 
symmetric for O/D pairs, each link expansion improvement is assumed to be implemented in both 
directions between the two connected nodes, i.e. each project is defined as expanding two links 
between a pair of connected nodes. This assumption is also justified economically because it saves 
costs in using mobilized construction equipment and other resources. To find appropriate initial 
solutions, the traffic assignment model is run for all improvement scenarios. The first column in Table 
1 shows the sequence of projects ranked by their benefit-cost ratio in descending order. In this 
context, the benefit is the present value of travel time savings, and the cost is the present value of 
implementation cost (greedy order solution). The third column displays the sequence of projects 
based on their congestion severity, where links with lower service levels have higher priorities 
(bottleneck order solution). 
 

TABLE 1 Greedy Order and Bottleneck Order Solutions 

Greedy Order 

Solution 

Project Benefit 

(dollar) 

Bottleneck V/C 

Ratio 
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 (Link #) Order Solution 

(Link #) 

11 $217,300,346  11 2.17 

36 $193,368,891  36 1.89 

3 $189,404,178  34 1.79 

12 $161,423,613  14 1.62 

9 $117,425,401  9 1.59 

15 $91,362,677  27 1.48 

2 $87,751,583  35 1.42 

25 $71,863,522  12 1.41 

21 $70,811,860  15 1.36 

4 $69,331,975  21 1.35 

27 $68,775,533  3 1.35 

37 $61,764,580  13 1.32 

16 $61,099,054  30 1.31 

22 $60,702,083  37 1.22 

13 $60,135,953  22 1.21 

14 $59,110,008  4 1.11 

35 $44,182,898  2 1.11 

30 $36,073,907  16 1.09 

34 $5,242,573  25 1.04 

 

After identifying an initial set of candidates, all projects are further investigated through a 

benefit-cost analysis to identify and rank the initial economically beneficial projects. It is 

assumed that each improvement project adds one lane, which is equivalent to 700 

vehicles/hour additional capacity to each link, and the equivalent annual cost of each lane 

expansion is assumed to be 4,000,000 $/lane-mile (Zhang et al., 2013). The main cost saving 

of link expansion projects is the reduced travel time for all the users. These travel time 

reductions can be computed through the traffic assignment model by comparing the total 

system travel time before and after project implementation. Next, the previously described 

GA is used to find near-optimal solutions for the sequence and schedule of selected projects. 

When optimizing, we seek a sequence of projects which can be implemented within the 

planning horizon (30 years). Therefore, every project with a scheduled completion time 

beyond the planning horizon is eliminated from the sequence.  

8. RESULTS 
As discussed previously, a traffic assignment model is used to evaluate the candidate projects over 
the planning horizon and a GA is used to find near-optimal solutions. This section analyzes the GA 
results and compares the basic scenario without improvement projects to the scenarios with 
implemented projects.  

 

TABLE 2 Optimal Sequence and Schedule 

Optimal Sequence Completion Time 

(year) 
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11 1.8 

34 5.9 

36 8.8 

9 10.8 

14 14.8 

3 16.2 

35 20.7 

27 22.7 

37 25.0 

12 28.0 

NPV of Total 

Cost×106($) 
8535.93 

 
In this analysis the average GA running time per iteration is 300 sec and the entire analysis takes 
about 8 hours to run. 

Table 2 presents the optimal sequence and the corresponding schedule of projects along 
with the objective value. The first column presents the link identifiers as ordered in the optimized 
solution. As stated earlier, each link expansion improvement is assumed to be implemented in both 
directions between the two connected nodes. Accordingly, the optimized schedule is directly 
determined by the sequence of selected projects, assuming it is efficient to fund and finish one 
project at a time, and gain its benefits as soon as it is completed. Thus, as explained in section 2, 
successive projects in the sequence are completed when the available cumulative budget equals the 
cumulative project cost. Figure 5 shows the accumulated total delay costs for three scenarios: (i) no 
project implementation, (ii) project implementation based on greedy solution, and (iii) optimized 
project schedule. These results indicate that at the end of 30 years, the improvement projects can 
save up to 21% of the total delay costs compared to no project implementation and 10.5% compared 
to the greedy order solution. 

In addition to Sioux Falls network which is fairly small, this method is also applied to the 
much larger Anaheim network, which is displayed in Figure 5. It has 416 nodes (of which 38 are 
origin/destination centroids), 914 links, and 1406 O-D pairs. All the network-related information is 
extracted from (Bar-Gera, 2011). In this case, we tested the algorithm for 20, 40, 80 and 100 
candidate projects. Table 3 compares  CPU times for the Anaheim and Sioux Falls networks. It can be 
seen that a larger network significantly increases the CPU time. The results also indicate that the 
network size affects the CPU time much more than the number of projects. In this case, where 
number of links in the Anaheim network is 12 times higher, the CPU time per generation becomes 
almost 115 times higher. This occurs because the traffic assignment algorithm has to evaluate the 
entire network regardless of the number of projects. Also, the number of generations for comparable 
precision is likely to increase with network size. In conclusion, this method is applicable to fairly large  
networks with numerous projects, but computational improvements would be desirable for 
analyzing very large networks.   

          Table 3 CPU Time per Generation (Sec) 

Sioux Falls 
Number of projects 5 10 15 20 

CPU time 51.65 91.26 149.25 161.53 
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Anaheim 
Number of projects  20 40 80 100 

CPU time 10,472 12,764 16,897 18,533 

 
 

9. ALGORITHM TESTING 
 

To evaluate the results emerging from this algorithm, an exhaustive enumeration is carried out 

for the Sioux Falls network. Since the enumeration of the original problem with 20 candidate 

projects (i.e. 20! possible solutions) is lengthy and requires extensive computation time, this 

test is done for smaller problems with fewer projects. In this case, we consider four problems 

with 4, 5, 6 or 7 projects to be ranked. Each case is solved both by the GA and by a complete 

enumeration which evaluates each possible combination of projects and renders the exact 

solution. The results presented in TABLE 4 indicate that the GA yields the exact solution 

from enumeration in all four cases. 
 

Table 4 Complete Enumeration Test 

  Complete enumeration GA solution 

Number of 

projects 
Solution space 

Total system 

cost * 106 
Optimal 

sequence 
Total system 

cost * 106 
Optimal 

sequence 

4 4!=24 90980 3,2,1,4 90980 3,2,1,4 

5 5!=120 94248 3,2,5,4,1 94248 3,2,5,4,1 

6 6!=720 98009 3,2,5,4,1,6 98009 3,2,5,4,1,6 

7 7!=5040 99301 3,2,5,4,1,6,7 99301 3,2,5,4,1,6,7 

 
In general, it is impractical to fully guarantee that the results of heuristic algorithms are 

globally optimal, and it is somewhat difficult to assess the goodness of solutions obtained by the 
evolutionary methods. In this study, a statistical experiment is conducted to examine the 
effectiveness of the algorithm. For this purpose, first a sample of randomly generated independent 
solutions is created. The next step is to fit an appropriate distribution to the fitness values. The final 
step is to calculate the cumulative probability of the solution found by the algorithm based on the 
fitted distribution. It is desirable to obtain a very low probability to demonstrate the goodness of the 
solution. Accordingly, a random sample of 50,000 solutions is created, for which the objective 
function minimum is 8709.19×106  and maximum is 15769.69×106. After exploring different 
distributions, the Lognormal (mu= 9660, sigma= 0.0248) distribution is found to yield the best fit. 
Figure 6 shows the fitted distribution and the data derived from random sampling. It is evident that 
the minimum value in the distribution of 50,000 random solutions is higher (costlier) than the 
optimal solution presented in TABLE 2. In other words, the solution found by the algorithm excels all 
the random solutions in the distribution. 

The cumulative probability of the best solution found by the GA according to the Lognormal 

distribution is 𝑝 = 𝐹(𝑥| μ, σ) =  𝐹(8535.93 × 106| 9660, 0.0248) = 3.597 × 10−5 which can be 
derived from the following equation: 
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` 𝑝 = 𝐹(𝑥| μ, σ) =
1

𝜎√2𝜋
∫

𝑒
−(ln(𝑡)−𝜇)2

2𝜎2

𝑡

𝑥

0

 𝑑𝑡 
(6) 

 

This result implies that the best solution obtained by the algorithm dominates 99.999% of the 

random solutions in the distribution. Therefore, the solution found by the GA, although not 

guaranteed to be globally optimal, is very good compared to other possible alternatives in the 

solution space and the deviation from global optimality is likely to be very small compared to 

uncertainties and errors in the problem’s inputs. 

 

10. CONCLUSIONS 
The capacity expansion of links in road networks is a typical example of interrelated 

alternatives for which the selection and sequencing of projects becomes a challenging 

optimization problem with a “noisy” objective function surface. Common methods for 

evaluating and prioritizing such problems are often incapable of capturing the interactions 

among projects, and are mostly limited to  pair-wise or at best n-wise interactions. The main 

contribution of this study is to demonstrate how a traffic assignment model can be combined 

effectively with a GA in a multi-period analysis for planning and prioritizing purposes while 

capturing interactions among projects. We also design the algorithm to account for the 

possibility that candidate projects may become economically justified or unjustified after the 

implementation of previous projects. Another contribution is to reformulate the budget 

constraint to include possible internal funding from fuel taxes. Also, we assume that the 

demand changes during the planning horizon (growing exponentially in our example).  

Finally, we demonstrate this methodology by conducting a case study and present a statistical 

test of the goodness of the heuristic results.  

In this study, a GA approach is employed here to optimize the selection and 

scheduling of link expansion projects. The study uses a simple traffic assignment model to 

evaluate the objective function and combines it with the GA to optimize the solution. 

Although road expansion projects are the focus of this study, the proposed methodology 

should be applicable to general cases involving more complex systems. More specifically, 

GAs can optimize very intractable objective functions without requiring restrictive 

assumptions about their structures. This allows analysts to effectively combine an appropriate 

evaluation tool (e.g. microscopic simulation, simulation approximates, queuing or neural 

networks, depending on the problem) with the GA, and to solve the planning and scheduling 

problem for a variety of interrelated alternatives. 

Future research may focus on developing general frameworks for solving the problem 

of planning and prioritizing interrelated alternatives in a wide range of applications. Although 

many components of such a general method exist, they could benefit from further 

improvements. Accordingly, the work presented in this paper may be extended by 

incorporating more complex evaluation models (e.g. micro simulation) to capture saturation 

effects in networks. Future work may also account for uncertainties of important variables, 

and consider other possibilities, such as multiple alternatives per location, facility changes 

over time at the same location, and traffic delays during construction. Computational 

improvements in the algorithm would be desirable, e.g.  by distributing GA’s operators 
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among multiple computer processors. It may also be interesting to optimize particular projects 

endogenously instead of selecting them from among pre-specified projects. 
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FIGURE 1 Framework of Optimization Process. 

 

 
FIGURE 2 Example of a Feasible Solution. 
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FIGURE 3 Sioux Falls Network. 

 

 

 

 

FIGURE 4 Accumulated Total Delay Cost with and without projects. 
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Figure 5 Anaheim Network. 

 

 

 

 

FIGURE 6 Fitted Lognormal Distribution. 
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Selecting and Scheduling Link and Intersection Improvements  

in Urban Networks 

 

U. Jovanovic, E. Shayanfar and P. Schonfeld 

 

 

Abstract 

Deciding which projects, alternatives or investments to implement is a complex and important problem 

not only in transportation engineering, but in management, operations research and economics. Projects 

are interrelated if their benefits or costs depend on which other projects are implemented. Furthermore, 

in the network development problem analyzed here, the timing of projects also affects the benefits and 

costs of other projects. This paper presents a method for optimizing the selection and scheduling of 

interrelated improvements in road networks that explicitly considers intersections. The Frank Wolfe 

algorithm, which is modified here to consider intersections, is used for evaluating network 

improvements as well as for traffic assignment. Intersections are modelled with pseudo-links whose 

delays are estimated with Akcelik’s generalized model. The objective is to minimize the present value 

of total costs (including user time) by determining which projects should be selected and when they 

should be completed. A genetic algorithm is used for optimizing the sequence and schedule of projects. 

 

For decades transportation engineers have been dealing with the problem of evaluating, selecting and 

scheduling infrastructure projects. Considered alternatives can be classified as follows: 

 

● Mutually exclusive: Only one alternative may be selected; 

● Independent: The benefits and costs of alternatives 

are independent of which alternatives are selected or when those are implemented; 

● Interdependent (interrelated). 

 

Interrelated alternatives pervade transportation net- works since improvements alter the flows, and hence 

bene- fits, on other network components. This paper  aims  to  show how a traffic assignment model can 

be used to evaluate the objective function of an investment planning optimization problem for an urban 

road network, especially by showing how intersections can be included in the traffic assignment. A 

method is presented for evaluating, selecting and scheduling interdependent improvement alternatives 

in urban road networks, which extends Shayanfar et al. (1) by considering intersection improvements in 

addition to link widening alternatives. It is shown how a traffic assignment model can be effectively 
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modified to consider intersection flows and delays by introducing pseudo-links. Adding pseudo-links 

for each of three movements  (left,  through  and right) at each approach of a four-leg intersection, creates 

a total of 12 pseudo-links per intersection. Moreover, a traffic assignment model is shown to be 

effectively combined with a genetic algorithm for planning and prioritizing purposes while considering 

interrelations among candidate projects. The background section reviews some prior studies on 

intersection delay, selection and scheduling of project alternatives, and traffic assignment. The next two 

sections present the evaluation model and the genetic algorithm used for optimizing the project selection 

and schedule. A case study is presented on the Sioux Falls network and  the  results obtained with the 

modified traffic assignment model and genetic algorithm in optimizing the network development 

schedule. Conclusions and suggestions for extensions are presented in the last section. 

 

Background 

Intersections are crucial components in urban road net- works since they affect traffic capacity and delay 

at least as much as road links. Typically, four-leg intersections allow up to 12 legal vehicular movements 

and 4 legal pedestrian crossing movements. Traffic signals assign right-of-way, and can significantly 

reduce the number of conflicts, thus regulating the traffic flow. One of the many disadvantages of traffic 

signals is the possibility of excessive delay which can congest the network, which, in turn, increases 

cost, pollution and driver anxiety. Early studies on delays at signalized intersections include Wardrop 

(2), who assumed that vehicles enter intersections with uniform arrivals, and Webster (3) who studied 

delays for vehicles at pretimed signals and optimized their settings. 

Delay relates to the amount of excess travel time, fuel consumption, and the frustration and discomfort 

of drivers. Delay can also be used to compare the performance of an intersection under different demand, 

control and operating conditions. For intersections, delay can be calculated simply, as the difference in 

the departure time and the arrival time of a vehicle. Estimation of overflow delay is one of the major 

difficulties in developing delay models at signalized intersections. The difficulty is obtaining a simple 

and easily computable formula for overflow delay and has forced researchers and analysts to search for 

approximations and boundary values. Numerous intersection delay models have been developed, 

including Webster’s (3), Highway Capacity Manual (HCM) (4), Australian (variation of the Akcelik 

delay model (5, 6), and Canadian (7). The delay model used here is Akcelik’s, because it gives delay 

values close to the HCM formula for v/c \ 1.0, but with fewer  assumptions about parameters. It is 

expressed in Equations 1 and 2 as 

 

where 

d = average overall delay (sec/veh), 

C = cycle time (sec), 

l = fraction of the cycle which is effectively green for 

the phase under consideration, 
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x = v/c ratio, 

T = flow period (h), 

c = link capacity (veh/h), 

m, n, a, b = calibration parameters, whose values are available for different delay models (e.g., 

Australian, Canadian, TRANSYT (8), and HCM) in Akcelik’s paper (5), and 

s*g = capacity per cycle (veh/cycle). 

Parameters n, m, a and b according to Akcelik’s papers (5, 6) have the following values respectively: 0, 

8, 0.5, and 0. Therefore, the two equations above become 

 

The overall delay dI at an intersection can be calculated as 

 

where dA is delay on approach A, and vA is volume on approach A. Heidemann (9) and Olszewski (10) 

used probability distribution function to estimate delay at signalized intersections.In their models, the 

probability distributions of delay were obtained from the probabilities of queue lengths. 

Among many approaches used to tackle the problem of project selection and scheduling are integer 

programming, used by Weingartner (11) and by Cochran et al. (12), and dynamic programming, used 

by Weingartner (11) and by Nemhauser and Ulman (13). One notable study on interrelated projects is 

Weingartner’s (11) which presents, among other problems, interdependent projects with budget 

constraints.  

Mehrez et al. (14) use a multi-attribute function to specify the decision maker’s preference with a zero-

one budget model to solve the problem of selection of interrelated multi-objective long-range projects. 

The authors define a set of n indivisible projects contributing to m tangible and intangible attributes with 

L limited resources available for T periods. In addition, they use a utility function with m attributes and 

regard each project as a collection of subprojects, each one contributing to one of the attributes affected 

by the projects. 

Evaluation Model 

Traffic assignment can be formulated as the problem of finding the equilibrium flow pattern over a given 

transportation network, if its graph representation, the associated link performance function and an 

origin–destination (O-D) matrix is known. Assignment of traffic flows on network links is a result of 

equalizing transportation demand (O-D matrix) and transportation supply (link and node capacity, 

management actions). A reasonable assumption is that all travelers try to minimize their own travel time 

between their own origins and destinations. Other assumptions are that travel times increase with link 

flows, and all individuals behave identically. User equilibrium (stable condition) is achieved when no 

traveler can improve their travel time by changing route. Notable publications that dealt with traffic 
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assignment include Florian (15), Sheffi (16), and Boyce and Ran (17, 18). However, none of these 

consider intersection characteristics and performance. 

This paper applies the convex combination algorithm developed by Frank and Wolfe (19) to evaluate 

link and intersection expansion projects upon their implementation in the network. The Frank-Wolfe 

(FW) algorithm is an iterative algorithm used for solving a user equilibrium traffic assignment which is 

a nonlinear programming problem with convex objective function and linear constraints. Given ta
0 a 

(initial travel time for link a), the convex combination algorithm is as follows: 

 

 

 

Problem Statement 

The problem considered here is NP hard (20) with a nonconvex objective function. The problem grows 

rapidly as the number of candidate projects increases, and can be classified as a combinatorial 

optimization problem. This type of problem involves finding values for discrete variables in such a way 

that the optimal solution is found with respect to the objective function. Many practical problems can 

be classified as combinatorial optimization problems such as the shortest path algorithm. Other 

examples are the optimal assignment of employees to tasks to be performed and the traveling salesman 

problem. Dorigo et al. (21) formulated a combinatorial optimization problem U as a triple (S, f, O), 

where S is the set of candidate solutions (sequence of projects), f is the objective function (present value 

of total costs) which assigns an objective function value f (s) to each candidate solution s 2 S, and O is 

the set of constraints (budget constraint in our case). The solutions belonging to the set ~S  S of candidate 

solutions that satisfy the constraints O are called feasible solutions. The goal, according to Dorigo et al. 

(21), is to find a globally optimal feasible solution s* (optimal sequence of projects). 

In this study, the present value of total cost during the analysis period is the objective function, subject 

to a budget constraint. The total cost consists of: (i) supplier cost, defined as the present value of all 

project costs, and (ii) user cost, defined as the delay multiplied by the value of time. Accordingly, the 

objective function can be formulated as 
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where 

wij = waiting time on link i in year j, 

ci = present value of the cost of link project i, 

npl = number of link projects (link improvements), 

nl = total number of links, 

nI = total number of intersections, 

npI = number of intersection improvement projects, 

Ci = present value of the cost of intersection project i, 

v = value of time, and 

r = interest rate. 

The cost of intersection project i can be written as 

 

where 

Cci =capital cost of improvement of intersection i ($/ft2), 

Cpi = cost of pavement maintenance of intersection I ($/ft2), 

AIi = area of the land needed to improve intersection I (ft2), 

Ai = overall area of the intersection i (ft2) 

The objective function is bound by the following cumulative budget constraint (22) as 

 

where ti is the time when project i is finished, and xi(t) is a binary variable specifying whether project i 

is finished by time t. Since in most realistic problems the cumulative budget constraint is binding, that 

is there is never enough funding for all the available projects that are worth implementing, the optimized 

project sequence represented by the set of all tis uniquely determines the schedule of projects (1, 22). 

Optimization Method 
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A genetic algorithm (GA) is a search technique inspired by biologic natural selection and evolution: 

‘‘survival of the fittest’’. Traditional techniques evaluate only one potential solution at a time when 

searching for the optimal solution, while a GA searches by concurrently examining a population of 

solutions. First, the GA generates many different solutions and computes their fitness value (which in 

most cases is the objective function value). Then, solutions are ranked based on their fitness value. 

Solutions with better fitness values are saved, while others are discarded. Some saved solutions are 

chosen as parents, and genetic operators, such as mutation and recombination operators, are applied on 

them to create a new generation of solutions. This process is repeated, until the specified number of 

generations is achieved or until the fitness function stops improving significantly. The GA includes the 

following steps (23): 

 

1. Code the problem and determine the values of the parameters. 

2. Form an initial population which contains n strings, where n depends on the type of problem 

examined. Evaluate the fitness function of every string. 

3. Assuming the probability of choice is proportional to values of fitness function, choose n potential 

parents. 

4. Randomly choose two or more parents and apply operators such as recombination and mutation 

operators to create offspring until a new population of n offspring is created. 

5. Evaluate the fitness function for the new population for every offspring. 

6. If the stopping criterion is reached, terminate the algorithm, and report the optimized solution (one 

with the best fitness value). Otherwise, return to step 3. 

 

In this study, the initial population of the GA is generated randomly and solutions are represented by 

integer digits showing the sequence of the projects being implemented. Each individual in a population 

is defined as a string of numbers, each corresponding to a specific project in a sequence. The fitness 

function is the value of the objective function and is computed through the traffic assignment model. 
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Figure 1. Graphical representation of the Sioux Falls network. 

Case Study 

The Sioux Falls network adopted from LeBlanc et al. (24) is used here as a case study. This network 

differs from the real network since it mainly includes the city’s major arterials. It has been used in many 

previous studies. Figure 1 depicts the Sioux Falls network with 24 nodes and 76 links.  

After running the traffic assignment model on the Sioux Falls network, links and intersections (nodes) 

that have critical volume-capacity (v-c) ratios are identified as an initial set of project improvements. 

The BPR function (19) used as a link performance function allows v-c ratios to exceed 1.0, which helps 

us identify the most congested links. 

The project alternatives considered are link widenings (which are assumed to be applied symmetrically 

in both directions between the two connecting nodes because the O-D table is symmetric), and vertical, 

horizontal, or vertical and horizontal, improvements of intersections. Improvements are carried through 

the entire intersection for consistency with the number of lanes on the intersection’s legs; there are two 

types of improvements that are considered in this paper: (i) N-S widening of the intersection between 

the North–South approaches, (ii) E-W widening of the intersection between East–West approaches. It 

is assumed that some projects should be bundled because it saves costs due to the joint use of resources 

and construction equipment. The assumption to bundle some projects is justified economically because 

it saves costs due to the joint use of resources and construction equipment. 

In this example, it is assumed that the demand grows exponentially over the planning horizon as 
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 where dt ij is the demand between origin i and destination j, d0 ij is the base demand for the ij origin 

and destination (O-D) pair at time 0, and g is the growth rate per period. Some numerical values of the 

input parameters and their units are displayed in Table 1.  

Nodes 8, 11 and 16 represent two-phased intersections in the Sioux Falls network. Intersections were 

modeled by adding one pseudo-link for each movement between link pairs, for example, for intersection 

8, link 47 there are three pseudo-links (47002, 47004, 47006) for three movements (left-turn (002 part), 

through movement (004), and right-turn (006), respectively). Overall, for the three intersections (8, 11 

and 16), 36 pseudo-links are added to the network. Table 2 shows the pseudo-links for intersections, 

their capacity, free flow travel time (t0), and which pseudo-link belongs to which intersection. The 

capacity of each pseudo-link was set as the minimum value of the capacities of the two real links it 

connects. 

Table 3 shows the initial volumes for each of the O-D pairs. It is evident that there are no trips originating 

and ending at nodes 8, 11, 16, because we consider them as intersections in the Sioux Falls network. In 

Table 4, the values of delay on intersection pseudo-links, the volumes on each pseudo-link, and pseudo 

v-c ratio are presented. 

 

Figure 2 shows how the values of delay increase as the pseudo v-c ratio increases, for the three pseudo-

links 36004, 16002, and 52002. These pseudo-links were chosen because of their large increases in 

delays as volume increases. The delay on each of the pseudo-links varies slightly, as can be seen in 

Figure 2. 

Figure 3 shows overall intersection delay for the three intersections as function of the percentage of 

increase of the original O-D volumes, in 10% increments ranging from 10% to 140% of the original O-

D table. In it the intersection delay usually increases as the percentage of volume increases, with 

intersections 8 and 16 having the greatest increases in delay. Due to traffic re-assignment, the delay 

increase is not monotonic at individual intersections.  

Intersections 8 and 16 are considered for improvement based on their delay values. The links to be 

improved were chosen because of their high v-c ratios (above 0.6). Table 5 summarizes the list of 

projects. Intersections with the highest delay values and links with the highest v-c ratio are selected for 

improvement. Table 6 shows the bottleneck sequence and schedule of projects (ordered based on the 
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projects’ v-c ratios), greedy sequence and schedule (ordered based on their benefit-cost (b-c) ratio), and 

the GA-optimized sequence and schedule of projects. In this case, benefit is defined as the monetary 

value of total travel time savings from implementing one project, and cost is simply the implementation 

cost of each project. The present values of total costs after each project implementation are also shown 

in Table 6. These results indicate that the GA yields a better solution, that is, with lower total cost 

compared to sequences based on b-c and v-c ratios. This occurs because the GA process accounts for 

project interrelations, unlike common practices such as b-c ratio and congestion level rankings.  

Figure 4 shows the performance of the GA; the optimized solution is reached after 22 generations. The 

stopping criterion for the GA was set at 10 successive similar solutions (shown in Figure 4) but, for 

more confidence in the results, we let it run further for 200 generations, which yielded the same solution. 

The CPU time for entire analysis is 3300 seconds. Table 7 demonstrates the sensitivity of the optimized 

sequence, schedule, and the objective function value (total cost) to changes in demand. 

Demand is changed by the same percentage for each cell in the O-D matrix. Table 7 also presents the 

sensitivity of results to changes in the available budget. The variation in budget is specified as different 

percentages of the original value, which was set to $1.5 million/year. It should be noted that unsteady 

budget flows do not increase the model’s complexity or computation time. 
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Conclusion 

The improvement of intersections and links in a network is just one example of interrelated alternatives 

for which the selections and scheduling of projects becomes a challenging optimization problem. This 

paper modifies the FW traffic assignment model to consider intersection flows and delays. This is done 

by introducing pseudolinks to the network and applying Akcelik’s delay model. The modified model is 

then incorporated within a GA loop to optimize the selection and scheduling problem. Common 

prioritizing practices which are rankings based on b-c ratio and congestion level do not produce the 

optimal sequence of projects because they disregard the interrelations among projects, unlike the GA 

used here. This methodology can be applied more generally to other more complex cases. GAs can 

optimize very intractable objective functions without requiring restrictive assumptions about their 

structures which allows them to be efficiently combined with other evaluation tools, to solve selecting 

and scheduling problems.  
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Future research may focus on extending the model by incorporating more detailed evaluation methods 

(such as simulation models) to capture dynamic effects in congested networks that are missed by the 

FW algorithm. Future model versions may also consider more elaborate intersection configurations, 

control policies and cyclical variations in daily and weekly traffic. Gas could be solved considerably 

faster by distributing the evaluation of population members among multiple processors. Moreover, 

individual improvements (resurfacing, widening) could be grouped to form a project, bus traffic could 

be traced along with passenger vehicles in the traffic assignment method, and different cost rates could 

be assumed for different types of improvements implemented. 
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Abstract 

This paper addresses the development of interrelated rail transit projects in urban rail transit networks 

over multiple time periods. It extends the traditional network design problems by explicitly 

considering the time horizon and interrelations among projects in rail transit networks. The proposed 

model determines which projects in a rail transit network should be selected and completed at what 

times (i.e., project selection, sequence and completion time), while jointly optimizing the evolving 

headways of rail transit lines, in order to minimize the present value of the total cost. In addition to the 

financial budget provided by relevant agencies (e.g., governments), we consider fare revenues 

generated from the operations of previous completed projects as an internal source of funding for later 

projects. A Genetic Algorithm (GA) is adapted to solve this model and tested on the transit network 

development of Wuhan city in China. Sensitivity analysis is conducted to explore the effects on the 

development plan of some important factors, such as travel demand and annual financial budget. 

Findings are reported on the efficiency of the adapted GA approach as well as on the impacts of travel 

demand and budgets.  

 

Keywords: Rail transit network; development plan; correlated projects; financial budget constraint. 
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1. Introduction 

 

The past decade has witnessed rapid growth in rail transit investments in China. According to the 

latest report by the Chinese Urban Rail Transit Association (CURTA, 2017), by the end of 2017, 165 

rail transit lines with a total length of 5033 kilometers were operating in 34 cities in mainland China. 

Currently, 5636 km of rail transit lines are under construction, and 7305 km of rail lines were 

approved but not yet built. These rail transit projects require huge investment costs. For example, the 

capital cost of Wuhan Metro Line 2 was about RMB600 million per kilometer (RMB is the Chinese 

currency “Renminbi”. US$1 approximates RMB6.51 as of January 1, 2018). However, the 

government funds available for investment in rail transit projects are limited. The investment or 

improvement of the rail transit lines is thus usually a multi-stage process. 

 

As an example, Fig. 1 shows the gradual development process of the rail transit projects in Wuhan (a 

city located in Central China) in the past dozen years. It can be seen that Wuhan’s rail transit network 

gradually expands from one line in 2005 to seven lines in 2017. The corresponding total rail line 

length grows from 34.57 km to 237 km. During the development process, the order and time of the 

project implementations can significantly affect user cost and the investment efficiency in terms of 

total cost. This raises an important question addressed here: how should we design an appropriate 

development plan for rail transit projects within financial constraints over a planning horizon such that 

the discounted total cost in the urban system is minimized? 

 

In the literature, transportation infrastructure investment issues have attracted widespread interest due 

to their practical importance. Table 1 summarizes some principal contributions to the related 

problems, in terms of the type of infrastructure, consideration of time horizon, and consideration of 

interrelations among projects. It can be seen from Table 1 that the existing studies mainly focused on 

the general road network design problems with a discrete approach (see e.g., Wang et al., 2013; Zhang 

et al., 2014; Wang et al., 2015), a continuous approach (see e.g., Li et al., 2012; Yin et al., 2014; Liu 

and Wang, 2015), or in a hybrid way (see e.g., Luathep et al., 2011). These models usually aimed to 

add new links or expand the capacities of the old ones in the network. Certainly, this is also an 

important part of urban rail transit network development. However, the urban rail transit network 

development problem is more complex than the general road network development problems due to 

the design and operating characteristics of rail transit lines. In this regard, Gao et al. (2004) developed 

a bi-level model to examine the interaction between the supply side and the demand side in a transit 

network design problem. Farahani et al. (2013) provided a comprehensive review of urban 

transportation network design problems.  

 

However, most of these were static models focused on stationary states, which cannot address the 

dynamic or progressive improvements of the rail transit system. It is well known that as the urban 

economy and population grows, together with the development for the transit network, the demand for 

the rail transit service may significantly increase. This increase can affect the rail services such as their 

headways, operating costs and fare revenues. Hence, the development decisions for the rail transit 

network should change, which in turn affect the system’s travel demand. Thus, the demand for rail 

transit service, the operational condition and the network development decisions in one period are 

significantly affected by the decisions made in the previous periods, and therefore, vary over the entire 

time horizon. Consequently, it is important to incorporate the time dimension in the rail transit 



 40 

network development problem such that interactions between the supply and demand over different 

time periods can be taken into account.  

 

So far, researchers have made considerable efforts to consider the time horizon in transport network 

design problems. For example, Cheng and Schonfeld (2015) optimized the extension of single rail line 

outward from a city center over time. Shayanfar et al. (2016) proposed an optimization framework for 

selecting and scheduling interrelated projects in a road network. Sun et al. (2017) explored the 

selection of public transit modes by costs and benefits analysis and considered essential factors in a 

long-term planning process, such as economies of scale in rail extensions and future cost discounting. 

More recently, Sun et al. (2018) extended the work of Cheng and Schonfeld (2015) by developing a 

bi-level model to determine how many stations along a rail line should be completed in different time 

periods, while considering demand elasticity. It should be noted that the previous relevant studies only 

considered single rail line, expanded outward from a city center. No comparable studies have been 

found for the more general rail transit network development problem. 

 

In this paper, we extend the related studies to consider the gradual development process of urban rail 

transit networks, while accounting for correlations among projects in the rail transit network over 

different time periods. Here, a project means to invest in one segment or link in a rail transit network. 

Correlations among projects occur when the benefits and costs of projects in the rail transit network 

depend on whether and when other projects are completed. When a project is implemented, both the 

user costs of the newly built segments and those of the completed segments change since the number 

of OD pairs connected by rail lines and thus the demand for rail services increases. Growing travel 

demand can decrease the train headways and thus the user costs of completed segments along the rail 

lines. However, the operating costs increase due to the rail transit network expansion and decreasing 

train headways. Consequently, the total cost change (or project benefit) due to project development  is 

not a simply linear summation of cost changes from individual segments, but a consideration of the 

operating cost increases and the user cost savings from all segments in the network. The correlations 

among projects significantly affect the investment decision and the development plan. Thus, it is 

important to account for the correlations among projects in the transit network and their effects on the 

system’s total cost.  

 

In light of the above discussion, this paper proposes a model for optimizing transit network 

development process over time by considering time-varying demand, financial constraints, and 

interrelations among projects over time and space. There are two main contributions in this paper. 

First, a novel model is proposed to determine the development process of rail projects in a rail transit 

network with limited financial budget over a planning horizon. In the proposed model, the present 

value of the total cost is minimized by optimizing the project selection, sequence and implementation 

schedule. The effects of the newly completed projects on transit systems and the present value of the 

total cost are explicitly explored by incorporating the correlations among projects over time and space. 

In addition, the growth of the travel demand over time is effectively captured by a time-varying travel 

demand function. The budget constraint includes possible internal funding, such as from the fare 

revenue generated from the operation of the transit rail lines. In other words, in addition to externally 

provided budgets, the fare revenue collected from the previous years is used as an internal source of 

funding to finance the successive projects. Second, some important factors that affect the development 

plan of the public transit projects and the present value of the total system cost are identified. Results 

reveal that both the initial travel demand and annual financial budget can significantly affect the 
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development plan for a rail transit network. The proposed model can serve as a useful tool to guide the 

development process of urban transit networks. 

 

The remainder of this paper is organized as follows. The next section describes some basic 

assumptions and the components of the models, including user cost and supplier cost. Section 3 

presents the model for optimizing the development plan by determining which projects will be 

selected, when these projects are completed, and the train headways in each period on the rail lines in 

the network. A genetic algorithm (GA) for solving the proposed model is presented in Section 4. Next, 

numerical examples are provided to illustrate the applications of the proposed model in Section 5. 

Finally, Section 6 provides conclusions and recommendations for further studies. 

 

2. Components of the model 

2.1. Assumptions 

To facilitate the presentation of essential ideas without loss of generality, some basic 

assumptions are made as follows.  

 

A1. The layouts of rail transit lines and station locations are assumed to be exogenously given, as 

assumed in Cheng and Schonfeld (2015) and Sun et al. (2018). In fact, determining the layouts of rail 

transit lines and station locations in an urban rail transit network is a major task of transit system 

planning. In this paper, we focus on the future development plan for this pre-given transit network, 

that is, determining which projects should be selected and when these projects should be invested over 

a planning horizon. 

 

A2. It is assumed that the sequenced projects can be invested once the financial budget is available. 

We aim to explore the transit network development by considering financial feasibility over time. 

Moreover, the system operations such as rail line length and train headways change if new projects are 

completed. These assumptions have been adopted in various previous studies (see e.g., Wang and 

Schonfeld, 2008; Shayanfar et al., 2016). 

 

A3. Travel demand is assumed to be at a stationary state within each development period but varies 

among periods. Here, period refers to the development state of a transit network. Specifically, when a 

project is completed (i.e., the development state of the network changes), the current period ends and 

the next period begins. Therefore, the duration of periods depends on the interval between the 

completion of two successive projects, which is determined by the development plan and may vary 

over different periods. It is assumed that travel demand in different periods increases due to 

demographic trends, economic growth and network development. It is also assumed that the travel 

demand between OD pairs which are already connected by rail lines increases at a higher rate than that 

between unconnected OD pairs. In this paper, an exponential form of travel demand function is 

adopted (as in e.g., Shayanfar et al., 2016; Cheng and Schonfeld, 2015; Sun et al., 2018).  
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A4. The present value of the total cost in the urban system is assumed to be the sum of the discounted 

total cost over all development periods (see e.g., Shayanfar et al., 2016). In each period, the total cost 

includes user cost and supplier cost. The supplier cost refers to the cost for providing transit service, 

which includes the capital investment, network maintenance, and vehicle operating cost. 

 

A5. It is assumed that until origin-destination pairs are connected by rail lines, their demands are 

served by other modes (e.g. autos or buses), at a cost proportional to travel distance. 

 

A6. In this model at most one rail route exists between any OD pair. In fact, except in central parts of 

cities with very large rail networks, most rail trips have no alternative rail paths. This typical situation 

can be seen in many cities, such as Atlanta. 

 

2.2. User cost 

Consider an urban rail transit network ( , )G N A , where N is the set of nodes (transit stations or stops) 

and A is the set of transit line segments in the network. Let W be the set of origin-destination (OD) 

pairs in the network, L be the set of transit lines and T be the set of development periods. The binary 

decision variable can be defined as 

( )
1, if segment already exists in period , , ,

0, otherwise.

t

a

a t a A t T
y

 
 


  (1) 

It should be noted that in the rail transit network, segment a may include several stations. This is 

consistent with actual practice because it can yield economies of scale and save costs in using 

mobilized resources such as construction equipment.  

 

Let 
( )

1

t

ac  and 
( )

2

t

ac  be the user cost on segment a by rail and by other modes in period t, respectively. 

The travel cost by rail consists of waiting cost and in-vehicle time cost. Note that the access cost that 

be omitted because we assume that the station locations are predetermined (see Assumption 1). Thus, 

we have 

( )
( )

1 1 2 , , , ,
2

t
t a al l

a

d h
c a A l L t T

V


        (2) 

where 1  and 2  are the values of in-vehicle time and waiting time, respectively. al  is a 0-1 

indicator, which equals 1 when segment a is a section of rail line l, and 0 otherwise. ad  is the length 

of segment a, V  is the average speed of trains, and 
( )t

lh  is the average train headway of rail line l 

where segment a is located in period t. According to Assumption 5, the user cost on segment a by 

other modes, 
( )

2

t

ac , can be expressed as 

( )

2 0 , , ,t

a ac c d a A t T     (3) 
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where 0c  is the cost per km of travelling by other modes, which is assumed to be a constant. It can be 

seen from Assumption 5 that, before segment a is implemented or connected to rail lines, persons 

passing through it have to choose other travel modes. Let 
( )t

ac  be the user cost on segment a, which 

can be expressed as 

 ( ) ( ) ( ) ( ) ( )

1 2= 1 , , ,t t t t t

a a a a ac y c y c a A t T      (4) 

where 
( )t

ay  is the decision variable, defined in Eq. (1), indicating whether segment a is 

completed in period t. 

 

The daily traffic volume on segment a in period t, 
( )t

aQ , can be expressed as 

( ) ( ) ( ) , , , ,t t t

a w wa

w W

Q q a A w W t T


       (5) 

where 
( )t

wq  is the daily travel demand between OD pair w in period t. 
( )t

wa  is an indicator, which equals 

1 when segment a is on the route between OD pair w in period t, and 0 otherwise. Note that there is at 

most one rail route connecting OD pair w (see Assumption 6). Therefore, the route index is omitted 

here. We assume the travel demand increases over time due to demographic and economic growth and 

network development. According to Assumption 3, the exponential form of travel demand function 

can be expressed as 

 ( ) (0)

1 21 (1 ) , , ,t t w
x x xt

w w wq q g g t T w W


        (6) 

where 
(0)

wq  is the daily travel demand between OD pair w in period 0, 1g  is the base growth rate per 

year due to demographic and economic growth and 2g  is the additional annual growth rate when OD 

pair w is connected (see Assumption 3). w  is a 0-1 indicator, which equals 1 when OD pair w is 

connected, and 0 otherwise. tx  is the starting time of period t, and wx  is the first time to complete the 

connection for OD pair w. Let 
( )t

uC  be the annual user travel cost in period t. Thus, we obtain 

( ) ( ) ( ) , , ,t t t

u a a

a A

C Q c a A t T


      (7) 

where   is the average number of days of travel per traveler per year, which is used to transform 

the daily basis cost to the yearly one.  
( )t

aQ  is the daily traffic volume on segment a in period t 

and 
( )t

ac  is the user cost on segment a.  

 

2.3. Supplier cost 

According to Assumption 4, the cost of providing the rail transit service in each period includes the 

capital investment cost of the new project, the maintenance cost of existing rail lines in this period, 

and the vehicle operating cost in this period. Let 
( )t

c  be the capital investment cost in period t, 
( )t

m  
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be the annual maintenance cost in period t, and 
( )t

o  be the annual vehicle operating cost in period t. 

The capital investment cost 
( )t

c  in period t, such as land acquisition, design, and construction costs, 

can be expressed as 

 ( ) ( 1) ( ) , ,t t t

c a a a

a A

y y t T



       (8) 

where a  is the capital investment cost for segment a. Note that the capital investment cost only 

occurs at the time when segment a is developed (i.e., the end of this period and the beginning of the 

next period). Here, the term  ( 1) ( )t t

a ay y   indicates whether or not segment a is selected at the end of 

period t. It equals 1 when segment a is implemented in period t, and 0 otherwise. 

 

The maintenance cost 
( )t

m  per year in period t, is directly proportional to the total length of the 

existing transit lines in period t, which can be expressed as  

( ) ( ) ,t t

m a a

a A

y d


     (9) 

where   is maintenance cost of transit lines per kilometer per year.  

 

The annual vehicle operating cost is the sum of the vehicle operating cost of each transit line. 

Specifically, the annual vehicle operating cost of a transit line is its fleet size multiplied by annual 

operating cost per train. To obtain the fleet size, the transit round trip time should be derived first. Let 
( )t

lR  be the round trip time of line l in period t and 
( )t

lF  be the fleet size of transit line l in period t. 

Thus,  

 ( ) ( )2 , , ,t t

l a a al

a A

R d y V l L t T


      (10) 

( ) ( ) ( ) , , ,t t t

l l lF R h l L t T     (11) 

where al  is a 0-1 indicator determining whether or not segment a is a section of rail line l, defined in 

Eq. (2).  ( )t

a a al

a A

d y


  is the length of line l completed in period t, which may change due to the 

network development. Let   be the operating cost per train per year. Therefore, the total yearly 

vehicle operating cost of the system in period t 
( )t

o  can be expressed as 

( ) ( ) , .t t

o l

l L

F t T


      (12) 

 

The rail line’s headway varies with its travel demand. Consequently, the headways are steady in each 

development period, but vary among periods, like the changes in travel demand (see Assumption 3). 

Therefore, we have to re-optimize the headways in each period, i.e. after every decision made. The 

optimal headway for rail line l in period t 
( )t

lh , can be determined by minimizing the total cost of the 

system in this period. Specifically, the system’s total cost in period t is defined as the sum of the user 
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cost and the supplier cost in this period. Let 
( )t  be the total cost of the system in period t. According 

to Eqs. (4)-(12), it can be expressed as 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( )

1 21 , ,t t t t t t t t t t t

t a a a a a a a l l a a a

a A a A l L a A

Q y c y c y d R h y y t T

   

 
               

 
     (13) 

1 , ,t t tx x t T      (14) 

where t  is the duration of period t, which is determined by the difference between the start time +1tx  

of period t+1  and the start time tx  of period t. In square brackets in the right hand side of Eq. (13) the 

first term represents the annual user cost in period t, the second term is the annual maintenance cost in 

period t, and the third term is the annual operating cost in period t. Setting 

( )

( )
0

t

t

lh





, we can 

analytically obtain the optimal headway of transit line l in period t as 

 

( )
( )

( ) ( )

2

2
, , ,

t
t l

l t t

a a al

a A

R
h l L t T

y Q



  

  
  (15) 

where   is the operating cost per train per year and 2  is the value of waiting time.  ( ) ( )t t

a a al

a A

y Q


  

is traffic volume of line l in period t. Eq. (15) implies that the optimal headway of transit line l in 

period t, 
( )t

lh , decreases to accommodate the increased demand of this line over time. 

 

3. Model formulation 

 

As previously stated, the goal is to minimize the present value of the total cost by determining which 

projects should be developed and when these projects should be completed. The discounted total cost 

is the sum of the discounted total cost in each period. According to Eqs. (4)-(13), the model can be 

formulated as follows. 

   

 

 ( )

( ) ( ) ( ) ( ) ( ) ( 1) ( )

( )

,

min ,
1+ 1+

t t t
a t

t t t t t t t

t a a a a l l a a at
a A a A l L a A

x x
y x t T t T

Q c y d R h y y

r r



   

 

 
        

  
  

   
   (16) 

s.t. 

( ) ( ) ( 1) , , , , =0,1,2,..., 1,t t t

i j az z y i j N a A t T       (17) 

( ) ( ) , , , ,t t

i az y t T a A i N      (18) 

( ) ( ) , , , ,t t

j az y t T a A j N      (19) 

( 1) ( ) , , =0,1,2,..., 1,t t

n nz z n N t T      (20) 

( 1) ( ) , , =0,1,2,..., 1,t t

a ay y a A t T      (21) 



 46 

 ( ) ( )

( )
, , , ,t t veh

a a al t
a A l

K
y Q a A t T l L

h

        (22) 

( ) ( ) ( ) , 0,1,2,..., ,t t t

cB t T      (23) 

 ( )

0 1= , 1,2,3,..., ,t

t tB B x x t T    (24) 

where r is the discount rate. The denominator (1+r) in Eq. (16) is used to convert the cost of future 

investment to today’s cost. 
( )t

ay  and tx  are the decision variables defined in Eqs. (1) and (6), 

respectively. Eq. (16) is the objective function that minimizes the present value of the system’s total 

cost.  ( ) ( ) , 1, 2,...,t t

nz n N z  is the vector of 0-1 variables indicating whether a node is completed 

in period t. i and j denote the indices for the two end nodes of segment a. Constraint (17) expresses the 

segment connectivity in the network, which implies that the segments to be built should have at least 

one end node already completed (i.e., the newly built segments must connect to the segments that have 

been already completed). This constraint ensures that the network’s rail lines are extended by 

connecting to the existing lines. However, there is an exception. Initially, when none of nodes or 

segments in the network are yet completed, i.e., no existing lines need to be connected, any projects 

may be considered for immediate implementation without subject to Constraint (17). Constraints (18)-

(19) mean that if segment a is completed, its two end nodes are also completed. Constraints (20) and 

(21) are realistic constraints ensuring that after nodes and segments are completed, they always remain 

in service in later periods.   is the peak-hour factor, i.e., the ratio of peak-hour demand to the daily 

demand, which is used to convert the passenger volume from a daily basis to an hourly basis. vehK  is 

the capacity of vehicles (i.e., the maximum number of passengers allowed in a vehicle, both seated and 

standing). Constraint (22) is the line capacity constraint, which guarantees that the rail service supply 

satisfies the associated (peak-hour) passenger demand. 
( )tB  is the budget flow in period t and 0B  is 

the annual budget level provided by relevant agencies (e.g., governments). Constraint (23) is a 

reformulated budget constraint which considers an internal funding source, such as the rail fare 

revenue collected from the rail service operations. The left-hand side of Constraint (23) denotes the 

total available funding at the end of period t and the right-hand side denotes the capital investment cost 

needed. The reformulated budget constraint reflects interrelations among projects in the transit 

network since the capital used for development is partly supplied by fare revenue collected from the 

rail operations, which may change with the network development. 
( )t  denotes the fare revenue 

collected from the rail operations in period t, which can be expressed as 

 ( ) ( ) ( )t t t

t a a a

a A

y Q fd


 
    

 
 ，  (25) 

where t  is the duration time of period t, defined in Eq. (14). The fare on segment a is the fare per km 

f multiplied by its length ad . 

 

It should be noted that if the budget is limited throughout the planning horizon, i.e., never sufficient 

for all beneficial projects, a project sequence uniquely determines a project schedule. The available 

funds should always be used whenever they suffice to complete a project (see Assumption 2). Hence, 

after the sequence of projects is determined, the completion time of these projects can be obtained by 

checking budget constraint. Accordingly, only those projects whose implementation times are within 

the planning horizon are selected. Here, the projects that are completed at the time beyond the 
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planning horizon are implicitly rejected. Thus, the development plan is optimized by first optimizing 

the sequence of projects, and then determining the completion time of each project.  

 

4. Solution algorithm 

 

The above total cost minimization model (16)-(24) is a constrained integer programming problem, 

which is non-linear and non-convex, making it difficult to find its globally optimal solution. A GA 

approach is presented in this section due to its suitability for very “noisy” objective functions. GA’s 

are inspired by phenomena in evolutionary biology. In a GA, a solution of the problem is called an 

individual. It is represented as a sequence of variables called a chromosome or gene string. A group 

including multiple individuals is defined as population. The essence of GA is population evolution 

through selection, crossover and mutation. Generally, a GA starts from initializing a set of individuals, 

i.e., a population, and then selecting the better individuals to reproduce offspring by applying genetic 

operators such as crossover and mutation operators. As a result, the most adapted individuals survive 

and thus the population can converge toward an optimized solution. 

 

The GA in this paper is developed from basic GAs but differs from them in many ways. First, an 

efficient genetic encoding scheme is adopted to deal with the constraints. Since the proposed model 

has the network connectivity constraint (see Eq. (17)), traditional representation schemes such as the 

sequence of projects may generate too many infeasible solutions. A general remedy for this problem is 

to add penalty terms to fitness functions or use repair operators to transform infeasible solutions into 

feasible ones. However, these methods cannot handle the connectivity constraint efficiently and 

degrade the search efficiency in terms of speed and accuracy. Therefore, a novel genetic encoding 

scheme is needed. Second, solutions capturing the characteristics of the network and projects are 

incorporated into the initial population to accelerate the convergence of the GA. For example, 

solutions that represent the sequence of projects ordered by their demand level and investment cost are 

included in the initial population. Intuitively, development of projects with higher travel demand and 

lower investment cost can contribute more to the system cost saving and thus those projects have 

higher priority for development. As a result, such solutions may make better use of existing 

information, which help accelerate the convergence of the GA. Third, some mechanisms are designed 

to avoid GA prematurity. In the selection process, a ranking method is used to help the GA escape 

from local optima. In addition, the catastrophe mechanism is introduced when the optima remain 

unchanged for a certain number of generations (e.g., 50 generations). These mechanisms are capable 

of enhancing the accuracy and stability of the GA.  

 

4.1. Genetic encoding and decoding 

The process of encoding a chromosome into a string is called genetic encoding and the process of 

decoding a chromosome into a feasible solution to the problem is called decoding. In this paper, each 

individual has one chromosome, which is encoded by a string of numbers representing the selection 

priority of a specific project to be completed. Let  1 2, ,..., JE e e e  be a chromosome represented by 

a string of genes, where J is the number of possible projects to be selected. , 1, 2,..., ,ie i J  is the ith 

gene on chromosome E, and its value indicates the selection priority of the ith project. The selection 

priority for each project is randomly generated within  1, J  exclusively. Thus, to initialize a 
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chromosome (i.e., an individual) is to generate J random numbers within  1, J . An example of a 

chromosome is shown in Fig. 2. 

 

The main idea of decoding is to choose the one with the highest selection priority value from the 

candidate set as the successive project to be implemented. In this paper, a connectivity information 

matrix Mark[i][n] is constructed to store whether node n is at the end of segment i (i.e., project i), 

where 1,2,..., ,i J  and 1, 2,..., .n N  N is the number of nodes in the transit network. Besides, a 

vector I is used to indicate whether a node is completed. A procedure to generate a feasible solution to 

the problem from a chromosome is displayed as follows. 

 

Step 1. Initialize the candidate set by including all the feasible projects.  

Step 2. Choose the project with the highest selection priority value from candidate set. 

Step 3. Update vector I by checking constraints (18)-(19). 

Step 4. Update the candidate set by deleting the projects that have been already completed and making 

changes by checking Mark and Constraint (17). 

Step 5. Check whether the candidate set is empty. If so, stop and output the sequence of projects to be 

completed. If not, repeat steps 2-4. 

 

It should be noted that since the values of selection priority for projects are distinct, each chromosome 

can uniquely determine a feasible sequence of projects. As discussed in the last paragraph in Section 3, 

a feasible sequence of projects can eventually determine a development plan. Therefore, each 

chromosome can be uniquely decoded into a feasible solution to the problem. With this genetic 

encoding scheme, all feasible solutions can be represented by changing the sequence of project 

priorities.  

 

To further illustrate the process of decoding, we consider a transit network in Fig. 3 and decode the 

chromosome in Fig. 2 into a feasible solution to this network development problem. At the beginning, 

initialize the candidate set as (1, 2, 3, 4, 5, 6). Then, choose project 1 from the candidate set as the first 

project to be implemented due to its highest selection priority, so that the nodes (1, 3) are completed. 

According to Constraint (17), only projects that connect to segments that have been already completed 

can be included in the candidate set. Thus, we update the candidate set as (2, 3, 4). Choose project 4 as 

the successive project because we have 4 (the selection priority of project 4)>3(the selection priority 

of project 2)>2(the selection priority of project 3). Repeat those steps until the candidate set becomes 

empty, so that we can obtain a unique feasible sequence of projects as (1, 4, 6, 2, 3, 5). 

 

4.2. Calculating the fitness value 

Before calculating the fitness value of an individual, we have to translate a chromosome (e.g., E= (6, 

3, 2, 4, 1, 5) in Fig. 2) into a feasible sequence of projects (e.g., (1, 4, 6, 2, 3, 5)). In this paper, the 

fitness function is equal to the value of the objective function as shown in Eq. (16). Therefore, the 
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fitness value of an individual is the discounted total cost of a project sequence. Let   be the planning 

horizon. The steps are displayed as follows. 

 

Step 0. Initialization. Let t be the counter of periods and set t = 0. 

Step 1. Calculate the travel demand for OD pairs in period t 
( )t

q  by Eq. (6). Then, determine the daily 

traffic volume on segments 
( )t

Q  by Eq. (5), headway of transit lines 
( )t

h  by Eq. (15) and Constraint 

(22), annual user cost 
( )t

uC  by Eq. (7) and annual supplier cost by Eqs. (8)-(12), respectively.  

Step 2. Calculate the implementation time of the next project 
( 1)tx 

 by checking budget constraint in 

Eq. (23). If 
( 1)tx    , let 

( 1)tx    . 

Step 3. Obtain the duration time of period t t  by Eq. (14). Then, calculate the discounted total cost in 

period t 
( )t  by Eq. (13) and the cumulative discounted total cost   by Eq. (16). 

Step 4. If 
( 1)tx     holds, set t=t+1 and go to step 1. Otherwise, stop. 

 

4.3. Selection 

Parents are chosen from the population according to a probability which correlates inversely with the 

fitness value of individuals. To avoid prematurity of the GA, a ranking method proposed by 

Michalewicz (1996) is adopted. In this method, we first order the individuals in the population from 

best to worst according to their fitness values, i.e., the individual with the lowest fitness value is the 

best and is ranked first. Then, we calculate the selection probability of each individual based the 

exponential ranking value by assuming the lowest fitness value is one. Let 0p  be the selective 

pressure, which is a positive value between 0 and 1, i.e., 0 (0,1)p  , and ip  be the selection 

probability of the individual ranked at i. Then, ip  can be expressed as 

1

0 0 0(1 ) 1 (1 ) ,i M

ip p p p         (26) 

where M is the population size. Next, a roulette wheel approach is used to choose appropriate parents 

based on their selection probabilities. This process is conducted by spinning the roulette wheel once 

for each individual in the population. Each time a random number (0,1)b  is generated, the i_th 

individual will be selected if 1i ib    , where i  is the cumulative probability for each individual. 

 

4.4. Operators 

It should be noted that common methods of mutation and crossover are fairly inefficient for our 

problem since they construct many infeasible solutions with repetitive numbers within one 

chromosome. To avoid producing such solutions and improve the efficiency, we adopt Partial 

Matched Crossover (PMX) as the crossover operator and Reciprocal Exchange Mutation (REM) as the 

mutation operator. These operators are explained by Wang (2001), and thus omitted here.  
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In general, GA has a strong local search ability, but may get trapped in local optima, which is also 

known as prematurity. Therefore, the catastrophe mechanism is introduced (Gu et al., 2009). The main 

idea of this mechanism is to discard the current optima so that the population may produce better 

solution. The specific approach in this paper is to regenerate the initial population randomly when the 

optima stay unchanged over a specified number of generations. 

 

5. Numerical study 

 

In this section, numerical examples are used to illustrate the applications of the proposed model and 

the contributions of this paper. We consider the urban rail transit network represented in Fig. 3 

composed of 3 transit rail lines, 7 nodes (represented by circles) and 6 segments between them. To 

complete the development of this network, 6 candidate projects are considered. Specifically, each 

project includes the development of one segment and the two end nodes of this segment (if they are 

not yet completed). The input data for segments such as length, investment costs and associated rail 

line are displayed in Table 2. Table 3 shows the daily travel demand between OD pairs. In the 

following analyses, unless specifically stated otherwise, the input parameters and their baseline values 

used in the model are the same as those shown in Table 4. We set the planning horizon as 10 years, the 

annual capital budget as $250 million and the genetic parameters as follows: population size, pop_size 

= 10; maximum generation, max_gen = 100; crossover probability, 0.8cP  ; mutation probability, 

0.5mP  ; the number of implementing catastrophe mechanism, 1cn  . The proposed solution 

algorithm is coded in MATLAB and run on a ThinkPad Carbon X1 computer with an Intel(R) 

Core(TM) i5 CPU (2.4 GHz) and 8 GB of RAM. This numerical experiment takes about 0.8 seconds 

of CPU time. 

 

5.1 Example 1 

5.1.1 Optimized solution for rail transit development plan 

Table 5 displays the optimized development plan of rail projects and the system performance. It can be 

seen in Table 5 that 3 projects are selected over a planning horizon of 10 years, i.e., projects 4, 6, and 

3, and they are completed sequentially at years 6.00, 8.61 and 9.47, respectively. Over time, the 

headways of rail lines decrease, but the demand for rail service and discounted cumulative total cost 

saving increase. Specifically, the headway of Line 1 decreases by 0.13 min from 1.54 min in period 1 

to 1.41 min in period 3, and the headway of Line 3 decreases by 0.05 min from 2.91 min in period 2 to 

2.86 min in period 3. However, the daily demand for rail service increases by 624.2 thousand from 

585.60 thousand riders in period 1 to 1209.80 thousand riders in period 3, and the discounted 

cumulative total cost saving increases by $8.04 billion from $7.21 billion to $15.25 billion. This 

occurs because the development of the rail transit network increases the connectivity of OD pairs and 

hence the demand for rail service, thereby decreasing headways (see Eq. (15)). Thus, the user costs 

and total costs are reduced and the total cost saving increases. 

 

Fig. 4 shows the changes of the state of the rail transit network over time with the development plan. 

The bold segments represent those which are already in service in a period. It should be noted that the 

initial state (from year 0 to 6.00) in which no segments are completed is displayed in Fig. 3. Fig. 4a 



 51 

shows the state of the network in the first period, i.e., from year 6.00 to 8.61. In this period, segment 4 

is completed and in service. In period 2 from year 8.61 to 9.47, segment 6 is implemented and 

connected to segment 4. Both segments 4 and 6 provide rail services, as shown in Fig. 4b. Fig. 4c 

indicates that segment 3 is completed at the beginning of the third period and in service from year 9.47 

to 10. It can be seen from Fig. 4 that throughout the planning horizon, the rail transit network 

progressively expands to 3 rail lines with a total length of 41 km (i.e., sum of the length of segments 4, 

6 and 3). 

 

Fig. 5 shows the changes of discounted cumulative total cost with and without the rail transit 

investment. It can be seen in Fig. 5 that the total cost curve with investment is under that without 

investment after year 6.00. This means that the rail transit investment efficiently decreases the total 

cost of system. It should be noted that in year 6.00, the discounted cumulative total cost with 

investment is slightly above that without investment due to the capital investment cost of segment 4. 

Fig. 5 also shows that over the planning horizon, the network development decreases the total cost 

from $117.53 billion to $102.28 billion. 

 

In order to verify the solution obtained by the proposed GA, we conduct a complete enumeration for 

the urban transit network shown in Fig. 3. The comparsions of the results are displayed in Table 6. 

Clearly, the solution obtained by the GA in this paper is consistent with that obtained by complete 

enumeration. In addition, to test the convergence and stability of the proposed GA, the program is run 

by 10 times. The results show that each run of the program converges to the same solution. This 

demonstrates that the proposed GA has good stability. Therefore, we can conclude that the proposed 

GA is capable of finding a very good and stable solution at acceptable computation cost (i.e., 0.8 

seconds vs. 15 seconds). 

 

5.1.2 Sensitivity analysis 

To explore the effects of the initial travel demand on the optimized development plan and system 

performance, we conduct numerical experiments by scaling the basic value of 
(0)

wq  in Eq. (5) by 0.5 

down and 1.5 up. Table 7 shows that as the travel demand increases, the number of implemented 

projects and the total cost saving increases. Specifically, as the initial travel demand increases from 
(0)0.5 wq  to 

(0)1.5 wq , the number of projects selected increases from 2 to 4 and the total cost saving 

increases from $6.22 billion to $28.62 billion. This is because higher fare revenue can be collected 

from the operation of completed projects with higher demand, which increases the available budget for 

network development. Thus, both the number of implemented projects and the total cost saving 

increase. 

 

Table 8 shows the changes of the optimized development plan with the annual budget level 0B  in Eq. 

(24). It can be noted in Table 8 that the annual budget level has a significant effect on the optimized 

development plan and system performance in terms of the number of projects selected, the time of 

implementation and the total cost saving. Specifically, as the annual budget level increases from 

00.8 B  to 01.2 B , the number of projects selected increases by 3 from 1 to 4, the first investment 

time decreases by 4 years from year 9.00 to year 5.00 and the total cost saving increases by $22 billion 
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from $0.95 billion to $22.95 billion. This implies that a higher budget level can accelerate the 

development process and save more costs. 

 

5.2 Example 2 

To further illustrate the applications of the proposed model and test the performance of the GA on a 

more complex problem, we apply the proposed model to the rail transit network development of 

Wuhan city in China. As shown in Fig. 6a, there are 3 rail lines represented by three colors: blue for 

Line 1, purple for Line 2 and green for Line 4. A rail transit network with 14 nodes (represented by 

circles) and 13 segments between them is considered, as shown in Fig. 6b. Similarly, we consider the 

development of one segment and its two end nodes (if they are not yet completed) as a candidate 

project. The input data for segments and OD pairs are displayed in Tables 9 and 10, respectively. The 

base values of the input parameter are shown in Table 4. We set the planning horizon as 15 years and 

the annual budget flow as $1 billion. The genetic parameters are: population size, pop_size = 50; 

maximum generation, max_gen = 500; crossover probability, 0.8cP  ; mutation probability, 

0.2mP  ; the number of implementing catastrophe mechanism, 20cn  ; and run 10 times. This 

numerical experiment requires an average CPU time of about 13 min. Using the proposed GA, we can 

obtain the same solution for all runs, which shows that the proposed GA maintains its stability on a 

more complex problem.   

 

The optimized development plan and headways of rail lines are displayed in Table 11. It can be seen 

that 11 projects are developed over a planning horizon of 15 years with a total cost of $99.28 billion. 

Specifically, projects 3, 6, 8, 10, 4, 2, 5, 9, 11, 7 and 1 are completed in sequence at years 0.29, 1.60, 

3.63, 4.67, 6.45, 7.98, 10.17, 11.40, 12.06, 12.76, 13.86, respectively. This result is roughly consistent 

with the realistic development of the urban rail transit network in Wuhan between 2000 and 2014, as 

shown in Fig. 1. 

 

Since the enumeration of this problem with 13 candidate projects (i.e. 13! possible solutions) requires 

extensive computation time, and no existing method can guarantee a globally optimal solution, it is 

difficult to verify the solution obtained by the proposed GA. In this paper, a statistical method is 

adopted to evaluate the solution (as in Jong and Schonfeld, 2003 or Shayanfar et al., 2016). The main 

steps are as follows. First, a large sample of solutions is randomly generated. These solutions should 

be representative and independent of each other to ensure the generality of the sample. Then, the 

fitness values of the solutions in the sample are calculated. Next, a distribution is fitted to the fitness 

values and checked with Chi-Square or K-S tests. It should be noted that the fitted distribution should 

approximate the actual distribution of fitness values for all possible solutions in the search space due to 

the representativeness and randomness of the sample. Finally, the cumulative probability of the 

solution in the distribution can be calculated. This cumulative probability represents the probability 

that is the other solutions in the distribution smaller than the obtained solution. Therefore, the lower 

the probability, the better the solution. 

 

In this paper, a sample size of 100,000 independent solutions is randomly generated, for which the 

minimum of the fitness values is 99.88×109 and the maximum is 131.21×109. Note that the best 

solution found by the proposed GA is 99.28×109 which is better than any of the 100,000 randomly 

generated solutions, as shown in Fig. 7. The distribution of the fitness values for the solutions in the 
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sample is supposed to cover the fitness values for all possible solutions in the search space. Actually, it 

does not. This means that better solutions (i.e., having lower fitness values) are extremely rare for this 

example and are unlikely to be included in a randomly generated sample. The best fitting distribution 

among those searched is the generalized extreme value distribution, i.e., GEV(
9112.5 114 0  , 

5.27436  , 0.145511   ), as is shown in Fig. 7. Its probability density function can be 

expressed as 

1 ( )1
( ) ( ) xf x x e  


, where 

1

( )

1 , if 0,
( )

, if 0.x

x

x

e

 

  

   
           


 

 (27) 

The cumulative probability of the best solution found by the proposed GA (i.e., 99.28×109 in Table 

11) can be calculated by integrating ( )f x  from 0 to 99.28×109. The result is 2.0552×10-4, which 

means that the solution obtained by the proposed GA dominates 99.98% of the solutions in the 

distribution, as well as 100% of the 100,000 randomly generated solutions. That is to say, the best 

solution found, although not guaranteed to be globally optimal, is still remarkably good when 

compared with other possible solutions in the search space. This suggests that the accuracy of the 

proposed development scheduling method is limited far more by the accuracy of input data than by the 

optimization capability of the GA. 

 

6. Conclusions and further studies 

 

To address the dynamic development problem of urban rail transit networks with limited budgets, this 

paper proposes a novel model to optimize the development plan of rail transit projects over a planning 

horizon. The proposed model determines which projects should be implemented and when to complete 

these projects together with train headways by minimizing the present value of the total cost. The 

time-varying demand and the interrelation among projects are explicitly considered. Specifically, the 

model captures how the travel demand for rail service, the headway of rail lines and the network 

development decision change over time. In this dynamic decision making process, the budget 

constraint is reformulated to include possible internal funding, such as the fare revenue generated from 

the operation of the transit rail lines. The reformulated budget constraint reflects interrelations among 

projects in the transit network since the capital used for development is partly supplied by fare revenue 

collected from the rail operation. A GA approach is designed to solve the problem, and the properties 

of the solution found by the proposed GA are verified.  

 

Results show that (i) the GA approach developed here is capable of finding a quite good and stable 

solution at acceptable computaion cost. (ii) The development of the rail transit network can 

significantly increase the demand for rail service and reduce the total cost. (iii) Higher travel demand 

can encourage more intensive network development and increase the total cost saving. This helps 

explain why many large cities in China such as Beijing and Shanghai are investing heavily in transit 

development. (iv) A higher budget level can accelerate the development process over the planning 

horizon and reduce total costs. The proposed model can serve as a useful tool for making development 

plan of transit networks from an economic viability and cost-effectiveness perspective.  
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Although this paper provides a new venue for addressing the transit network development problem, 

some further extensions seem worth pursuing: 

1. Travel demand is assumed to be attracted to rail service when OD pairs are connected by rail lines, 

but is not affected by the transit service characteristics. However, travelers are usually sensitive to 

the travel cost and thus the transit service level (Li et al., 2012a; Peng et al., 2017). Therefore, it 

seems desirable to extend the proposed model to capture the responses of passengers to the quality 

of the rail transit line service. 

2. In this paper, the proposed model is deterministic because the demand and supply sides are assumed 

to be deterministic. However, in reality there are various random factors (e.g., inflation and 

economic changes) which affect the investment of rail lines and the operations of rail services. It is 

thus especially important for the authority to consider the investment and operational risks of rail 

transit projects in the development issue of urban rail transit networks, which is left for our future 

study. 

3. This paper focuses mainly on rail mode, and neglects the competition and substitution effects 

between private auto and transit modes. It seems desirable to extend the proposed models to consider 

different modes and analyze the transit network development in a multi-modal transportation system 

(Li et al., 2012b; Ma and Lo, 2013). 

4. Urban spatial structure in terms of households’ residential location choices and housing market has 

a direct effect on travel demand pattern (Li et al., 2012c; Li and Peng, 2016; Wang and Lo, 2016; 

Ng and Lo, 2017), and thus on the rail transit service and the network development process. 

Therefore, it seems worthwhile to extend the proposed model to explore the effects of urban spatial 

structure on transit network development. 
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Table 1 Contributions to transportation infrastructure investment models. 

Citation 
Type of 

infrastructure 

Considering time 

horizon or not 

Considering interrelation 

among projects or not 

Wang et al. (2013) Road network × × 

Li et al. (2012) Road network × × 

Luathep et al. (2011) Road network × × 

Gao et al. (2004) Transit network × × 

Sun et al. (2018) Rail line √ × 

Shayanfar et al. (2016) Road network √ √ 

This paper Transit network √ √ 

Note: “√” means that the associated item is considered, whereas “×” means that the associated item is not considered. 

Table 2 Input data for segments. 

Segment 

No. 

Segment length 

(km) 

Segment investment costs (million 

$) 

Associated rail line 

1 12 1250 2 

2 10 1050 1 

3 8 850 2 

4 15 1500 1 

5 9 950 1 

6 18 1800 3 

 

Table 3 Daily travel demands between OD pairs (thousands person trips). 

Nodes No. 

(O/D) 
1 2 3 4 5 6 7 

1 0 10 30 11 12 24 25 

2 10 0 35 10 27 20 12 

3 30 35 0 30 40 25 20 

4 11 10 30 0 30 10 15 

5 12 27 40 30 0 35 20 

6 24 20 25 10 35 0 15 

7 25 12 20 15 20 15 0 
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Table 4 Input parameters for numerical examples. 

Symbol Definition Baseline value 

1   Value of in-vehicle time ($/h) 15 

2  Value of waiting time ($/h) 30 

V Average speed of trains (km/h) 40 

f  Marginal fare by transit ($/km) 0.2 

1g  Base growth rate of travel demand (year) 0.02 

2g  Annual growth rate caused by network development (year) 0.03 

  Average number of days of travel per traveler per year 250 

  Marginal maintenance cost of transit lines (million $/km/year) 5 

  Annual operating cost per train (million $/year) 3 

r  Discount rate 0.05 

  Peak-hour factor 0.1 

vehK
 

Capacity of vehicles (passengers/vehicle) 1500 

0p
  

Selective pressure 0.2 

 

Table 5 Optimized development plan for rail transit network and resulting system performance. 

Period 

No. 

Segment 

developed 

Completion 

time (year) 

Train headways of 

line 1, 2 and 3 (min) 

Daily demand 

for rail service 

(thousand 

person trips) 

Discounted 

cumulative total 

cost saving 

(billion $/year) 1h   2h  3h  

1 4 6.00 1.54 - - 585.60 7.21 

2 6 8.61 1.44 - 2.91 930.27 11.71 

3 3 9.47 1.41 2.12 2.86 1209.80 15.25 

Notes: (1) The completion time of projects is also the starting or ending time of periods. (2) The discounted 

cumulative total cost saving is calculated by the discounted cumulative total cost without investment minus 

the that with investment. 
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Table 6 Comparisons of results obtained by GA and complete enumeration. 

GA  

(computation time: 0.8 seconds) 

Complete enumeration  

(computation time: 15 seconds) 

Period 

No. 

Segment 

developed 

Completion time 

(year) 

Period 

No. 

Segment 

developed 

Completion time 

(year) 

1 4 6.00 1 4 6.00 

2 6 8.61 2 6 8.61 

3 3 9.47 3 3 9.47 

 

Table 7 Effects of travel demand on the optimized development plan and system performance. 

 0.5×base value Base value 1.5×base value 

Number of developed 

projects 
2 3 4 

Developed projects 

(completion time, year) 

4 (6.00) 4 (6.00) 4 (6.00) 

3 (7.81) 6 (8.61) 6 (7.98) 

 3 (9.47) 2 (8.76) 

  3 (9.30) 

Total cost saving (billion $) 6.22 15.25 28.62 

 

  

Table 8 Effects of annual budget on the optimized development plan and system performance. 

 0.8×base value Base value 1.2×base value 

Number of developed 

projects 
1 3 4 

Developed projects 

(completion time) 

6 (9.00) 4 (6.00) 4 (5.00) 

 6 (8.61) 6 (7.46) 

 3 (9.47) 2 (8.49) 

  3 (9.20) 

Total cost saving (billion $) 0.95 15.25 22.95 
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Table 9 Input data for segments of Wuhan rail transit network. 

Segment 

No. 

Segment length 

(km) 

Segment investment costs (million 

$) 

Associated rail line 

1 8.4 2280 1 

2 9.8 2325 1 

3 3.9 292.5 1 

4 10.3 2475 2 

5 20.0 3600 2 

6 9.2 1380 1 

7 6.6 1387.5 1 

8 8.0 2400 2 

9 12.5 2250 4 

10 9.1 1350 2 

11 4.6 1275 4 

12 10.9 2500 4 

13 5.5 990 4 

(Sources: http://www.whrt.gov.cn/ and Baidu Map) 
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Table 10 Initial daily travel demands between OD pairs of Wuhan rail transit network (thousand 

person trips). 

Nodes No. 

(O/D) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 3.2 2.4 6 2.4 3.2 6 3.2 2 1.6 1.6 0.8 0.4 0.4 

2 3.2 0 8 10 3.2 4 9.6 3.2 3.2 2.4 2.4 1.6 0.8 0.4 

3 2.4 8 0 16 8 8 20 10 4 3.2 3.2 2.4 1.6 0.8 

4 6 10 16 0 6.4 10 16 12 8 4.8 4.8 2.4 1.6 1.2 

5 2.4 3.2 8 6.4 0 9.6 4.8 4 6.4 4.8 4.8 2.4 1.6 0.8 

6 3.2 4 8 10 9.6 0 2.4 2.4 3.2 3.2 3.2 1.6 1.2 0.8 

7 6 9.6 20 16 4.8 2.4 0 1.6 3.2 2.4 16 1.6 1.2 0.8 

8 3.2 3.2 10 12 4 2.4 1.6 0 2.4 1.6 1.6 1.2 0.8 0.8 

9 2 3.2 4 8 6.4 3.2 3.2 2.4 0 4 32 2.4 2.4 1.6 

10 1.6 2.4 3.2 4.8 4.8 3.2 2.4 1.6 4 0 8.8 4.8 3.2 2.4 

11 1.6 2.4 3.2 4.8 4.8 3.2 16 1.6 32 8.8 0 6.4 1.6 1.2 

12 0.8 1.6 2.4 2.4 2.4 1.6 1.6 1.2 2.4 4.8 6.4 0 0.8 0.4 

13 0.4 0.8 1.6 1.6 1.6 1.2 1.2 0.8 2.4 3.2 1.6 0.8 0 2.4 

14 0.4 0.4 0.8 1.2 0.8 0.8 0.8 0.8 1.6 2.4 1.2 0.4 2.4 0 
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Table 11 Optimized network development plan and headways of rail lines in Wuhan. 

Period 

No. 

Segment 

developed 

Completion 

time (year) 

Train headways of 

line 1, 2 and 4 (min) 

Daily demand 

for rail service 

(thousand 

person trips) 

Discounted 

cumulative total 

cost  

(billion $/year) 
1h   2h  3h  

1 3 0.29 1.38 - - 292.89 19.04 

2 6 1.60 1.59 - - 564.44 38.78 

3 8 3.63 1.51 2.09 - 862.10 47.77 

4 10 4.67 1.46 1.94 - 1079.08 60.89 

5 4 6.45 1.38 1.28 - 1353.40 70.51 

6 2 7.98 1.04 1.22 - 1608.85 82.04 

7 5 10.17 0.96 0.97 - 1869.98 87.57 

8 9 11.40 0.91 0.92 3.90 2080.53 90.22 

9 11 12.06 0.89 0.90 3.07 2277.75 92.85 

10 7 12.76 0.78 0.87 3.03 2460.48 96.71 

11 1 13.86 0.69 0.83 2.96 2672.02 99.28 
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Fig.1. Development process of rail transit network in Wuhan, China 

(Sources: http://www.whrt.gov.cn/ and https://en.wikipedia.org/wiki/Wuhan_Metro). 

 

 

 

 

Fig. 2. Example of a chromosome. 
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Fig. 3. Example of an urban rail transit network. 

 

 

 

 

   

(a) t=1(year 6.00- 8.61)     (b) t=2 (year 8.61- 9.47)     (c) t=3 (year 9.47- 10) 

 

Fig. 4. Evolution of the state of the rail transit network  
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Fig. 5. Changes of discounted cumulative total cost with and without the rail investment.  
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(b) 

 

Fig. 6. Map of Wuhan subway lines (blue for Line 1, purple for Line 2 and green for Line 4): (a) urban 

rail transit network of Wuhan, China; (b) candidate rail transit projects.  

 

 

Fig. 7. Fitted generalized extreme value distribution of the fitness values of the sample. 
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Appendix 4 -  Shayanfar, E. and Schonfeld, P. “Selecting and Scheduling Interrelated 

Road Projects with Uncertain Demand,” Transportmetrica A: Transport Science, 15-2, June 

2019, pp 1712-1733. 
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Abstract 

In transportation systems, the existence of interrelations among components and uncertainties in 

various elements such as future demand usually complicates the capital budgeting process. This 

paper proposes a method for evaluating, selecting and scheduling interrelated road projects in an 

urban network under demand uncertainties. The objective is to optimally determine the 

selection, sequence and schedule of capacity improvement projects while minimizing the present 

value of total system cost, including travel time, vehicle operating and safety costs, subject to a 

cumulative budget flow constraint. The scheduling problem is formulated as a non-linear integer 

optimization problem within a genetic algorithm that minimizes the present value of the system 

cost over a planning horizon. The proposed model also includes a design feature which 

determines the type of improvement at each location. This study constitutes a useful framework 

for state planners and regional decision makers for the project prioritization process. 

Keywords: Project selection and scheduling, Genetic Algorithm, Project interrelations, Project 

prioritization, System optimization, Demand uncertainty 
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1 Introduction 

The problem of selecting transportation projects under budget constraints is a resource allocation 

problem which has been studied for decades. In early studies, the project selection problem was 

formulated as a simple linear and binary optimization problem (Lorie and Savage, 1955). In this case, 

some benefits and costs associated with each candidate project are considered, and the objective 

function is formulated as a linear summation of benefits subject to the expenditure of projects bounded 

by a budget. This problem is well known as the knapsack problem, which is proved to be NP-hard 

(Crowder et al., 1983) and can be solved using branch-and-bound methods or dynamic programming 

(Martello and Toth, 1990).  Although this formulation can be effectively solved by mathematical 

modeling and can optimize the selection, it assumes that projects are completely “independent”, and 

lacks any timing component, presuming that projects are implemented at about the same time.  

In the real world, especially in transportation networks, the benefits and costs of projects are quite 

“interrelated”.  In other words, the benefits and costs of each individual project depend on whether and 

when some other projects are implemented. This is the case for most transportation networks since 

changes in network components shift the locations of bottlenecks in the network and redistribute flows. 

Therefore, the total benefit from multiple projects is not a linear summation of the impacts from individual 

projects. Conventional sequencing and scheduling methods often set prioritization policies based on 

congestion level (i.e. volume/capacity ratio) or benefit cost ratio. Such methods, even after adjusting for 

the relative costs of links, do not produce the best solution as they do not consider the interrelations among 

network links. In an interrelated road network, changes in one link redistribute flows on others and capacity 

enhancements on some links may cause congestion elsewhere in the network. Therefore, in sequencing a 

group of improvement projects, it is essential to consider the relevant interrelations among all projects.  

Another issue that complicates the project selection and scheduling is uncertainty, which can cause 

additional challenges in optimizing network investment decisions. Improving transportation 
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infrastructures require significant investments which are usually irreversible. Therefore, it is important 

to effectively plan and prioritize investments in a way that addresses present as well as uncertain future 

needs.  Optimizing such investment plans requires the consideration of uncertainty in factors such as 

future demand. 

Accounting for the above observations, Shayanfar et al. (2016) demonstrated how a fairly simple 

method, such as a traffic assignment model combined with a Genetic Algorithm (GA), could be 

efficiently employed in evaluating the objective function of the planning and prioritizing problem for an 

interrelated network and optimize the sequence and schedule of projects. The traffic assignment model 

is hence used to implicitly calculate the relevant interrelations among all projects implemented at 

various times.  

The main contribution of this paper is the methodology for optimizing the selection and scheduling of 

projects under demand uncertainty while fully accounting for project interrelations throughout the 

analysis period. This paper uses the GA developed by Shayanfar et al. (2016) while enhancing the 

previous work in many ways. First, it shows how realistic features such as uncertainties in transportation 

systems can be effectively considered in the optimization process. The algorithm accounts for future 

demand uncertainties and considers different demand growth scenarios over time. For this purpose, the 

deterministic objective function used in Shayanfar et al. (2016) is transformed into a stochastic model 

that combines multiple demand growth scenarios with their probabilities in the objective function. 

Second, the project selection process is equipped with a design feature which selects the type of 

improvement at each location. The algorithm is designed to identify potential locations for 

improvement, and then consider multiple improvement alternatives at each location based on some link 

characteristics. For this purpose, a probabilistic procedure is introduced to help identify the optimal 

improvement at each location.  This method is demonstrated in a multi-period analysis (accounting for 

daily cycles of peak and off-peak periods), in a case study which involves adding new links as well as 
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expanding the capacities of existing links in a network. Third, the model is further developed to account 

for vehicle operation and safety costs. For this purpose, appropriate models are incorporated and added 

to the objective function to estimate the cost of fuel, tire, maintenance and repair and the cost of 

crashes in the system. Finally, since in meta-heuristics, such as GA, global optimal solution is not 

guaranteed, a statistical test is employed to test the optimality of the GA solution by estimating the 

probability of arriving at a better solution. In effect, it is shown that the probability of finding a better 

solution is negligible, thus demonstrating the soundness of the GA solution. 

2 Literature Review 

One of the early studies dealing with project interdependencies belongs to Nemhauser and Ullman 

(1969). They proposed the following quadratic objective function: 

 

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =  ∑𝑏𝑖𝑥𝑖

𝑛

𝑖=1

+∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (1) 

 

In this formulation 𝑑𝑖𝑗  represents the interaction coefficient between projects i and j, having a positive 

value when projects are complementary and a negative value when they are competing. This is a binary, 

non-linear and non-separable knapsack problem which incorporates project interrelations. In the 

literature, a collection of all 𝑑𝑖𝑗s (dependencies among pairs of projects) is called “dependence matrix”. 

Compared to the linear objective function, the quadratic objective function and the dependence matrix 

enhance the flexibility of the project selection problem by incorporating project interrelations. This 

method which has numerus applications in recent literature such as Cruz et al., 2014, Rebiasz et al., 

2014, and Li et al., 2016 has considerable shortfalls. First, the pairwise dependencies (𝑑𝑖𝑗) do not fully 
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represent the complex interrelations and miss some relations among alternatives since the actual 

interrelations may extend beyond two-way interactions to third, fourth and even higher degrees. 

Second, the interrelations may be difficult to quantify even for pairwise interactions (i.e. estimate 𝑑𝑖𝑗  

parameter for all pairs of projects), and the number of interactions requiring estimation explodes if we 

go beyond pairwise relations. Third, the interrelation coefficients (𝑑𝑖𝑗) do not stay constant over time as 

traffic flows change, especially after network modifications projects are implemented. Thus, such 

methods ignore the timing aspect of project implementation and do not optimize the schedule of 

projects. The benefits associated with particular projects may be highly related to the times when they 

are implemented. Therefore, evaluating projects without considering their timing may yield misleading 

results.  

Instead, complete system models which can model all possible interactions among projects at various 

network development stages, are more desirable. Some examples include equilibrium traffic assignment 

(Shayanfar et al., 2016), simulation (Wang and Schonfeld, 2008), and artificial neural networks. 

However, the objective function for problems such as prioritizing interrelated projects using complete 

system models becomes non-convex and has a “noisy” surface (i.e. containing multiple local optima).  

Therefore, mathematical programming such as gradient-based search, integer programming and 

dynamic programming are incapable of solving such problems. As a result, heuristics and meta-

heuristics, especially population-based methods such as GA, have become more popular for solving 

problems without analytical objective functions. These methods can quite easily and efficiently 

distribute the evaluation of population members and probabilistic replications among multiple 

processors to improve the speed of the optimization process, as in Yang et al (2015). Also, objectives 

evaluated from computer simulations, which are mostly analytically intractable (i.e., discontinuous and 

non-differentiable) (Koziel et al. 2011), can be easily inserted into the heuristic optimization loop.  
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In general, project prioritization is an important problem in transportation policy as projects require 

significant investments which are usually irreversible. Therefore, many studies in recent literature address 

the problem of project prioritization under uncertainty. Szeto and Lo (2005) addressed the problem of 

planning road network projects under uncertainty through sensitivity analysis. Although sensitivity 

analysis is a simple method to identify the variables which affect the output of the model, it fails to 

consider the interrelation between underlying variables. A stochastic optimization formulation which 

explicitly considers the uncertainty of variables based on probability distributions is a more effective way 

to deal with uncertainty in the planning problem.   Jian and Szeto (2015) proposed a network design 

framework that considers health impacts. They used a Frank-Wolfe algorithm to evaluate the land-use 

transportation problem, and a bee colony algorithm to optimize the network design. Huang et al. (2018) 

use the artificial bee colony algorithm in a bi-level program to solve the network design in a multi-modal 

transit system. Kumar and Mishra (2018) propose a bi-level model to select capacity improvement 

projects and an optimization framework to determine the optimal sequence of projects in a network. 

This paper addresses the problem of project prioritization but, in addition to project rank, it considers the 

timing of project implementation and demand uncertainties, while focusing on the treatment of 

interrelations among projects in a network setting. 

3 Methodology 

3.1 Problem Formulation 

 

The analysis in this paper focuses on the cost of travel time, vehicle operating, and safety costs. 

Therefore, the objective function is formulated to reflect the present value of total cost over planning 

horizon T. In this problem, the decision variable is defined as the completion time of each project. Let 

𝑥𝑖(𝑡) be a binary variable that shows if project i is finished by time t:  
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{
𝑥𝑖(𝑡) = 0   𝑖𝑓 𝑡 < 𝑡𝑖 

𝑥𝑖(𝑡) = 1   𝑖𝑓  𝑡 > 𝑡𝑖
 

The problem is then formulated as: 

 

 

 

𝑚𝑖𝑛 𝑍 =  ∑
{

1

(1 + 𝑟)𝑗
(∑𝑤𝑖𝑗 ∗ 𝑣𝑡

𝑛𝑙

𝑖=1

+∑{𝐶𝑣𝑜𝑝(𝑖𝑗)

𝑛𝑙

𝑖=1

∗ 𝑉𝑀𝑇𝑖𝑗} +∑{

𝑛𝑙

𝑖=1

𝑁𝑐𝑟(𝑖𝑗) ∗ 𝐶𝐶𝑟}}
𝑇

𝑗=1

 

+∑
𝑐𝑖𝑥𝑖(𝑡)

(1 + 𝑟)𝑡

𝑛𝑝

𝑖=1

 

(2) 

 

𝑤𝑖𝑗 = travel time over link i in year j 

𝑣𝑡 = value of time ($/hr) 

𝑛𝑙 = total number of links 

𝑉𝑀𝑇𝑖𝑗= vehicle kilometers traveled over link i in year j 

𝐶𝑣𝑜𝑝(𝑖𝑗)= vehicle operating cost over link i in year j ($/veh.km) 

𝑐𝑖 = cost of project i 

𝑁𝑐𝑟(𝑗)= predicted number of crashes over link i in year j 

𝐶𝑐𝑟= crash cost for one predicted crash 

𝑛𝑝= number of projects 

r= interest rate 
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t= completion time point 

The above formulation minimizes the sum of total user and supplier cost subject to a budget flow 

constraint, over a specified planning horizon. In this setting, the user cost consists of the total travel 

time for users in the system multiplied by their value of time, vehicle operating cost, and number of 

crashes multiplied by the cost of each crash. Note that project interrelations are not explicitly included 

in the objective function. As mentioned previously, the proposed method considers not only pairwise or 

slightly higher degrees of interrelation among alternatives, but all possible interactions among all 

alternatives throughout an entire network and throughout the multi-year analysis period. The complete 

interrelations are captured by applying a full network model for a set of improvement projects, with 

each project implemented at a different optimized time. The interrelations, which cannot be explicitly 

expressed in the objective function, are essentially captured among all network elements at one period 

and among alternatives across multiple periods. This is done by applying a complete network model 

such as traffic assignment before and after each project implementation. This is done by applying a 

complete network model such as traffic assignment before and after each project implementation. 

Recent improvements to this method (such as in dealing with demand uncertainties, multiple 

improvements per location and inclusion of vehicle operating and safety costs) are demonstrated in this 

paper with a fairly simple and fast network evaluation model, namely the well-known Frank-Wolfe 

(1956) traffic assignment model. However, this approach for optimizing the prioritizing and scheduling 

of interrelated projects is also applicable with more detailed network analysis models. For example, it 

has been combined with microscopic simulation models (Wang and Schonfeld, 2005) and the cell 

transmission model (Shayanfar, 2017). 

Let 𝑡𝑖 be the time at which project i is completed, and T be the planning horizon (20 years). Then, the set 

of 𝑡𝑖s will decide the final project sequence and schedule (Jong and Schonfeld, 2001). Jong and 

Schonfeld (2001) apply a budget constraint which at any time t (0 ≤ t ≤ 𝑇), limits project expenditures 
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by the cumulative budget which is funded from “external” sources. In addition to their constraint, this 

paper considers an “internal” budget source for funding future projects. Within the analysis period, the 

“internal” fuel taxes collected from users in previous periods are added to an external budget to 

determine the available funding for future projects. Other revenues collected from users can also easily 

be added to the internal budget formulation. The external budget is assumed to “flow” uniformly over 

time in this analysis, but non-uniform budget flows can also be easily specified. The following equation 

specifies how the internal budget is calculated: 

 

 𝑏(𝑡𝑖)𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑉𝑀𝑇(𝑡𝑖−1) ∗ 𝑓𝑟 ∗ 𝑓𝑐 ∗ 𝑓𝑡 (3) 

 

In the above formulation 𝑓𝑟, 𝑓𝑐, 𝑓𝑡 represent fuel consumption rate (gal/vehicle*kilometer), fuel cost 

($/gal), and gas tax rate respectively. This formulation suggests that the fuel taxes collected from period 

𝑡𝑖−1 contribute to the available funding in period 𝑡𝑖. Specifically, 𝑉𝑀𝑇(𝑡𝑖−1) presents the vehicle 

kilometers travelled during the period in which project 𝑖 − 1 is completed. 

Assuming that 𝑛𝑝 is the number of candidate projects, for 0 ≤ 𝑡 ≤ 𝑇 the budget flow constraint is thus 

formulated as: 

 ∑𝑐𝑖𝑥𝑖(𝑡) ≤ ∫ (𝑏(𝑡)𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑏(𝑡)𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) 𝑑𝑡 
𝑡

0

𝑛𝑝

𝑖=1

 (4) 

 

The left-hand side of the above formulation displays the total cost expended by time t, which should not 

exceed the cumulative budget available at that time. It is assumed here that projects should be funded 

sequentially rather than concurrently, with each successive project completed as soon as the cumulative 
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budget permits, so the cost savings from each completed project should start flowing as soon as 

possible. This, in turn, assumes that the cumulative budget constraint is binding, i.e. insufficient for all 

the available projects whose benefits exceed their costs. This situation generally prevails for 

transportation projects throughout the world. 

Notably, since the cumulative budget constraint is expected to be binding, the optimal completion time 

for all projects is uniquely determined for all projects in a given sequence. Thus, the optimized schedule 

(in continuous time rather than discrete time periods) is uniquely determined by the optimized 

sequence in conjunction with the cumulative budget. For any sequence, projects which are not funded 

within the specified analysis period (e.g. 20 years in this paper’s numerical example), are effectively 

rejected. Construction periods that exceed the budget accumulation period of the respective project, 

and hence overlap with construction periods for other projects, can be considered without changing this 

formulation by assuming virtual borrowing. However, some modifications to the above formulation 

would be needed if resources other than budgets (e.g. construction equipment) were critical or if 

additional budget constraints (e.g. by region or type of projects) were applicable. 

As mentioned before, the objective function is not always convex and differentiable, which renders 

gradient-based research methods, integer and linear programming ineffective. On the other hand, as 

the number of alternatives grows, mathematical optimization models may no longer be feasible. As a 

result, heuristic methods are now more common for solving such problems. A GA is very useful for 

effectively optimizing the objective function over large solution spaces with unsmooth objective 

functions. The GA is employed to solve the optimization model jointly with a network flow model which 

is used to evaluate the objective function. More specifically, the GA optimizes the selection, sequence 

and schedule of projects while the traffic assignment model estimates variables such as travel time, 

speed and volume for evaluating the benefits and costs of projects. Figure 5 displays the general 

framework proposed for selecting, sequencing and scheduling interrelated road projects. Detailed 
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explanation on the GA algorithm is provided later in section 5 and an illustrative example is provided in 

section 6. 

 

3.2 Safety Cost Model 

 

According to Highway Safety Manual (HSM, 2010), crash prediction models for two-lane and multi-lane 

roadway segments should include two analytical components: (i) safety performance functions (SPFs) 

also called baseline models, and (ii) crash modification factors (CMFs). There are also calibration factors 

that adjust the predictions to a specific geographical area. Here, we present two separate safety 

performance functions for two-lane and multi-lane roadway segments. The general crash prediction 

model for roadway segments is shown in Equation 5. Equations 6 and 7 present the safety performance 

functions for two-lane and multi-lane roadway segments. 

 𝑁𝑐𝑟 = 𝐶𝑟 ∗ 𝑁𝑐𝑟−𝑠𝑝𝑓 ∗ (𝐶𝑀𝐹1 ∗ …∗ 𝐶𝑀𝐹12) (5) 

 𝑁𝑐𝑟2−𝑠𝑝𝑓 = AADT ∗ L ∗ 365 ∗ 10
−6 ∗ 𝑒−0.312  (6) 

 𝑁𝑐𝑟𝑚−𝑠𝑝𝑓 = exp [−9.653 + 1.176 ∗ ln(𝐴𝐴𝐷𝑇) + ln(𝐿)]  (7) 

where: 

𝑁𝑐𝑟= predicted number of crashes for a roadway segment per year 

𝑁𝑐𝑟2−𝑠𝑝𝑓= nominal or baseline predicted number of crashes per year for two-lane roadways 

𝑁𝑐𝑟𝑚−𝑠𝑝𝑓= nominal or baseline predicted number of crashes per year for multi-lane roadways  

𝐶𝑟 = calibration factor for roadway segments in a particular geographical area. 

𝐶𝑀𝐹𝑛 = crash modification factor. 
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AADT = average annual daily traffic (veh/day) on roadway segment;  

L = length of roadway segment (mi). 

 

In this study, the only changing condition among improvement types is lane width. Therefore, the 

algorithm estimates CMF1 for lane width from the following equation: 

 

 𝐶𝑀𝐹1 = (𝐶𝑀𝐹𝑟𝑎 − 1) ∗ 𝑃𝑟𝑎 + 1 (8) 

where: 

𝐶𝑀𝐹1 = crash modification factor of lane width on total crashes. 

𝐶𝑀𝐹𝑟𝑎 = crash modification factor for related crashes (run-off-the-road, head-on, and sideswipe) 

calculated from Table 1.  

𝑃𝑟𝑎 = proportion of total crashes to related crashes (with 0.574 as the default value). 

 

From Table 7-4 HSM (2010) (Societal Crash Costs by Severity) and Table 10-3 HSM (2010) (Default 

Distribution for Crash Severity Level), it is assumed that 32.1% of total crashes are “fatal and injury” (FI) 

and 67.9% are “property damage only” (PDO). Therefore, cost for one predicted crash (𝐶𝑜𝑠𝑡𝐶𝑟) would be 

calculated as: 0.321*172,438 ($/FI crash) + 0.679*8,066 ($/PDO crash) = $60,830 / Crash. All costs are 

adjusted to 2015 dollars using an inflation factor from the latest Consumer Price Index (CPI) provided by 

the Bureau of Labor Statistics. 
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3.3 Vehicle Operating Cost Model 

The cost of operating a vehicle on a given section is a function of costs for fuel, tires, and 

maintenance and repair.  These costs are estimated as functions of average speed. Fuel 

consumption rate, tire wear rate, and maintenance and repair rate are formulated, respectively, in 

Equations 9 to 11 (HERS-ST technical report, 2005): 

 
𝑅𝑓𝑐 = 88.556 − 5.414 ∗ 𝑆̅ + 1.7375 ∗ G + 0.136 ∗ 𝑆̅

2 + 0.18052 ∗

𝐺2 + 0.122166 ∗ 𝑆̅ ∗ G  

 

(9) 

 
𝑅𝑡𝑤 =  0.229 + 10.85 ∗ 10

−6 ∗ 𝑆̅3 − 0.0403 ∗ ln(1.6 ∗ 𝑆̅) 
+ 0.122166 ∗ 𝑆̅ ∗ G 

 

(10) 

 𝑅𝑚𝑟 =  48.4 + 0.02219 ∗ 𝑆̅
2 + 0.0932 ∗ 𝑆̅ ∗ G (11) 

where 

𝑅𝑓𝑐 = fuel consumption rate (gallons/1000 kilometer) 

𝑅𝑡𝑤 = tire wear rate (% worn/1000 kilometer) 

𝑅𝑚𝑟 = maintenance and repair rate (% avg. cost/1000 kilometer) 

𝑆̅ = average speed (kilometer /hour) 

G = grade (%) 

The operating cost per vehicle- kilometer (𝐶𝑣𝑜𝑝) is estimated as the sum of the above cost 

components representing costs for fuel, tires, and maintenance and repair. The overall equation 

for combining these components is: 
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    𝐶𝑣𝑜𝑝 = (𝑅𝑓𝑐 × 𝐶𝑓 + 0.01 × 𝑅𝑡𝑤 × 𝐶𝑡 + 0.01 × 𝑅𝑚𝑟 × 𝐶𝑚𝑟) ∗ 0.001 (12) 

 

where 

𝐶𝑣𝑜𝑝= operating cost ($/veh.km) 

𝐶𝑓 = unit cost of fuel ($/gallon) 

𝐶𝑡 = unit cost of tire ($/tire) 

𝐶𝑚𝑟= unit cost of maintenance and repair 

 

𝐶𝑓, 𝐶𝑡, 𝐶𝑚𝑟 are, respectively, 2.1 ($/gallon), 105.8 ($/tire) and 151.1 ($/1000 mi). Prices are adjusted to 

2015 dollars with the latest Consumer Price Index (CPI) given by the U.S. Bureau of Labor Statistics. 

 

3.4 Design of Improvement Alternatives 

 

The algorithm presented in this paper has the capability to consider multiple improvements over time at 

the same location. These improvements include widening existing narrow lanes (from 3m to 3.6m), 

adding one or multiple narrow lanes (3m wide) and adding one or multiple wide lanes (3.6m wide). The 

alternatives considered for each link depend on the existing link characteristics, and are symmetric, i.e. 

the same for both directions of a link. According to the Highway Capacity Manual (HCM, 2010), lane 

widths under 3.6m reduce travel speed, and thus also reduce operational capacity. In this case, it is 

assumed that the narrow and wide lanes are, respectively, 3m and 3.6m wide. According to HCM (2010), 

widening lanes from 3m to 3.6m would increase the capacity by 15%. The following list shows the set of 

improvement alternatives at each location: 
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A. If the existing link has narrow lanes: 

1. Widen the existing lanes. 

2. Add one narrow lane. 

3. Widen existing lanes and add one wide lane. 

B. If the existing link has wide lanes: 

1. Add enough width for two narrow lanes. (In this case n wide lanes are transformed to n+1 

narrow lanes.) 

2. Add one wide lane. 

C. If the there are no existing lanes (new development): 

1. Add one narrow lane. 

2. Add one wide lane. 

3. Add two wide lanes. 

4. Add three wide lanes. (This option considers the possibility of a major capacity addition 

in the network) 

 

For each case A, B and C the potential improvements are listed in increasing order of project costs. In this 

case the algorithm first evaluates the characteristics of each location in terms of existing narrow/wide 

lanes, and whether new lanes can be added. (In some locations new lanes cannot be added due to land 

availability constraints.) Then, based on the current condition, the above set of improvements are 

considered at each location. There are two problems to be resolved here. First, which links (locations) 

should be selected for improvement and in what sequence and when should those links be improved? 

Second, at each location, which improvement type should be selected and implemented? The first 

problem is solvable by using the combination of the GA and the traffic assignment model. This method 

will be explained further in section 5.  
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One way to address the second problem is to compute the benefit-cost ratio of each alternative and select 

the best one at each location. This myopic search is quite prevalent in current practices. However, it 

disregards the interrelation among projects. A simple benefit-cost ratio in this case cannot capture the 

impact of selected projects on future project implementations. In other words, due to interrelations among 

network links, the alternative with lower benefit-cost ratio may be more beneficial if considered in the 

long run (over the entire analysis period) and in conjunction with other alternatives (e.g. in a series of 

links that remove all bottlenecks rather than just shifting them). Therefore, it seems preferable to consider 

all possible improvements at each location over the entire analysis period and allow the algorithm to 

evaluate them over the planning horizon. This means that the GA will both optimize the selection and 

sequence of projects among links in the network as well as optimize the selection of improvement types at 

each location, all within one optimization process. This will result in more search steps and increased 

computation time. To tackle this issue and guide the search process, we assign selection probabilities to 

each alternative based on project costs which means that under each case the less costly alternatives have 

a higher probability of being selected. This is reasonable since in practice it is more desirable to start with 

less costly improvements, and later move to more expensive ones. Therefore, the selection probability of 

improvements at each location is inversely proportional to their relative costs. If M improvements are 

considered at one location, the probability of selecting each improvement Pr(m) is: 

 Pr(𝑚) =  

1
𝐶𝑜𝑠𝑡(𝑚)⁄

∑ (1 𝐶𝑜𝑠𝑡(𝑖)⁄ )𝑀
𝑖=1

 (13) 

 

3.5 Stochastic Model 

 

In long-term planning, decision makers are usually faced with the problem of uncertain information. 

One of the most significant sources of uncertainties in transportation systems is future demand, 

particularly for newly launched projects. This problem requires the network analysis to be robust to 
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changes in future demand. Thus, demand uncertainties should be explicitly considered when selecting 

and scheduling projects. In this study, the demand is assumed to grow exponentially over time given the 

following equation:  

 

 𝑑𝑖𝑗
𝑡 = 𝑑𝑖𝑗

0 ∗ (1 + 𝑔)𝑡 (14) 

where 𝑑𝑖𝑗
𝑡  is the demand from origin 𝑖 to destination 𝑗, 𝑑𝑖𝑗

0  is the base-year demand for the 𝑖𝑗 

origin and destination (O/D) pair, and 𝑔 is the growth rate per year. If we consider S plausible demand 

scenarios (different values for the growth rate 𝑔) then the stochastic formulation can be re-written as: 

 

𝑚𝑖𝑛𝑍 = ∑𝑃𝑠

{
  
 

  
 
∑{

1

(1 + 𝑟)𝑗
(∑𝑤𝑖𝑗𝑠 ∗ 𝑣𝑡

𝑛𝑙

𝑖=1

+∑{𝐶𝑣𝑜𝑝𝑠(𝑖𝑗)

𝑛𝑙

𝑖=1

∗ 𝑉𝑀𝑇𝑖𝑗𝑠} +∑{

𝑛𝑙

𝑖=1

𝑁𝑐𝑟𝑠(𝑖𝑗) ∗ 𝐶𝐶𝑟}}

𝑇

𝑗=1

+∑
𝑐𝑖𝑥𝑖(𝑡)

(1 + 𝑟)𝑡

𝑛𝑝

𝑖=1 }
  
 

  
 

𝑆

𝑠=1

  (15) 

 

 

In the above formulation S represents the set of scenarios, 𝑃𝑠 denotes the probability of each scenario s, 

and the other parameters are the same as specified for Equation 2. Here, we consider three plausible 

demand scenarios: (i) low demand growth, (ii) med (medium) demand growth, and (iii) high demand 

growth. Under the three demand growth scenarios we assume the growth rate per year to be: 𝑔  = 

0.005, 0.01, 0.02 for the low, med and high scenarios, respectively. The above formulation can be 

adapted to consider more scenarios regarding demand uncertainties, as demonstrated in Sun and 

Schonfeld (2015). While this study considers one source of uncertainty, future extensions of this model 
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may consider multiple uncertainties as it can reduce the probability of increasing the overall uncertainty 

in the analysis. 

4 Evaluation Model 

Basic traffic assignment models are suitable methods for estimating the traffic-related attributes of 

unsaturated networks with steady flows. These attributes consist of link travel time, flow, speed and 

volume-capacity ratio. This information is useful for estimating the cost savings due to capacity 

improvements and therefore supports an appropriate evaluation method for selection, sequencing and 

scheduling of projects. Cost savings mainly pertain to the travel time reduction for users and can be 

obtained by running the traffic assignment model at various times during the multi-year analysis period 

to compute speeds, travel times, and vehicle miles travelled (VMT).  Hence, the objective function (eq.15) 

can be computed. The Frank-Wolfe algorithm (Frank and Wolfe 1956), a user equilibrium traffic 

assignment method, is used here not just for traffic assignment but also to evaluate improvement projects 

before and after their implementation in the network. This algorithm is explained in detail in Shayanfar et 

al. (2016). Frank-Wolfe is a relatively simple and fast algorithm which is suitable for testing metaheuristics 

such as GA. However, more advanced traffic assignment models and more detailed evaluation models 

such as a micro-simulation, artificial neural network, or cell transmission model (CTM) may be more 

desired and can replace the Frank-Wolfe algorithm. 

 

5 Optimization Model 

This study employs a Genetic Algorithm (GA) developed by Shayanfar et al. (2016) to optimize the 

sequence and schedule of improvement alternatives. The GA is selected for this paper based on the 

results from Shayanfar et al. (2016) which suggested that, compared to other two heuristic algorithms 

(Simulated Annealing and Tabu Search), the GA yields a better (lower total cost) and more consistent 
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solution. Better consistency is indicated when multiple replications of the genetic search yield almost 

similar final solutions after enough iterations. In general, population-based meta-heuristics such as GA, 

are particularly suitable for solving large problems without analytical objective functions because they 

can be easily and efficiently distributed among multiple processors. Also, objectives evaluated from 

computer simulations, which are usually analytically intractable (i.e., discontinuous and non-

differentiable) (Koziel et al. 2011), can easily be embedded into the heuristic optimization loop.  

Figure 2 illustrates the optimization process. Each population is comprised of I sequences, and each 

sequence i is a string of J numbers which represents the location of the candidate project. As stated 

earlier, at any specific location, several improvement projects or expansion alternatives with specified 

capacities are considered. To incorporate project multiplicity, the chromosomes (sequences) should be 

refined to represent specific alternatives at each location. Figure 3 shows an example of one sequence 

with specific project locations. The shaded cells are locations where multiple alternatives may be 

considered e.g. location 3 has three candidate alternatives (3-1, 3-2, 3-3). At each location the algorithm 

selects a specific alternative based on the probabilistic approach specified in section 6 (Equation 13).  

After identifying specific alternatives at each location, the algorithm begins to evaluate all sequences in 

the current population. In Figure 2, for each sequence i, the algorithm selects projects 1 to j one-by-one, 

schedules them as soon as the cumulative budget can fund those projects and runs the traffic 

assignment after each project is implemented. In this sense, each project implementation requires a 

specific change in the network e.g. widening lanes, adding one or two lanes to existing links, or adding 

new links. At each step, the traffic assignment yields the travel time, VMT, speed, and number of 

crashes which are inserted in the objective function to calculate the “fitness value”. Next, the budget 

constraint, uniquely decides the 𝑡𝑗 (completion time) of project j. That is, project j is completed as soon 

as the available budget equalizes the cost of project.  This process is performed for all projects in the 

sequence until the completion time exceeds the planning horizon T. Then the algorithm moves to the 
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next sequence until all sequences in the population are evaluated. At this step, the best sequences i.e. 

the ones with lowest fitness values, are given higher probabilities to be selected as parents and produce 

offspring. Through several crossover and mutation operators which are extensively described in 

Shayanfar et al. (2016), the selected parents produce the next generation. The algorithm begins to 

evaluate the new generation and continues to do so until the termination criterion is met. In this case, 

the algorithm stops if the optimal sequence does not change after 40 generations. 

 

6 Numerical Example 

In this paper, the Sioux Falls network originally introduced by LeBlanc et al. (1975), is selected as a case 

study for the proposed model. Note that this is just a test network and the heuristic method in this 

paper was previously tested on a much larger network (Anaheim network with 416 nodes and 914 links) 

in Shayanfar and Schonfeld (2017). The Sioux Falls network inputs (Shayanfar and Schonfeld, 2015) 

contain trip table, link capacity, length, number of lanes and free flow travel times.  Figure 4 presents the 

example Sioux Falls network used as a case study. The dashed lines indicate potential locations for new 

developments which have three potential alternatives as described in section 3.4 (case C). The links 

surrounded by dashed circles indicate cases A and B from section 3.4 with multiple alternatives at each 

location while the other links only have one potential improvement.  

In this example, the narrow and wide lanes have a capacity of 1000 and 1150 vehicles/hour, respectively 

(HCM, 2010), and the equivalent annual cost of constructing roads is assumed to be 247,500 $/km per 

foot of road width (Zhang et al., 2013). Therefore, the cost of widening a lane, adding one narrow lane, 

and one wide lane are 495,000 ($/km), 2,475,000 ($/km) and 2,970,000 ($/km), respectively. Table 2 

provides a list of potential improvements for all links. 
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In order to incorporate demand uncertainty, we consider three plausible demand scenarios: (i) low 

demand growth, (ii) med (medium) demand growth, and (iii) high demand growth. Under the three 

demand growth scenarios we assume the following growth rate per year: 𝑔  = 0.005, 0.01, 0.02 for the 

low, med and high scenarios, respectively (in Equation 15: S = {low, med, high}). 

The first step is to find links with the highest volume-capacity ratios to identify the first list of candidate 

projects. This is done by applying the traffic assignment model with the given O/D demand matrix which 

is symmetric for all O/D pairs. It is assumed that the improvement projects, whether expanded or newly 

added links, are implemented in both directions between two nodes. In this problem, the potential new 

links (shown by dashed lines in Figure 4) are existing links in the original network which are treated as 

potential new links in this study. Initially, the algorithm considers zero capacity for these links and later 

examines whether and when they should be added to the network. A multi-period analysis is 

incorporated in this model to account for cyclical demand fluctuations during each day. While only peak 

and off-peak periods are presently considered, the number of periods per day can be easily increased. 

After determining the initial set of candidates, the algorithm considers multiple improvement projects at 

each location based on Table 2. Then, a benefit-cost analysis is applied to all projects to identify the 

economically beneficial projects and order them based on their benefit-cost ratio. Thus, we can obtain 

two initial solutions, one based on volume-capacity ratio (bottleneck order solution) and the other 

based on benefit-cost ratio (greedy-order solution). These two set of initial solutions are later used as 

part of the initial population in the GA. 

The analysis begins by running the traffic assignment model to assess the travel times and traffic 

volumes before and after improvement projects. Then the GA is used to find the near-optimal solution 

for selecting and scheduling projects. At this stage, the algorithm selects one improvement from a set of 

multiple improvement alternatives at each location following the procedure explained in section 6 and 



 88 

the probabilistic Equation 13. Ultimately, the GA yields the optimized project selection at each location, 

the order of their implementation, and the schedule of completing each one. In this study, we assume a 

20-year planning horizon. That is, projects with scheduled completion time after the planning horizon 

are eliminated from the sequence. Table 3 presents the results from the stochastic model which yields 

the optimal selection of projects, their order and implementation schedule. The results also indicate the 

optimal improvement type for each link which is obtained from the GA search.  

      Table 4 provides detailed costs yielded by the genetic search, bottleneck-order, and greedy-order 

solutions. These results are shown in terms of the Present Value (PV) of total costs that include user 

travel time, vehicle operating, crash, and total cost. The results indicate lower costs for the GA solution 

(i.e. 9.03% less than the bottleneck-order and 8.06% less than the greedy-order solution). This 

demonstrates that the greedy-order and bottle-neck order are far from the optimal sequence of 

projects when project interrelations are considered.  

Figure 9  displays the accumulated cost over time in terms of travel time, vehicle operating and safety 

costs. Most of the user cost pertains to travel time, with much lower amounts for vehicle operation and 

safety costs. 

Figure 10 illustrates the evolution of the GA process. It indicates how the objective function converges 

to the optimized value. The optimization process is completed after the genetic search has stopped 

improving for 40 generations. It is observed that approximately between generations 60 to 100 the 

result does not change which is why the algorithm stops at the 100th generation. 

            Figure 11 presents the computation time for different numbers of projects. These numbers 

indicate how the computation time grows as the number of projects increases. As the number of 

projects grows, the number of cells in each chromosome, and the number of chromosomes in each 

population increase. Also, the number of generations needed to reach convergence increases simply 
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because more combinations of projects must be evaluated. Hence the computation time increases 

considerably as the number of projects grows. 

A simpler and easier alternative to the stochastic program is to insert the average demand scenario into 

the deterministic formulation, which is less complicated and can thus be solved in less time. Figure 12 

displays the average demand growth compared to the three scenarios. We can see that the average 

demand is close to the medium growth rate and roughly between the low and high growth rate 

scenarios. Using the average demand growth rate, we can solve a deterministic version of the selection 

and sequencing problem whose objective is defined in Equation 15. However, with this approach the 

results are subject to the flaw of averages (Savage and Markowitz, 2009), and hence less reliable, as 

shown in De Neufville and Scholtes (2011).   

To compare the deterministic with the stochastic formulation, the model is applied using the average 

demand growth rate with the deterministic formulation (Equation 2). Figure 13 shows the PV of total 

cost in the average scenario compared to other demand scenarios. We can see that the total cost in the 

average scenario is close to the medium and low scenarios, and quite distant from the high scenario. In 

other words, if decisions are made only based on the average scenario, the results will underestimate 

the high cost of the high demand scenario. In fact, the results indicate that the total cost under the 

average demand growth scenario (solving the deterministic program) is 7.5% above that using the 

proposed stochastic program. This shows that solving the stochastic model yields a better solution with 

a lower objective function i.e. yields a solution with a lower cost. Furthermore, the difference between 

the objective function value (PV of total cost) of the deterministic and stochastic program, which is 

called the Value of Stochastic Solution (VSS), is $669 million. This value shows the advantage of using the 

stochastic model rather than using the expected value and solving the deterministic model. Failure to 

consider the full probability distribution instead of the average scenario is also called the “flaw of 

averages” (Savage and Markowitz, 2009). 
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7  Algorithm Testing 

One major limitation of meta-heuristics is that global optimality is almost never guaranteed, and it is 

challenging to assess whether evolutionary methods yield the global optimal solution. To evaluate the 

accuracy of the genetic search, (Shayanfar and Schonfeld, 2017) conducted an exhaustive enumeration 

and compared the GA results with enumeration results. The results indicated that the GA found the 

same exact solution obtained through complete enumeration. For large problems where complete a 

enumeration test would require excessive computation time, the quality of meta-heuristic results can be 

verified with a statistical test (Jon and Schonfeld, 2003) which estimates the probability that better 

solutions exist.  

For this test, a random sample consisting of 100,000 solutions is created. After testing different 

distribution functions, the Lognormal (mu=22.997, sigma= 0.0238) distribution is found to best fit the 

sample. From Figure 10, it is evident that the GA solution (8917 ×106 from Table 3) is located at the far-

left tail of the diagram meaning that the GA solution has a lower objective function than the entire 

sample. This means that the solution obtained by the genetic search has a lower cost than any of the 

100,000 random solutions in the distribution. Accordingly, the cumulative probability of the optimized 

solution (8917 ×106 from Table 3) can be calculated based on the fitted distribution: 𝑝 = 𝐹(𝑥| μ, σ) =

 𝐹(8917 × 106|22.997, 0.0238) = 1.568 × 10−4 .  

This result indicates that the probability of finding a solution better than the GA solution is extremely 

small, i.e. 2.834 × 10−5 . In other words, the GA solution is better than 99.999% of the random 

solutions in the fitted distribution (as well as 100% of the actual randomly generated sample). 

Therefore, the GA optimized solution, is overwhelmingly better that other possible alternatives in the 

solution space and the likelihood that significantly better solutions exist is negligible. Moreover, errors 
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from imperfect optimization (i.e. deviations from mathematically global optimality) are likely to be 

greatly dominated by uncertainties in the input parameters.  

 

8  Conclusions 

This study proposes a general framework for selecting and scheduling interrelated alternatives while 

dealing with demand uncertainties. The proposed methodology is intended to apply to any system with 

interrelated alternatives as GAs can be effectively combined with an appropriate evaluation tool such as 

microsimulation, simulation approximates, queuing or neural networks, to optimize the planning and 

scheduling problem in a variety of applications. With a well-developed evaluation model, users can use 

the proposed framework to evaluate and prioritize projects in any interrelated network. 

            The study introduces a stochastic program that analyzes the problem of selecting and scheduling 

interrelated alternatives with consideration of uncertainties in demand forecasts and offers a significant 

improvement on previous models by adding an improvement design component at each location where 

multiple improvement alternatives based on current link characteristics are considered. Moreover, the 

model is further developed to account for vehicle operation and safety costs.  

It is observed that the genetic search yields a better solution than the naïve greedy and bottleneck 

solutions when interrelations exist among alternatives.  In this case, the total cost of the genetic solution 

is 9.03% below the bottleneck-order and 8.06% below the greedy-order solution. Furthermore, it is 

concluded that the stochastic model greatly improves upon the total cost of the deterministic solution 

(which considers the average scenario rather than explicitly deal with uncertainty) due to the flaw of 

averages. Specifically, the total cost of the stochastic solution is 7.5% below that for the average 

scenario, and the difference between the two solutions is $669 million (VSS). Finally, although the 

genetic solution is not guaranteed to be globally optimal, the statistical test demonstrates the goodness 
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of the result compared to a sample of the solution space. It is highly probable that the input errors and 

uncertainties in many factors dominate errors due to imperfect GA solutions. 

The work in this paper can be enhanced by replacing the Frank-Wolfe Algorithm with more advanced 

traffic assignment models. In addition, for system evaluation purposes the traffic assignment algorithm 

used here may be replaced with more detailed evaluation models such as micro simulations and cell 

transmission models which can model queues and saturation effects in networks. Future work may also 

include intersection characteristics at nodes, and effects of travel time variability. It is also worthwhile to 

consider multiple uncertainties and explore other source of uncertainties such as project costs, available 

budget and construction time. 
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Table 1 Values of CMF1 for Lane Width on Roadway Segments (HSM, Table 10-8) 

Lane width(ft) ADT<400 (veh/day) ADT =400 to 2000 (veh/day) 
ADT>2000 

(veh/day) 

9 1.05 1.05+0.000281*(ADT-400) 1.50 

10 1.02 1.02+0.000175*(ADT-400) 1.30 

11 1.01 1.01+0.000025*(ADT-400) 1.05 

12 1.00 1.00 1.00 
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Table 2 Improvement Alternatives for Different Links 

Case Link Number Possible improvements 

A 3, 11, 25 -Widen the existing lanes. 

-Add one narrow lane in each direction. 

-Widen existing lanes and add one wide lane. 

B 8, 21, 36 - Add enough width for two narrow lanes.  

- Add one wide lane in each direction. 

C 9, 16, 24, 32, 35 - Add one narrow lane in each direction. 

- Add one wide lane in each direction. 

- Add two wide lanes. 

- Add three wide lanes. 

D All other links -Add one narrow lane in each direction. 
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                                     Table 3 GA Optimal Sequence and Schedule 

Project 

Rank 

Project # 

(Link#) 

Improvement Type 

(on both directions) 

Completion 

Time (year) 

1 25 Widen existing lanes 0.19 

2 34 Add one narrow lane 1.13 

3 36 Add one wide lane 4.60 

4 14 Add one narrow lane 5.03 

5 22 Add one narrow lane 7.17 

6 16 Add a new link with a narrow lane 9.32 

7 11 Widen existing lanes 9.94 

8 15 Add one narrow lane 11.61 

9 30 Add one narrow lane 13.35 

10 3 Widen existing lanes 13.99 

11 37 Add one narrow lane 15.90 

12 2 Add one narrow lane 19.24 

 PV of Total Cost               8917 ×106($) 
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Table 4 GA, Bottleneck-order and Greedy-order Solution Results 

User Travel Time Cost 

($) 

Vehicle Operating 

Cost ($) 
Crash Cost ($) Total Cost ($) 

Cost Improvement 

by GA (%) 

GA solution 

25          34          36          14          22          16          11          15          30          3          37          2 

7,505,448,440 890,475,922 489,829,910 8,917,684,007 - 

Bottleneck order 

11          36          34          14          15          3          30          37          22          2          16          25 

8,265,225,305 970,186,444 533,935,197 9,803,467,182 9.03% 

Greedy-order 

11          36          3          15          2           25          37          16          22          14          30          34 

8,194,600,060 950,522,818 521,753,124 9,700,467,112 8.06% 
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Figure 5 Framework of the Optimization Process 
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Figure 6 Optimization Process Flowchart 
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Figure 7 Process to Select Alternatives at Each Location 
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Figure 8 Sioux Falls Network 
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Figure 9 PV of Travel Time, Vehicle Operating and Safety Costs Over Time 
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Figure 10 GA Evolution Process 
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Figure 11 Computation Time for Different Number of Projects 
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Figure 12 Demand in the Average Scenario V.S. Demand in Each Scenario (low, med, high) 
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Figure 13 PV of Total Cost in the Average Scenario V.S. Each Scenario (low, med, high) 
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Figure 14 Fitted Lognormal Distribution 
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Optimal Zone Sizes and Headways for Flexible-Route Bus Services 

Myungseob (Edward) Kim1, Joshua Levy2, and Paul Schonfeld3 

 

Abstract 

 

Flexible-route bus systems serving passengers at their doorsteps may be preferable to fixed-route bus 

systems in areas with low demand densities or whose roads cannot accommodate relatively large fixed-

route buses. Flexible-route systems may also be preferable for elderly or handicapped riders for whom 

accessing the pre-determined stops on fixed routes is difficult. Since bus systems with flexible demand-

responsive routes retain the economic and environmental advantages of public transportation, it is 

important to analyze them and optimize their characteristics to match their operating environments. 

This study shows how the total cost can be minimized for a flexible-route bus system with a many-to-

one demand pattern by jointly optimizing its headway and service zone size. Numerical results 

demonstrate the model’s applicability and indicate how such flexible-route systems should be adapted 

to demand characteristics and planning constraints.  

 

Introduction 

 

Since public transit systems can transport many passengers efficiently, they have an important role in 

urban areas. Hence, many researchers have sought to improve the costs and service quality of transit 

systems. Bus transit operations may be classified as fixed-route or flexible-route services. Fixed-route 

bus services have predetermined routes, stops and schedules, and they are very widely used in densely 

populated urban areas since their average cost for serving high demand densities is relatively low (Kim 

and Schonfeld, 2012 & 2013). When the demand densities or roadway geometric characteristics are 

unsuitable for fixed-route bus operations, flexible-route services, which can operate on-demand without 

predetermined stop locations, may offer a practical alternative. When the demand density is relatively 
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University, Springfield, MA 01119, myungseob.kim@wne.edu  

2 Civil Engineer, Lorenzi, Dodds, & Gunnill, Inc. Walforf, MD 20601,joshlevy2012@gmail.com  

3 Professor, Dept. of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, pschon@umd.deu  
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low, flexible-route service may have lower average system cost than conventional fixed-route bus 

services. In an early study, Wilson and Hendrickson (1980) reviewed models for predicting the 

performance of flexible transportation services such as taxi and dial-a-ride. Their review covered 

methodological approaches such as simulation, empirical, deterministic queuing and stochastic 

processes. With rapid developments of information technology and computation capabilities in recent 

years, various studies (such as Luo and Schonfeld, 2007; Markovic et al, 2015) explored micro-level 

transit service modeling by solving dial-a-ride problems or vehicle routing problems for public transit 

systems. 

 

Figure 15 Configuration of Flexible-route Bus Service Module 

 

However, we observe that the relations among optimal zone sizes, headways and relevant exogenous 

factors for flexible-route services have not been sufficiently explored, especially in considering how zone 

sizes may be optimized based on the local demand densities. This paper presents a planning model for 

optimizing a flexible-route bus operation serving many-to-one and one-to-many demand patterns, as 

sketched in Figure 1. The rest of the paper includes a literature review for flexible transportation 

operations, problem formulations, numerical studies and a concluding summary.    

 

Literature Review 

 

Flexible-route bus services, including demand-responsive dial-a-ride services, are widely considered to 

improve the service quality for disabled passengers by providing door-to-door services or to reduce the 

cost of public transit systems for regions with low demand densities. In this section, we present the 

studies that are closely related to flexible-route bus operations. General reviews of fixed route bus 

transit operations and network design may be found in Ceder and Wilson (1986) and in Ibarra-Rojas et al 

(2015). An extensive overview of dial-a-ride problems, including recent developments, is provided in 

Molenbruch et al (2017).   
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Nourbakhsh and Ouyang (2012) analyze the costs of flexible bus routes and their competitiveness versus 

fixed bus routes and taxis. The optimal network layout, service area, and bus headway are used to 

minimize total system cost. It is noted that in low to moderate demand areas, flexible bus route systems 

have the lowest system cost among flexible-route bus, fixed-route bus and taxi services. Daganzo and 

Ouyang (2019) present analytic models for door-to-door transit services, including non-shared taxi and 

demand-responsive transportation as special variants of the model. Several objectives are considered in 

the paper as follows: Firstly, the case of non-shared taxi is analyzed to emphasize the level of service 

quality. Secondly, dial-a-ride services are analyzed for minimizing resources. Thirdly, the case of shared 

taxi is analyzed for maximizing the number of served passenger trips. The model formulations assume a 

uniform and steady many-to-many demand pattern. The deterministic analysis framework provides 

approximated closed form solutions for the travel time and fleet size thresholds among dial-a-ride, 

ridesharing, and non-shared taxi services.   

 

Amirgholy and Gonzales (2016) employ an analytic model to approximate the operation cost of demand-

responsive transit (DRT) operations with time-dependent demand patterns. The cost of demand-

responsive transit services is estimated using the fleet size, the vehicle miles traveled, and the vehicle 

hours traveled. The study also formulates the total cost that users experience as a result of the 

operating decisions. This study analyzes the dynamic equilibrium that is associated with oversaturated 

conditions in which the demand rate exceeds the operating capacity of the DRT system. A dynamic 

pricing policy is considered that improves the efficiency of the DRT system by shifting the demand to a 

different time of the day and avoiding the underutilization of capacity during off-peak times. Bakas et al 

(2016) formulate a dial-a-ride problem with the assumption that customer pickups and drop-offs are 

allowed only at pre-defined bus stops. With this assumption, the benefit of demand responsive 

transportation services in low demand areas is compared to fixed-route bus operations. 

 

Adebisi (1980) develops a model for estimating the travel time for fully- and partially flexible bus routes. 

His model incorporates randomness in the number of passengers and their locations on grid networks. 

Pei et al (2019) explore flexible bus operation by allowing turn-backs for dispatched vehicles as well as 

skipping some bus stops. By adjusting the length of the service route with demand-responsive turn-

backs, the travel time for all passengers, including the onboard and waiting time, is minimized. This 

study finds that a flexible bus operation performs well when demand density is low to medium. Qui et al 

(2015) explore a flag-stop bus operation policy in which bus services do not provide complete curb-to-

curb services, but still offer some flexibility to transit riders. By comparing this operation policy to fixed- 

and flexible-route bus operations, the flag-stop policy is found to be advantageous in low-demand 

regions, such as suburban and rural areas. Zheng et al (2018) use two analytical models for comparing 

services with limited route deviation versus more flexible point deviation. Stiglic et al (2015) analyze a 

flexible dial-a-ride system in which passengers are picked up at their origin and dropped off at their 

destinations, or passengers come to the designated points to be picked up or dropped off. Although a 

possible inconvenience for such systems is that passengers have to arrive at the meeting point before 

their vehicle arrives, the proposed model substantially improves the system performance. Gomes et al 
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(2015) develop a simulation-based optimization model for demand-responsive transportation 

scheduling. Yu et al (2015) incorporate a dynamic vehicle routing algorithm into an agent-based traffic 

simulation and compare demand responsive transportation services with conventional bus operations. 

They note that demand-responsive service increases mobility by decreasing the travel time perceived by 

passengers. Several case studies are found on implementing flexible transportation services (Horn, 2002; 

Fernandez et al, 2008).  

Pan et al (2015) propose a mathematical model for designing the service area and routing plan for a 

flexible bus feeder system that is connected to a rail transit line. By assuming the fleet size and demand 

as inputs, this model approximates the service area and routing schedule without assuming a grid street 

geometry and uniform demand distributions. It is assumed that the passengers within the zone report to 

the designated pickup or drop points, also called gates Thus, the tour within each zone is not modeled; 

instead, a gravity-based heuristic approach for optimizing vehicle routes among gates is proposed. As an 

extension from Pan et al (2015), Lu et al (2016) present a model for deviated fixed-route transit 

operations. Their main purpose is to assign random requests to the nearest possible routes by allowing 

route deviations based on the travelling salesman problem. Bus travel time is minimized with a genetic 

algorithm. Saeed and Kurauch (2015) formulate mixed-integer problems to analyze a dial-a-ride (DAR) 

system for rural areas. A branch-and-cut algorithm-based solution is proposed to minimize the operating 

costs as well as user’s travel times for the DAR system. They note that flexible-route DAR operation is 

suitable for low demand density and wide spatial coverage in complex road networks. Their DAR results 

show decreased waiting times for rural area users.   

The relative advantages of fixed-route, flexible-route and variable-type bus services are analyzed by 

Chang & Schonfeld (1991) and by Kim and Schonfeld (2012). Kim and Schonfeld (2012) find that at low 

demand densities, flexible-route services have lower average cost per passenger than conventional 

fixed-route bus operations. Kim and Schonfeld (2013) integrate fixed and flexible bus services using a 

genetic algorithm and analytic optimization while determining the type of service based on demand 

density. Chen and Nie (2017) analyze hybrid systems with fixed and flexible services using simulation. 

They use flexible services to increase accessibility to fixed-route bus systems. Häll et al (2018) propose a 

simulation-based analysis for integrated bus operations combining a fixed-route service and demand-

responsive service. They find that for the integrated bus operations, the number of transfers as well as 

the pricing policy for demand-responsive service strongly affect the performance of such integrated 

transit services.  

 

Chang and Schonfeld (1993) develop a model for jointly optimizing the dimensions for served zones and 

headways, but only for fixed-route services whose characteristics and resulting model formulations 

differ considerably from those for flexible-route services. They assume that zone shapes are rectangular 

and find that zone lengths, zone widths and headways should increase with distance from a major 

terminal. Some related studies such as Chang and Schonfeld (1991), Kim and Schonfeld (2013, 2014, and 

2015) assume that each served zone is rectangular, while larger service regions are divided into multiple 

zones, based on the demand levels. It should be noted that the zone size is a very important factor (and 

not only for rectangular zones) in planning efficient flexible route services. Broome et al (2007) 
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completed a study showing the public’s positive perception of flexible bus route systems. Designed for 

elderly persons who cannot travel to and from fixed bus stops, these flexible bus systems saw ridership 

double over the course of the study. Satisfaction was also significantly increased and the flexible bus 

system began to attract younger users.  

 

From the literature review we note the importance of flexible-route bus operation for serving low 

demand regions or handicapped passengers. However, the main interests in those studies are new 

solution algorithms or heuristics for dial-a-ride or demand responsive transportation services. It is clear 

that the relations among optimal zone sizes, headways and relevant exogenous factors have not been 

sufficiently explored for flexible-route services. This paper contributes to the literature mathematical 

relations for optimally matching headways and service zone sizes to exogenous local characteristics such 

as demand density, distance from major terminals, unit costs and travel speeds, in order to minimize 

average costs per passenger, including the supplier and user costs. The model presented in this paper 

can help guide the design of relatively simple flexible-route bus services, especially where the demand 

density is relatively low or where street geometry cannot accommodate the relatively large buses used 

for fixed-route bus services.  

 

Flexible-route Service Formulation 

 

Each flexible-route module considered in this study includes one bus route that connects a local service 

zone to a major terminal, through an express segment, as shown in Figure 1. The route’s headway and 

the area of the local service zone are jointly optimized as functions of demand density, distance from 

the major terminal, applicable unit costs, bus speeds, and other relevant exogenous parameters. The 

major terminal may be a Central Business District (CBD), another major trip attractor, or a transfer 

terminal along a rail transit route. The route within each module primarily serves a Many-to-One (M-to-

1) or One–to-Many (1-to-M) demand pattern. However, with multiple modules optimized for urban 

regions around the major terminal(s), their converging routes would enable Many-to-Many (M-to-M) 

demand patterns to be served, as briefly discussed below. This paper focuses on the optimization of 

single modules while a future study is expected to optimize the development of multi-module flexible 

route systems that cover substantial urban and suburban areas. 

 

For each module, trip origins and destinations are assumed to be randomly and uniformly distributed 

over the local zone and over time.  An example of this type of bus system could be a suburban 

neighborhood outside a large city. Passengers residing in that neighborhood or “service zone” take the 

bus to or from a train station, a downtown terminal or an airport, as shown in Figure 1. Neighborhoods 

may be divided into smaller subsections, depending on the results of the joint optimization of the 
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decision variables that are analyzed here. Figure 1 shows a zone with a rectangular shape, but the 

analysis is also applicable to other zone shapes as long as the zones are fairly compact and fairly convex.  

 

We noted that the flexible-route service model presented in this paper and illustrated in Figure 1 can 

constitute a modular building block in designing larger and more comprehensive systems, which serve 

M-to-M demand patterns. As an example, the region in Figure 2 can be subdivided into multiple zones, 

roughly in accordance to the guidelines developed in this paper on jointly optimizing zone areas and 

headways as functions of demand densities and distances from the central terminal (or central business 

district). Then the M-to-M demand patterns can be served with transfers at the central terminal, 

possibly with coordinated headways to minimize transfer delays, while minimizing system-wide costs.  

 

 

Figure 16 Potential Extension to Multi-zone Flexible-route System 

The formulated total cost for flexible bus services is the sum of supplier (operator) cost, user in-vehicle 

cost, and user waiting cost. Since flexible-route services are assumed to provide door-to-door service, 

they have no access time or cost. The relevant notation is defined in Table 1. In order to provide a 

relatively simple and widely applicable model for planning and preliminary system design, the following 

simplifying assumptions are made: 

 

1. Stein (1978)’s formula is assumed to provide an acceptable approximation of the shortest tour 

distance within a zone, with a constant k = 1.15 according to Daganzo (1984) for rectilinear 

movements within the zone. 

2. The service zone is fairly compact and fairly convex. 

3. Destinations and origins are fairly uniformly distributed over time and space within the service 

zone. 

4. The number of stopping points in a zone for each vehicle tour exceeds five. 

5. Dwell times and stopping times within the service zone are included in the average speed. 
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6. The average wait time is approximately half of the service headway. 

7. Passenger pickups and drop-offs are intermingled within each tour. 

 

 

 

 

 

Table 3 Notation and Baseline Values for Inputs 

Symbol Variable Units Base Value Range for 

Sensitivity 

Analysis 

A Zone Size (Area) Square Miles - - 

a Parameter for bus operating 

cost  

$ / bus hour 30 - 

b Parameter for bus operating 

cost  

$ / seat hour 0.3 - 

CA Average Total Cost $ / passenger - - 

CT Total Cost $ / hour - - 

CS Supplier Cost $ / hour - - 

CV In-vehicle Cost $ / hour - - 

CW Waiting Cost  $ per hour - - 

c Unit Bus Operating Cost 

(=a+b*S) 

$ / bus hour - -  

DC Tour Length within Zone Miles - - 

h Headway Hours - - 

J Line Haul Distance Miles 10 6-15 

l Load factor  Dimensionless  1.0 - 

N Fleet Size Buses  -  -  

∅ Stein’s Constant Dimensionless 1.15 - 

Q Demand Density       

Trips / square mile*hour 

10 5-50 

q Hourly demand Trips / hour - - 

R Round Trip Time  Hours - -  

S Bus Capacity Seats / bus 45 10-50 

u Number of Passengers per 

Stop  

Number of passengers  1 -  

VX Line Haul Speed Miles / hour 30 15-60 

VL Average Local Speed Miles / hour - 10 – 40 

vv Value of in-vehicle time  $ / passenger hour 12 6-20 

vw Value of waiting time  $ / passenger hour 15 6-20 

w waiting time  Hours - - 
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y Ratio of local speed to 

express speed 

Dimensionless 0.9 0.5-1.0 

 

The operator’s service cost CS is formulated as the product of the required fleet size N and the unit 

operating cost c:  

 

𝐶𝑆 = 𝑁 ×  𝑐          (1)  

 

The required fleet size is the vehicle round trip time divided by headway:  

 

𝑁 =
𝑅

ℎ
           (2) 

 

The round trip time R is the sum of 2-directional trip time for the line haul (i.e., express) segment and 

trip time in the local zone. Stein’s approximation for tour length within the zone Dc is expressed as:  

 

𝐷𝑐 =  ∅ √𝑛𝐴          (3) 

  

The approximation in Eq. (3) is very useful in this study for optimizing the headway and zone size for 

flexible bus routes.  

 

The number of stops during the tour n is expressed as a function of demand density Q, zone size, 

A, headway h, and the number of passengers (boarding or alighting) per stop u:  

 

𝑛 =
𝑄𝐴ℎ

𝑢
          (4) 

 

As the actual hourly demand per zone q (in passenger trips/hour) is product of the demand density 

Q and the zone size A, the demand q is expressed as:  

 

𝑞 = 𝑄𝐴          (5) 

 

Then, the tour length Dc is: 

 

𝐷𝑐 = ∅√
𝑞𝐴ℎ

𝑢
           (6) 
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The line haul distance J, the express speed VX, and local speed VL are used to compute the vehicle 

round trip time R: 

 

𝑅 =
2𝐽

𝑉𝑋
+ 

𝐷𝑐

𝑉𝐿 
          (7)  

 

We assume the local speed is a fraction of the express speed VX. We denote the ratio of local speed 

VL, to express speed VX, as y. Then:  

 

𝑉𝐿 = 𝑦 𝑉𝑋          (8) 

 

The service cost, 𝐶𝑆  is then formulated as:  

 

𝐶𝑆 =
2𝐽𝑐

ℎ𝑉𝑋
+

∅𝑐

𝑦 𝑉𝑋
√
𝑞𝐴

𝑢ℎ
         (9) 

 

The in-vehicle cost CV is the product of the value of passenger’s in-vehicle time 𝑣𝑣, the demand q, 

and passenger’s trip time, which is assumed to be half of the vehicle round trip time R:  

 

𝐶𝑉 = 𝑣𝑣𝑞 
𝑅

2
          (10) 

 

Eq. (10) can be re-written as:  

 

𝐶𝑉 =
𝑣𝑣𝑞𝐽

𝑉𝑥
+

∅𝑣𝑣

2𝑦 𝑉𝑥
√
𝑞3ℎ𝐴

𝑢
        (11) 

 

Since we are formulating a planning-level model, we approximate the average wait time as half of 

the headway h. This assumption is widely applied in urban transit services, in which the headways 

are relatively short. It should also be noted that for flexible-route bus services much of the waiting 

may be inside the users’ homes or workplaces rather than at remote bus stops. The resulting waiting 

cost for passenger CW is product of the value of waiting time 𝑣𝑤, the demand q, and the average 

waiting time h/2:  

 

𝐶𝑊 = 𝑣𝑤𝑞
ℎ

2
          (12) 

 

The total cost for the flexible service is the sum of operating cost, in-vehicle cost and waiting cost:  

 

𝐶𝑇 = 𝐶𝑆 + 𝐶𝑉 + 𝐶𝑊         (13) 
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Eq. (13) is detailed as:  

 

𝐶𝑇 =
2𝐽𝑐

ℎ𝑉𝑋
+

∅𝑐

𝑦 𝑉𝑋
√
𝑞𝐴

𝑢ℎ
+
𝑣𝑣𝑞𝐽

𝑉𝑥
+

∅𝑣𝑣

2𝑦 𝑉𝑥
√
𝑞3ℎ𝐴

𝑢
+ 𝑣𝑤𝑞

ℎ

2
     (14) 

 

The average cost per passenger CA can be found by dividing the total cost function in Eq. (14) by 

the passenger flow q:   

 

𝐶𝐴 =
𝐶𝑇

𝑄𝐴
=

𝐶𝑇

𝑞
          (15) 

 

Thus, the average cost for the service is:  

 

𝐶𝐴 =
2𝐽𝑐

ℎ𝑉𝑋

1

𝑄𝐴
+

∅𝑐

𝑦 𝑉𝑋𝑄𝐴
√
𝑄𝐴⋅𝐴

𝑢ℎ
+

1

𝑄𝐴

𝑣𝑣𝑄𝐴⋅𝐽  

𝑉𝑥
+

∅𝑣𝑣

2𝑦𝑉𝑋

1

𝑄𝐴
√
(𝑄𝐴)3ℎ𝐴

𝑢
+
𝑣𝑤𝑄𝐴ℎ

2𝑄𝐴
  (16) 

 

Eq. (16) is rewritten as:  

 

𝐶𝐴 =
2𝐽𝑐

𝑉𝑋𝑄𝐴ℎ
+

∅𝑐

𝑦 𝑉𝑋
√

1

𝑄ℎ𝑢
+ 

𝑣𝑣𝐽

𝑉𝑋
+

∅𝑣𝑣𝐴

2𝑦𝑉𝑋
√
𝑄ℎ

𝑢
+
𝑣𝑤ℎ

2
     (17) 

 

In Eq. (17), the average cost per passenger is a function of two decision variables, namely the zone 

size A and the headway h. 

 

The first order derivative of the average cost with respect to the zone size A, shown in Eq. (18), is 

set equal to zero:  

 

𝜕𝐶𝐴

𝜕𝐴
= −

2𝐽𝑐

𝑉𝑋𝑄ℎ𝐴2  
+

∅𝑣𝑣√𝑄ℎ

2𝑦𝑉𝑋√𝑢
= 0       (18) 

 

The necessary condition for the global optimality of the zone size A is that Eq. (19) should have a 

positive value. Since Eq. (19) is always positive, we confirm that the optimal value of the zone 

size A yields the global minimum in Eq. (17).   

 

𝜕2𝐶𝐴

𝜕𝐶𝐴
2 =

4𝐽𝑐

𝑉𝑋𝑄ℎ𝐴3
> 0         (19) 

 

The first order derivative of the average cost with respect to the headway h is:  

 

𝜕𝐶𝐴

𝜕ℎ
= −

2𝐽𝑐

𝑉𝑋𝑄𝐴ℎ
2 −

∅𝑐

2𝑦𝑉𝑋√𝑄𝑢ℎ
3
+

∅𝑣𝑣𝐴√𝑄

4𝑦𝑉𝑋√𝑢ℎ
+
𝑣𝑤

2
= 0     (20) 



 121 

 

Similarly, the second-order derivative for the headway, which should be positive, is shown in Eq. (21).   

 

𝜕2𝐶𝐴

𝜕ℎ2
=

4𝐽𝑐

𝑉𝑋𝑄𝐴ℎ
3 +

3∅𝑐

4𝑦𝑉𝑋√𝑄𝑢ℎ
5
−

∅𝑣𝑣𝐴√𝑄

8𝑦𝑉𝑋√𝑢ℎ
3
      (21) 

 

We seek the solution by solving Eq. (18) and Eq. (20) simultaneously. From Eq. (18), we obtain 

the following relation:  

 

1

𝐴2√ℎ3
=

∅𝑣𝑣√𝑄
3

4𝑦𝐽𝑐√𝑢
           (22) 

 

By denoting t to substitute for the right hand side of Eq. (22), we find a simplified relation between 

the headway and zone size, as shown in Eq. (23):  

 

𝐴 = 1

√𝑡 √ℎ
34
           (23) 

 

Eq. (23) is inserted in Eq. (20), and Eq. (20) is re-written as:  

 

𝜕𝐶𝐴

𝜕ℎ
= −

2𝐽𝑐√𝑡

𝑉𝑋𝑄 √ℎ
54 −

∅𝑐

2𝑦𝑉𝑋√𝑄𝑢 √ℎ
64 +

∅𝑣𝑣𝐴√𝑄

4𝑦𝑉𝑋√𝑢𝑡 √ℎ
54 +

𝑣𝑤

2
= 0    (24) 

 

By using X to substitute for√ℎ
4

, Eq. (25) is obtained:  

 

𝑣𝑤

2
𝑋6 + {

∅𝑣𝑣√𝑄

4𝑦𝑉𝑋√𝑢𝑡
−
2𝐽𝑐√𝑡

𝑉𝑋𝑄
}𝑋 −

∅𝑐

2𝑦𝑉𝑋√𝑄𝑢
= 0      (25) 

  

Eq. (25) is re-arranged, and denoted as Y:  

 

𝑌 =
𝑣𝑤

2
𝑋6 − {

∅𝑣𝑣√𝑄

4𝑦𝑉𝑋√𝑢𝑡
} 𝑋 −

∅𝑐

2𝑦𝑉𝑋√𝑄𝑢
       (26) 

 

To investigate the convexity of Eq. (26), we find the partial derivative of Y with respect to X as 

follows:  

 
𝜕𝑌

𝜕𝑋
= 3𝑣𝑤𝑋

5 − {
∅𝑣𝑣√𝑄

4𝑦𝑉𝑋√𝑢𝑡
}         (27) 
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By setting Eq. (27) to zero, we find only one root, as shown in Eq. (28):  

 

𝑋 = {
∅𝑣𝑣√𝑄

12𝑣𝑤𝑦𝑉𝑋√𝑢𝑡
}
1/5

         (28) 

  

Since we find only one root, shown in Eq. (28), for which Eq. (27) equals zero, and since the 

coefficient of the X6 term in Eq. (26), which is 𝑣𝑤/2, is positive, we confirm that the function in 

Eq. (26) is convex. We apply Newton’s Method to find the optimal headway as h* = X4. The 

pseudo-algorithm is shown as follows (Press et. al., 2007): 

 

Step 1: Pick the initial value (x1) of X, which must be greater than zero.   

Step 2: Evaluate Eq. (26), f(x1) at this point (x1) 

Step 3: Assuming f(x1) was not the root of the equation, compute the following equation to determine 

the next evaluation point, x2.  

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓′(𝑥1)
 

Step 4: Evaluate Eq. (26) at x2, and obtain f(x2).  

Step 5: Repeat this iterative process until the root is determined or the tolerance criterion is satisfied.   

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 

 

In Eq. (19), the optimal zone size A*, yields the global minimum of the objective function. We 

must also ensure that the optimal headway h* yields the globally optimal solution by investigating 

the previously derived Eq. (21).  

 

To ensure the optimal headway yields the global minimum, Eq. (21) should be positive. To achieve 

the closed-form equation of headway boundary that yields the global solution, we note that either 

of the following two conditions should be positive:  

 

4𝐽𝑐

𝑉𝑋𝑄𝐴ℎ
3 −

∅𝑣𝑣𝐴√𝑄

8𝑦𝑉𝑋√𝑢ℎ
3
> 0        (29) 

 

or 

3∅𝑐

4𝑦𝑉𝑋√𝑄𝑢ℎ
5
−

∅𝑣𝑣𝐴√𝑄

8𝑦𝑉𝑋√𝑢ℎ
3
> 0        (30) 
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Eq. (29) is rearranged in Eq. (31), and Eq. (30) is rearranged in Eq. (32): 

ℎ < √ 1

𝐴4
{
32𝑦𝐽𝑐√𝑢

∅𝑣𝑣√𝑄
3
}
23

         (31) 

 

 or  

 

ℎ <
6𝑐

𝑣𝑣𝑄𝐴
          (32) 

 

Since both Eqs. (31) and (32) provide closed-form conditions, they can provide insights for decision 

makers regarding headway planning. The visual representation of the global solution boundary will be 

discussed in the numerical analysis section. 

 

When the maximum allowable headway policy is considered (ℎ =
𝑆𝑙

𝑄𝐴
), the complexity of the problem is 

reduced to analytically optimizing a single variable, which is the zone size A. The optimal zone size A* is 

found in closed-form, as shown in Eq. (33):  

 

𝐴∗ = √(

𝑣𝑤𝑆𝑙

2𝑄

{
∅𝑐

2𝑦𝑉𝑋√𝑢𝑆𝑙
+

∅𝑣𝑣√𝑆𝑙

4𝑦𝑉𝑋√𝑢
}

⁄ )

2
3

      (33)  

 

The global optimality condition of the zone size A is presented in Eq. (34): 

 

𝐴 <
√
{𝑣𝑤𝑆𝑙}

2

𝑄2 {
∅𝑐

4𝑦𝑉𝑋√𝑢𝑆𝑙
+

∅𝑣𝑣√𝑆𝑙

8𝑦𝑉𝑋√𝑢
}
2⁄

3       (34) 

 

The details of the derivations of A, and the necessary condition for its global optimality are summarized 

in Appendix A.  

 

Numerical Analysis  
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Numerical cases are used to explore the relations between the decision variables, which are the 

headway h and the zone size A, for the problem illustrated in Figure 1. This section explores how various 

input parameters affect the design of flexible-route bus services. We present a baseline case and an 

elasticity analysis for the sensitivity of solutions to service design parameters. The baseline values of the 

parameter for the formulations and numerical cases are provided in Table 1. 

 

Visual Representation of Convexity in the Objective Function  

 

We seek to verify the global optimality of the solutions. By solving Eq. (27) using the baseline 

values from Table 1, the minimum of X is obtained as 0.4426. As shown in Figure 3, the value of 

Eq. (26) decreases until X is 0.4426, and then Eq. (26) increases beyond X values of 0.4426. 

Therefore, we graphically confirm that Eq. (26) is a convex function with only one root (i.e., 0.692) 

as discussed for Eq. (28). In Figure 3, we also note that the root of X, at which Eq. (26) equals 

zero, is 0.692. Thus, the optimal headway h* (=0.229 hours) is found from X4 (=0.6924). From the 

optimal headway* (i.e., 0.229 hours), we find the optimal zone size A* using Eq. (23), as 5.72 sq. 

miles.   

 

 

 

Figure 17 Convexity of Eq. (26) 

Either Eq. (31) or Eq. (32) must be satisfied to guarantee the global optimality of the solution. As shown 

in Figure 4, we note that the headway condition specified in Eq. (32) always satisfies the condition 

specified in Eq. (31). Thus, we take Eq. (31) as the criterion which guarantees the globally optimal 

solution for the headway. With baseline values, the optimal headway h* is 0.229 hours, and we obtain 
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the upper limit (i.e., condition) of the headway from Eq. (31) as 0.917 hours. Therefore, we find the 

global solution.  

 

 

Figure 18 Headway Limits Constrained by Eqs. (31) and (32) 

Joint Optimization vs. Maximum Allowable Headway Solutions  

 

For the baseline case, the optimal zone size A* is found as 5.72 sq. miles and the optimal headway h* is 

found as 0.23 hours. As shown in Table 2, the average cost per person trip includes an operating cost of 

3.44 $/person trip, an in-vehicle time of 6.21 $/person trip, and a waiting time cost of 1.72 $/person 

trip, resulting a total cost for flexible service of 11.37 $/person trip. The operating cost, in-vehicle cost 

and waiting cost components of the average system cost are about 30 %, 55% and 15%, respectively. 

Figure 3 shows that the cost function is convex, and its optimal zone size and headway are the global 

solution.  
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Figure 19 Average Cost Plot for Baseline Case 

When the maximum headway policy is applied, a closed-form solution is achievable, which offers 

insights regarding the relations among decision variables and input parameters. With the closed-form 

solution shown in Eq. (33), the optimal solution for the zone size A* is analytically found as 10.48 sq. 

miles. Using Eq. (34), the necessary condition (i.e., the maximum zone size A) is obtained as 26.4 sq. 

miles, and the optimal zone size (10.48 sq. miles) satisfies the condition. Thus, we confirm that the 

solution with the maximum allowable headway policy finds the global minimum solution. The maximum 

allowable headway h* is obtained as 0.43 hours, using the relation ℎ = Sl/QA. 

 

Table 2 provides comparisons between the two solution approaches, namely the joint optimal solution 

and maximum allowable headway solution. The optimal zone size A* based on the maximum allowable 

headway is 83% larger than that for the joint optimal solution. The maximum allowable headway h* is 

almost double that of the joint optimal solution. For this base case, the maximum allowable headway 

can reduce the operator cost compared to the joint optimal solution while the in-vehicle and waiting 

costs exceed those in the joint optimal solution. The average cost per person trip is 26% higher for the 

maximum allowable headway than for the joint optimal solution.  

 

Table 4 Cost Comparison between the Maximum Allowable Headway and Joint Optimal Solution for 

Zone Size and Headway 

 Zone Size, 

A  

(sq. miles) 

Headway, 

h 

 (hrs) 

Operator 

Cost 

($/person) 

In-vehicle 

Cost 

($/person) 

Waiting 

Cost 

($/person) 

Average 

Cost 

($/person) 
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Maximum Allowable 

Headway Solution (1) 
10.48 0.43 1.54 9.55 3.22 14.31 

Joint Optimal Solution (2) 5.72 0.23 3.44 6.21 1.72 11.37 

Cost Difference, 

{(1)-(2)}/(2) 
83.2% 87.8% -55.2% 53.7% 87.5% 25.9% 

 

Sensitivity Analysis 

 

Demand Density   

 

Table 3 shows the sensitivity of costs to the demand density Q. In it the in-vehicle cost is the highest 

among the cost components and is approximately double the operating cost, while the waiting cost is 

the lowest cost component. Table 3 shows that as Q increases, the optimal zone size and headway 

decrease. The resulting A* decreases from 8.42 to 2.31 sq. miles, and it shows greater variations 

(between 47.3% increase and -59.6% decrease) than the headway variations (between 19% increase and 

-33% decrease) over the range of demand changes. For instance, when the hourly demand density 

increases from 5 to 10 person trips/sq. miles, A* decreases from 8.42 to 5.72 sq. miles, while the 

demand density increase from 45 to 50 person trips/sq. miles reduces the zone size from 2.45 to 2.31 

sq. miles. When the demand density increases from 10 to 50 persons/sq.mile, the average cost per 

person decreases by 20% from 11.37 to 9.09 $/person.  

 

Table 5 Joint Optimal Solution for Demand Variations 

Demand Density (persons/sq.mile) 5 10 15 20 25 30 35 40 45 50 

Zone Size (sq. 

miles) 

Joint Optimal 

Solution  
8.42 5.72 4.56 3.88 3.42 3.08 2.83 2.62 2.45 2.31 

% Change  47.3 0.0 -20.3 -32.2 -40.3 -46.1 -50.6 -54.2 -57.1 -59.6 

Headway 

(hours) 

Joint Optimal 

Solution  
0.27 0.23 0.21 0.19 0.18 0.17 0.17 0.16 0.16 0.15 

% Change  19.4 0.0% -9.7 -16.0 -20.5 -24.0 -26.8 -29.2 -31.2 -33.0 

Average 

Operating Cost 

($/hr) 

Joint Optimal 

Solution  
4.10 3.44 3.10 2.89 2.73 2.61 2.51 2.43 2.36 2.30 

% Change  19.4 0.0 -9.7 -16.0 -20.5 -24.0 -26.8 -29.2 -31.2 -33.0 

Average In-

vehicle Cost 

($/hr) 

Joint Optimal 

Solution  
6.52 6.21 6.05 5.94 5.86 5.80 5.75 5.71 5.67 5.64 
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% Change  4.9 0.0 -2.6 -4.3 -5.6 -6.6 -7.5 -8.2 -8.8 -9.3 

Average 

Waiting Cost 

($/hr) 

Joint Optimal 

Solution  
2.05 1.72 1.55 1.44 1.37 1.31 1.26 1.22 1.18 1.15 

% Change  19.4 0.0 -9.7 -16.0 -20.5 -24.0 -26.8 -29.2 -31.2 -33.0 

Total Cost 

(Average Cost 

in  

$ per person) 

Joint Optimal 

Solution  
12.67 11.37 10.71 10.27 9.96 9.72 9.52 9.36 9.21 9.09 

% Change  11.5 0.0 -5.8 -9.6 -12.4 -14.5 -16.3 -17.7 -18.9 -20.0 

 

We also explore the effects of demand densities on headways while the zone size is not optimizable, as 

presented in Table 4. We hold the zone size at A=5.72 sq. miles, as a fixed input parameter, and explore 

the relations between the demand density and headway. When Q increases from 10 (in the baseline 

conditions) to 50, we find that h* decreases from 0.23 hours to 0.07 hours, thus resulting in more 

frequent bus service, while the total cost per trip decreases by 14.7%. When Q increases from 10 to 50 

while fixing the zone size, the in-vehicle cost increase by 8.8% and the operating cost decreases by 30%. 

As h* decreases from 0.23 to 0.07 hours, the waiting cost decreases significantly by 68.9%.  

 

Table 6 Effects of Demand Density with Zone Size on Hold  

Demand Density (persons/sq.mile) 5 10 15 20 25 30 35 40 45 50 

Zone Size (sq. 

miles) 

Zone Size on 

Hold (Input)  
5.72 5.72 5.72 5.72 5.72 5.72 5.72 5.72 5.72 5.72 

Headway 

(hours) 

Zone Size on 

Hold (Input)  
0.35 0.23 0.18 0.14 0.12 0.11 0.09 0.09 0.08 0.07 

% Change  52.9 0.0 -23.5 -37.4 -46.7 -53.5 -58.7 -62.8 -66.1 -68.9 

Average 

Operating Cost 

($/hr) 

Zone Size on 

Hold (Input)  
4.29 3.44 3.07 2.86 2.72 2.62 2.55 2.49 2.44 2.40 

% Change  25.0 0.0 -10.6 -16.8 -20.8 -23.7 -25.8 -27.5 -28.9 -30.0 

Average In-

vehicle Cost 

($/hr) 

Zone Size on 

Hold (Input)  
5.93 6.21 6.37 6.48 6.55 6.61 6.66 6.70 6.73 6.76 

% Change  -4.5 0.0 2.5 4.2 5.5 6.4 7.2 7.8 8.4 8.8 

Average 

Waiting Cost 

($/hr) 

Zone Size on 

Hold (Input)  
2.63 1.72 1.31 1.08 0.92 0.80 0.71 0.64 0.58 0.53 

% Change  52.9 0.0 -23.5 -37.4 -46.7 -53.5 -58.7 -62.8 -66.1 -68.9 

Total Cost 

(Average Cost 

in  

$ per person) 

Zone Size on 

Hold (Input)  
12.86 11.37 10.76 10.41 10.19 10.03 9.92 9.83 9.76 9.70 

% Change  13.1 0.0 -5.4 -8.4 -10.4 -11.7 -12.7 -13.5 -14.2 -14.7 
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Vehicle Capacity   

 

The vehicle size S is a critical design parameter for planning and scheduling public transportation 

operations. When S increases from 10 to 15 seats/bus, the optimal zone size A* increases by 6.3% while 

the optimal headway h* increases by 5%. As expected, when the vehicle capacity increases, the optimal 

zone size A* and optimal headway h* both increase to cover a larger area for each bus tour while 

decreasing service frequency.  

 

Table 7 Effects of Vehicle Capacity on Costs 

Vehicle 

Capacity (# of 

seats) 

Optimal Zone 

Size (sq. 

miles) 

Optimal 

Headway 

(hrs) 

Average 

Operating 

Cost ($/hr) 

Average In-

vehicle Cost 

($/hr) 

Average 

Waiting Cost 

($/hr) 

Total Cost 

(Average 

Cost in  

$ per person) 

10 5.23 0.19 3.22 5.85 1.43 10.50 

15 5.56 0.20 3.06 6.03 1.53 10.62 

20 5.59 0.21 3.12 6.06 1.56 10.75 

25 5.62 0.21 3.19 6.09 1.59 10.88 

30 5.65 0.22 3.25 6.12 1.63 11.00 

35 5.67 0.22 3.31 6.15 1.66 11.13 

40 5.70 0.23 3.38 6.18 1.69 11.25 

45 5.72 0.23 3.44 6.21 1.72 11.37 

50 5.74 0.23 3.50 6.24 1.75 11.49 

55 5.77 0.24 3.55 6.27 1.78 11.60 

 

Figures 6 and 7 each show a sharp turning point for optimal zone size and headway. These changes are 

based on the vehicle capacity constraints (i.e., h ≤
𝑆𝑙

𝑄𝐴
). When the vehicle capacity is small (e.g., 

between 10 and 15 seats/bus), the vehicle capacity constraint is bounded so that the optimal zone size 

increase sharply. When the capacity constraint is not binding (e.g., vehicle capacity larger than 15 

seats/bus), the optimal zone size A* increases less rapidly.   
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Figure 20 Optimal Zone Size versus Vehicle Capacity 

 

Figure 21 Optimal Headway versus Vehicle Capacity 

Figure 7 shows how the optimal headway h* varies with given vehicle capacity S. We note that the 

headway increases rapidly with vehicle capacities between 5 and 15 seats/bus. When vehicles have 

sufficient capacity (i.e., above 15 seats/bus) to satisfy the demand, the increase in optimal headway 

ranges between 0.08% and 0.09% as vehicle capacity increases by one seat. Table 6 summarizes the 

resulting effects of vehicle capacity.  
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Table 8 Effects of Vehicle Capacity on Optimal Zone Size and Headway 

Vehicle 

Capacity (# of 

seats) 

Optimal Zone 

Size (sq.mile) 

% Increase of 

Optimal Zone 

Size per Unit 

of Vehicle 

Capacity (+1 

seat/veh)  

% Increase of 

Optimal Zone 

Size From 

Baseline 

Result 

Optimal 

Headway 

(hrs) 

% Increase of 

Optimal Zone 

Size per Unit 

of Vehicle 

Capacity (+1 

seat/veh)  

% Change of 

Optimal 

Headway 

From 

Baseline 

Result  

10 5.23 - -8.50 0.191 - -19.92 

15 5.56 6.52 -2.79 0.204 0.26 -12.38 

20 5.59 0.59 -2.28 0.208 0.09 -10.01 

25 5.62 0.56 -1.79 0.213 0.09 -7.78 

30 5.65 0.54 -1.31 0.217 0.08 -5.67 

35 5.67 0.52 -0.86 0.221 0.08 -3.68 

40 5.70 0.50 -0.42 0.225 0.08 -1.79 

45 5.72 0.48 0.00 0.229 0.08 0.00 

50 5.74 0.47 0.41 0.233 0.08 1.70 

55 5.77 0.45 0.80 0.237 0.08 3.33 

 

Elasticity Analysis of Input Parameters 

 

Table 7 shows the elasticity of the optimized zone size A* and headway h* with respect to 10% increases 

in various design parameters. For example, when demand density Q increases by 10%, A* decreases by 

5.20%, implying a -0.52 elasticity of A* to Q. Similarly, a 10% increase in Q, reduces h* by 2.31%, implying 

the elasticity of h* to Q is -0.23. In this case, the average cost per person-trip decreases from 11.368 to 

11.260 $.  

 

The sensitivities of A* and h* to other input parameters are also shown in Table 7. Increases in the 

parameters a and b for the unit operating cost both increase A* and h*. The elasticities of A* and h* to 

vehicle capacity are 0.04 and 0.16, respectively. An increase in the line haul distance increases the round 

trip time. Thus, the supplier cost and in-vehicle cost are increased, which increase A* and h*. 
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Table 7 shows that, with respect to the value of the in-vehicle time, the elasticity of A* is negative while 

the elasticity of h* is positive. As expected, the optimal vehicle round trip time decreases when the 

passengers’ value of in-vehicle time increases. With respect to the value of waiting time vw and the 

vehicle operating speed VX, the elasticities of A* are positive and the elasticities of h* are negative.  

 

Table 9 Elasticities of Optimal Zone Size and Headway with Respect to Various Design Parameters 

  Q a B S J vv vw Vx y 

Baseline Input Values  10.0 30.0 0.30 45.0 10.0 12.0 15.0 30.0 0.90 

Baseline Case  

A* 5.72 

h* 0.23 

TC* 11.37 

Elasticity Results 

+10% 

change 

of x 

11.00 33.00 0.33 49.50 11.00 13.20 16.50 33.00 0.99 

A* 5.42 5.77 5.74 5.74 5.90 5.36 6.03 6.03 6.22 

elasticity 

of A* 

w.r.t. 

+10% 

change 

of x 

-0.52 0.08 0.04 0.04 0.31 -0.63 0.55 0.55 0.87 

h* 0.22 0.24 0.23 0.23 0.23 0.23 0.21 0.21 0.22 

elasticity 

of h* 

w.r.t. 

+10% 

change 

of x 

-0.23 0.35 0.16 0.16 0.24 0.24 -0.68 -0.68 -0.47 

TC* 11.26 11.60 11.47 11.47 11.98 11.98 11.53 10.49 11.05 

 

Conclusions 

 

In this paper a model for optimizing the headway and zone size is formulated for a flexible-bus service. It 

minimizes the average cost per passenger trip, which is the sum of the operator cost, in-vehicle cost, 

and waiting cost, while considering a vehicle capacity constraint. An analytic relation is obtained 

between optimal headway and optimal zone size, and the minimum cost is found by solving a sixth order 

polynomial function using Newton’s method. We also analyze the case in which the zone size is 

unchangeable as a policy constraint. For it, we treat the headway as the only decision variable, and 

compare the results with the joint optimal solutions. We also consider the flexible-route bus service 

based on the maximum allowable headway policy. Since its headway is determined based on the zone 
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size A, the average cost formulation, as shown in Eq. (A4), is reduced to a problem with one decision 

variable, namely A. The maximum allowable headway approach provides a closed-form solution, and 

thus useful insights into the relations among decision variables and input parameters.   

 

The optimized relations presented here for zone sizes and headways may be used to design multi-zone 

systems that serve many-to-many demand patterns (as sketched in Figure 2), as well as simpler single-

zone systems (as sketched in Figure 1). For the baseline case analysis, the cost percentages for vehicle 

operation, in-vehicle time and waiting time are 30%, 55% and 16%, respectively. When demand density 

increases from 10 to 50 persons/sq.mile, we find that the share of in-vehicle cost increases to 62%. The 

numerical analyses confirm that, in general, the cost of in-vehicle time exceeds operating and waiting 

cost components. Sensitivity analyses also explore how changes in design parameters affect the 

operating decisions as well as costs. Thus, the obtained relations and results from numerical analysis can 

be used as planning guidelines in designing flexible-bus route systems. A useful extension of this work 

would explore how flexible-route modules which are separately optimized in this paper can be 

integrated to serve larger regions with many-to-many demand patterns. Such analysis might consider 

additional transfer stations away from the central one (e.g. at some zone boundaries) and possible 

coordination of headways for different modules to reduce passenger wait times at transfer stations. 
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Appendix A – Optimal Solution with Maximum Allowable Headway  

 

The average cost in Eq. (17) is presented in Eq. (A1): 

 

𝐶𝐴 =
2𝐽𝑐

𝑉𝑋𝑄𝐴ℎ
+

∅𝑐

𝑦 𝑉𝑋
√

1

𝑄ℎ𝑢
+ 

𝑣𝑣𝐽

𝑉𝑋
+

∅𝑣𝑣𝐴

2𝑦𝑉𝑋
√
𝑄ℎ

𝑢
+
𝑣𝑤ℎ

2
    (A1) 

 

The maximum allowable headway hmax depends on the vehicle capacity S, the load factor l, the 

demand density Q, and the zone size A: 

 

ℎ𝑚𝑎𝑥 =
𝑆𝑙

𝑄𝐴
         (A2) 
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By substituting h in Eq. (A1) the maximum allowable headway hmax from Eq. (A2), we obtain the 

average cost CA as 

𝐶𝐴 =
2𝐽𝑐𝑄𝐴

𝑉𝑋𝑄𝐴𝑆𝑙
+

∅𝑐

𝑦 𝑉𝑋
√

𝑄𝐴

𝑄𝑢𝑆𝑙
+ 

𝑣𝑣𝐽

𝑉𝑋
+

∅𝑣𝑣𝐴

2𝑦𝑉𝑋
√
𝑄𝑆𝑙

𝑢𝑄𝐴
+
𝑣𝑤𝑆𝑙

2𝑄𝐴
    (A3) 

 

Eq. (A3) is simplified as   

𝐶𝐴 =
2𝐽𝑐

𝑉𝑋𝑆𝑙
+

∅𝑐
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𝐴

𝑢𝑆𝑙
+ 

𝑣𝑣𝐽

𝑉𝑋
+

∅𝑣𝑣
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√
𝐴𝑆𝑙

𝑢
+
𝑣𝑤𝑆𝑙

2𝑄𝐴
    (A4) 

 

The optimal zone size A* is found by taking the derivative of the average cost CA, with respect to A, as 

follows:  

𝜕𝐶𝐴

𝜕𝐴
=

∅𝑐
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√

1
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+

∅𝑣𝑣
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√
𝑆𝑙

𝑢𝐴
−
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2𝑄𝐴2
= 0     (A5)  

 

By substituting t for √A:  

∅𝑐
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√

1
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We multiply Eq. (A6) by t4: 

∅𝑐

2𝑦𝑉𝑋
√

1

𝑢𝑆𝑙
𝑡3 +

∅𝑣𝑣
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√
𝑆𝑙

𝑢
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2𝑄
= 0     (A7)  

 

Eq. (A7) is rewritten as:  

 

𝑡3 {
∅𝑐

2𝑦𝑉𝑋√𝑢𝑆𝑙
+

∅𝑣𝑣√𝑆𝑙
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      (A8)  

 

From Eq. (A8), the value of t is found as  
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𝑡 = √
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The optimal value of the zone size A* is then found as  

𝐴∗ = √(

𝑣𝑤𝑆𝑙

2𝑄
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2
3

     (33, A10)  

 

After the optimal value of the zone size A* is obtained from Eq. (A10), the maximum allowable headway 

is obtained using Eq. (A2).  

 

The global optimality of the solution for the zone area, A should be verified. The second derivative of the 

average cost CA with respect to the zone size A is expressed as follows, and Eq. (A11) should be positive 

to guarantee the globally minimal solution.    
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As we substitute √𝐴3 with P, Eq. (A11) becomes:   
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By multiplying 𝑃2 in Eq. (A12),  
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As we substitute √𝐴3 for Pin Eq. (A13):  
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From Eq. (A14), we find the condition of the zone size A for global optimality:  
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Optimizing the Two-directional Phased Development of a Rail Transit Line 

 

Fei Wu and Paul Schonfeld 

 

ABSTRACT: 

A model is developed for optimizing the phased development of a pre-designed rail transit line. The 
investment plan and extension phases of the line are optimized over continuous time and under budget 
constraints to maximize net present value (NPV) over an analysis period. This model determines the 
maximal allowable train headway while considering demand elasticity. This model is formulated for a two-
directional extension problem. A genetic algorithm with customized operators is developed for optimizing 
the sequence and grouping of link and station completions. The model is demonstrated with a numerical 
case. The sensitivity of results to several important input parameters is analyzed. Results show that the 
potential demand and in-vehicle time value greatly influence the optimized NPV, while the unit 
construction cost and potential demand are most influential on the optimized extension plan. 

 

Keywords: Rail transit, Optimization, Phased development, Demand elasticity, Investment planning 

 

 

1. Introduction 

 

1.1 Background 

 

    In many metropolitan areas worldwide rail rapid transit systems play an important role in serving busy 
commuting corridors and relieving traffic congestion.  Such rail transit systems can significantly reduce 
road congestion, help alleviate traffic-induced air pollution, and reduce travel times for transit users as 
well as others. Hence, the construction of rail transit systems is widely supported by decision makers in 
major cities. 

    Although many passengers may benefit from new links and stations, their construction as well as their 
regular operation and maintenance impose substantial costs on the operating agencies. Since fares should 
be affordable for most users, these costs make it difficult for rail transit projects to be profitable. 
Therefore, it is challenging to design affordable development plans, which are constrained by available 
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budgets. An operator’s available funds, including external subsidy and some fraction of revenues, may be 
needed to pay for operating and maintenance costs, as well as invest in new construction. As new stations 
and links are completed, new OD pairs become available for rail transit users and the numbers of 
passengers traveling through different sections of the rail transit network are affected in an interrelated 
process. Revenue, users’ total benefit, users’ total costs, and supplier’s costs increase as a rail transit 
network is extended. Moreover, while the value of satisfying travel demand favors earlier extensions, 
budget constraints and the discounting of costs and benefits through the time value of money favor 
delaying extensions (Sun et al., 2018). Given the above considerations, it is desirable to optimize a phased 
development plan. This plan determines which links and stations should be completed at what times in 
order to maximize the system’s discounted net benefit, i.e. its net present value (NPV). 

 

1.2 Literature Review 

 

   The design and optimization of rail transit systems has been studied by numerous researchers. Most 
previous studies focus on the following aspects:  

    1) Timetabling. Wong et al. (2008) optimize trains' running times, dwell times, turnaround times and 
headways. Barrena et al. (2014) optimize single line timetabling under dynamic passenger demand. 
Hassannayebi et al. (2014) optimize a timetable to deal with uncertainty of travel time, demand, and dwell 
time. In these works, the users’ waiting time is minimized. However, for oversaturated passenger flows, 
Niu and Zhou (2013) optimize timetables with a binary integer programming model that minimizes the 
numbers of waiting passengers and weighted left-over passengers. Shang et al. (2018) optimize skip-stop 
scheduling with a passenger equity improvement model. 

    2) Coordination with other systems. To minimize total system cost in coordinated rail and bus transit 
systems with location-varying demand, Wirasinghe et al. (1977) optimize station spacings, feeder-bus 
zone boundaries, and train headways in a network with radial rail lines, while Chien and Schonfeld (1998) 
optimize rail length, rail station spacings, bus headway, bus stop and route spacings for a single rail route 
with feeder bus routes in an urban corridor. Gallo et al. (2011) optimize train frequency to minimize 
operator's cost, users' cost and external cost, considering the bus system as a feeding and competing 
system, and the private car system as a competing system.  

    3) Alignment and network design. These studies involve designing a network or a single line from 
scratch, or extending existing lines. For alignment design, Samanta and Jha (2011) optimize station 
locations for a given corridor using three different objective functions, while Lai and Schonfeld (2016) 
jointly optimize rail transit alignments and station locations under various realistic constraints. Both of 
those studies evaluate candidate solutions using data from geographic information systems (GIS’s). Guan 
et al. (2006) jointly minimize total line length with given candidate lines and minimize total travel time 
and total number of passenger transfers with optimized passenger line assignment. Li et al. (2012) develop 
two models using flat and distance-based pricing to maximize profit with optimized rail line length, station 
number and locations, train headway, and fare. Saidi et al. (2016) propose a long-term planning method 
for ring-radial rail transit networks with three steps: exactly optimizing the number of radial lines with 
minimized total cost, predicting passengers' route choice with a ring line in the network, and identifying 
optimality and feasibility of the ring line. Canca et al. (2017) formulate a profit-maximizing model for 
designing rail transit lines based on given demand points, and solve the problem with an adaptive 
neighborhood search metaheuristic algorithm. 



 141 

    The problem of phased development of a rail transit system is related to network design problems, but 
has some distinguishing features. It focuses on the timing of improvements for a pre-designed system. 
Completion times of various system components are decision variables. The objective function value is 
evaluated and discounted over an analysis period that includes multiple extension steps, while travel 
demand grows over time and may be affected by the system’s evolving characteristics. 

    Currently, the phased development problem is still largely unexplored for rail transit lines and even less 
explored for networks. Only a few studies on this problem have been published. Cheng and Schonfeld 
(2015) propose the first known model, where the system’s NPV is maximized in the analyzed period. 
Budget constraints, economies of scale (i.e. reducing construction costs by completing multiple links 
together), and a fixed growth rate of demand are considered. A simulated annealing method is used to 
optimize the extension plan, and the sensitivity of results to budget constraints and interest rates is 
examined. Sun et al. (2018) improve upon that model by proposing a bi-level program. Fare, headway and 
train capacity are jointly optimized in the lower-level problem using analytic methods. The extension plan 
is optimized with dynamic programming in the upper-level problem, where the system’s NPV is 
maximized. An elastic demand function is proposed to incorporate the effects of waiting time, access time 
and in-vehicle time. They find that a multi-phase plan may be preferable to a single-phase one even 
without budget constraints since rail segments to outer suburbs may by unwarranted until demand 
increases sufficiently. Peng et al. (2019) analyze a network with interrelated projects, and capture larger 
demand growth rates after new station completions. Their travel demand function is time-varying. They 
use a genetic algorithm to minimize the present value (PV) of total costs. The sensitivity of the results to 
initial travel demand and annual budget level is examined. 

    Models proposed by Cheng and Schonfeld (2015) and Sun et al. (2018) specifically for solving the phased 
development problem are formulated with the analysis period segmented into smaller time steps. Then, 
the number of possible values of completion times of links and stations is limited, which is somewhat 
unrealistic and may miss desirable solutions. A model that treats time as being continuous is desirable, so 
that in the optimized extension plan links can be completed at any time during the analysis period. Peng 
et al. (2019) formulate the problem with continuous time in the analysis period, but the stations and links 
to be completed in groups are pre-determined. The extension plan would be more flexible if any feasible 
sequence for completing links and stations and links could be applied. 

     It should be noted that the problem of selecting scheduling extensions in rail transit systems, which is 
studied here, is fairly closely related to system development problems for other kinds of transportation 
infrastructure. Thus, system development problems have been studied for general transportation 
infrastructure (Szimba and Rothengatter 2012), road networks (Szeto and Lo 2005, Tao and Schonfeld 
2007, Bagloee and Asadi 2015, Jovanovic et al. 2018, Kumar and Mishra 2018, Shayanfar and Schonfeld 
2019), airports (Sun and Schonfeld 2015) and inland waterways (Jong and Schonfeld 2001, Wang and 
Schonfeld 2005 and 2012, Yang et al. 2015 ). 

 

1.3 Scope of Study 

 

    This paper presents a novel model for optimizing the phased development of a rail transit line. The 
model is based on a two-directional extension problem. Since time is continuously formulated, the model 
formulation is significantly different from most models proposed in previous studies. In this model, the 
only group of decision variables is the completion times of new stations and links. Demand elasticity is 
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considered by using a linear demand function that specifies effects of fare, waiting time (train headway) 
and in-vehicle time on actual demand. Demand growth rates, economies of completing multiple stations 
and links together, and funding constraints are also incorporated in the model. The objective is to 
maximize the overall system NPV (i.e., the discounted value of total consumer surplus plus total supplier 
revenue minus total supplier cost). A Genetic Algorithm (GA) is developed with customized operators. 
Constraints on sequence and grouping of station completion are considered in operator settings.  

     It should be noted that while a heuristic algorithm such as a GA is needed to solve this relatively 
complex problem, solutions found by GA’s are not guaranteed to be globally optimal. The terms 
“optimization” and “optimized” are used here to denote, respectively, a heuristic process that searches 
for the best possible solution and the result of that search, even if that result is not a guaranteed global 
optimum.  

    In this paper, the problem formulation is presented in Section 2. The solution method with the 
customized GA is presented in Section 3. A numerical case with its base scenario, the optimized extension 
plans, effects of selected parameters, and sensitivity analysis, are presented in Section 4. Conclusions and 
possible future improvements are presented in Section 5. 

 

2. Problem Formulation 

 

2.1 Problem settings 

 

    A planned single rail transit line (as shown in Figure 1) connects a central business district (CBD) with 
outer districts. It can be extended in two directions from its existing state. When completed the line will 
have 𝑚 (𝑚 ≥ 4) stations, among which 𝑛𝑒 (𝑛𝑒 ≥ 2) stations are existing, while 𝑛1 (𝑛1 ≥ 1) stations at one 
end of the existing line (denoted as End 1) and 𝑛2 (𝑛2 ≥ 1) stations at the other end (denoted as End 2) 
may be completed in the following 𝑇 years. Link 𝑖 is defined as the link between stations 𝑖 − 1 and 𝑖, and 
has a length 𝑑𝑖. 

 

 

Figure 1 Planned rail transit line with two-directional extensions 

    In the problem with two-directional extensions, 𝑡𝑘 denotes the planned completion time of the 𝑘th 
group of planned stations (which can be one or several) and corresponding links. The number of potential 
extension steps 𝑘𝑚𝑎𝑥 as well as the stations and links to be completed in each extension step 𝑘 are given 
by a chromosome from the upper level genetic algorithm (GA). Each chromosome has two rows of 
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integers that represent groups of stations (and corresponding links) to be completed in a certain sequence 
in the next  𝑇 years. The customized GA and its chromosomes are presented in detail in Section 3. 

    Each chromosome in the GA assigns temporary terminal station codes 𝐸1
𝑘 (for End 1) and 𝐸2

𝑘 (for End 

2) after finishing the 𝑘th potential extension step. For all 1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥, either 𝐸1
𝑘 < 𝐸1

𝑘−1 and 𝐸2
𝑘 =

𝐸2
𝑘−1, or 𝐸1

𝑘 = 𝐸1
𝑘−1 and 𝐸2

𝑘 > 𝐸2
𝑘−1. That is, for each extension step, the line can be extended in only 

one direction. Before the first potential extension step is completed, the codes of temporary terminal 

stations are given by 𝐸1
0 = 𝑛1 + 1 and 𝐸2

0 = 𝑛1 + 𝑛𝑒. After the last potential extension step is completed, 

𝐸1
𝑘𝑚𝑎𝑥 = 1 and 𝐸2

𝑘𝑚𝑎𝑥 = 𝑚.  

    The values of 𝑡𝑘 range continuously from 0 to 𝑇 in years. 𝑡𝑘 is numerically found for each potential step 
that can be realized within 𝑇 years, using the formulation for the problem (to be shown below). If  𝑡𝑘 ≠ 𝑇 

and 𝐸1
𝑘 < 𝐸1

𝑘−1 (or 𝐸2
𝑘 > 𝐸2

𝑘−1), then stations with codes from 𝐸1
𝑘 to 𝐸1

𝑘−1 − 1 (or from 𝐸2
𝑘−1 + 1 to 𝐸2

𝑘) 
will be completed 𝑡𝑘 years from the start of the analysis period, and their corresponding links will be 
completed simultaneously. In the numerical search, if the 𝑘′th potential extension step cannot be 
completed within the analysis period (𝑡𝑘′ > 𝑇), then for Period 𝑘 such that 𝑘′ ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥, let 𝑡𝑘= 𝑇, and 
the stations and links that should be completed in the 𝑘′th and later potential extension steps will not be 
completed within 𝑇 years. For all 𝑘 = 1, 2, … , 𝑘𝑚𝑎𝑥 − 1, 0 < 𝑡𝑘 ≤ 𝑡𝑘+1 ≤ 𝑇 is ensured. 

    The time period between 𝑡𝑘 and 𝑡𝑘+1 (or 𝑇) is defined as “Period 𝑘”, whose duration is denoted as 𝑇𝑘 . 
Then, 𝑇𝑘 = 𝑡𝑘+1 − 𝑡𝑘 (1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 − 1), and 𝑇𝑘𝑚𝑎𝑥 = 𝑇 − 𝑡𝑘𝑚𝑎𝑥. For the period before 𝑡1, “Period 0” 

is defined with duration 𝑇0 = 𝑡1. If 𝑡𝑘 = 𝑇, Period 𝑘 has zero duration and is not realized within the 
analysis period which is limited to 𝑇 years. 

    The following simplifying assumptions are used in developing the model: 

    1. When extending the line, its continuity is always ensured. Also, considering past instances as well as 
the high costs of simultaneously altering two ends of a rail transit line , this line can be extended in only 
one direction at each step. These rules are used as constraints for generating feasible chromosomes in 
the GA. 

    2. Each potential extension step will be completed as soon as the available budget becomes sufficient 
for this extension within the analysis period. 

    3. The potential demand for each OD pair increases exponentially at an annual rate 𝑔. ( 

    4. At most one transfer between rail transit and its alternative modes is allowed for potential rail transit 
passengers. 

    5. The cost of access time is neglected. 

    6. The average waiting time per transit trip is half the train headway. 

    7. The demand function for each OD pair is linear with respect to travel time and fare. 

    8. The maximum headway that satisfies the demand is used as the operating headway in each period. 

    9. The fleet size satisfies the peak demand at the end of each period and no new vehicles are added into 
the system within each period. 

    10. The fleet size can be non-integer. 

    11. Construction costs are incurred at the time of completion of new stations and links. 
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2.2 Notation 

 

    The notation and baseline values for used variables are shown in Table 1. 

 

Table 10 Notation and baseline values for variables 

Symbol Description Units 
Baseline 

Value 

𝑏𝑖𝑗  Maximal acceptable impedance (total travel cost) for a passenger 
from Station 𝑖 to 𝑗 

$  

𝑐𝑒𝑛𝑑 Cost related to terminal facilities for reversing train direction $ 1.5×108 

𝑐𝑖𝑛 Initial cost of a train $/train 1.2×107 

𝑐𝑚 Avg. hourly maintenance cost per unit length of the rail transit 
line 

$/mile/hr 500 

𝑐𝑜 Avg. hourly operation cost per train in operation $/train/hr 5000 

𝑐𝑠𝑡 Construction cost of a new station $ 6×107 

𝑐𝑙𝑛 Construction cost per unit length of rail transit line $/mile 1.4×108 

𝐶𝑖𝑗
𝑘  Impedance per passenger from Station 𝑖 to 𝑗 during Period 𝑘 $  

𝑑𝑖 Length of Link 𝑖 miles  

𝐸1/2
𝑘  Temporary terminal station code for End 1/2 after finishing 

the 𝑘th potential extension step 
  

𝑓 Fixed rail transit fare $ 2.75 

𝐹0 Initial available budget for construction $ 1×108 

𝐹 Yearly external budget for construction $/yr 5×107 

𝑔 Constant annual exponential growth rate of potential demand %/yr 3% 

ℎ𝑘 Train headway during Period 𝑘 hours  

ℎ𝑚𝑎𝑥
𝑘  Maximum allowable train headway during Period 𝑘 hours  

𝐻 Number of operation hours per year hrs/year 6000 

𝑘𝑚𝑎𝑥 Number of potential extension steps   

𝐾 Capacity of each train psgrs 1280 

𝑚 Number of all planned stations in the transit line   
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𝑛 Number of existing stations in the rail transit line   

𝑁𝑘 Number of trains on the rail transit line during Period 𝑘   

𝑃𝑐𝑜
𝑘  Present value (PV) of construction cost incurred at the start of 

Period 𝑘 
$  

𝑃𝐶𝑆
𝑘  PV of consumer surplus incurred during Period 𝑘 $  

𝑃𝑓
𝑘 PV of fare revenues during Period 𝑘 $  

𝑃𝑚
𝑘 PV of track maintenance cost incurred during Period 𝑘 $  

𝑃𝑁𝐵 Net PV of social benefit = NPV $  

𝑃𝑜
𝑘 PV of operation cost to be incurred during Period 𝑘 $  

𝑃𝑆𝐶 Total PV of supplier costs $  

𝑞𝑖𝑗
𝑘  Actual hourly passenger flow from Station 𝑖 to 𝑗 in Period 𝑘 psgrs/hr  

𝑞𝑚𝑎𝑥
𝑘  Largest hourly passenger flow over the operating line at end of 

Period 𝑘 
psgrs/hr  

𝑄𝑖𝑗  Potential hourly passenger flow from Station 𝑖 to 𝑗 psgrs/hr  

𝑟 Constant annual interest rate %/yr 7% 

𝑅𝑘 Round-trip time on the rail transit line during Period 𝑘 hours  

𝑆𝑘 Approx. avg. hourly consumer surplus during Period 𝑘 $/hour  

𝑡𝑑 Average dwell time at a station hours 0.01 

𝑡𝑑𝑡 Time needed for reversing direction at each terminal station hours 0.03 

𝑡𝑣,𝑖𝑗
𝑘  In-vehicle travel time from Station 𝑖 to 𝑗 during Period 𝑘 hours  

𝑡𝑘 The time when 𝑘th group of planned stations and corresponding 
links are to be completed 

years  

𝑡𝑤
𝑘  A passenger’s avg. waiting time for a train during Period 𝑘 hours  

𝑇 Duration of the analysis period years  

𝑇𝑘 Duration of Period 𝑘 years  

𝑢𝑣 A passengers’ avg. value of in-vehicle time  $/hour 18 

𝑢𝑤 A passengers’ avg. value of waiting time  $/hour 18 

𝑉𝑜𝑡 Avg. speed of alternatives to rail transit mph 16 

𝑉𝑡𝑟 Avg. cruising speed of a train (excluding stops) mph 40 

𝛾𝑘 Binary variable indicating whether construction costs are incurred 
at start of Period 𝑘 
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𝛿𝑘 Binary variable indicating whether terminal facility costs are 
incurred at start of Period 𝑘 

  

𝜂 Peak hour factor  1.25 

𝜌 Fraction of fare revenues to be used for new construction   25% 

 

2.3 Determining impedance, actual demand and consumer surplus 

 

    In the equations presented below, unless otherwise stated, let 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑚, and 0 ≤ 𝑘 ≤
𝑘𝑚𝑎𝑥. 𝑖, 𝑗, and 𝑘 are integers. 

    It is assumed here that the initial potential demand (i.e. the largest possible number of rail transit 
passenger trips, theoretically occurring at zero travel time and fare) for each OD pair (at the station level 
and for this line only) is externally given. The initial potential hourly passenger flow from Station 𝑖 to 𝑗 is 
denoted as 𝑄𝑖𝑗. If 𝑖 = 𝑗, let 𝑄𝑖𝑗 = 0.  

    In the two-directional extension problem, Period 𝑘 has its temporary terminal station codes 𝐸1
𝑘 and 𝐸2

𝑘. 

In Period 𝑘, the passengers’ travel impedance 𝐶𝑖𝑗
𝑘  and actual rail transit ridership 𝑞𝑖𝑗

𝑘  of any OD pair (from 

Station 𝑖 to 𝑗) depend on the rail connection status between Station 𝑖 and 𝑗. According to assumption 4, 
in a period, if the operating segment of the rail transit line partially covers the interval between origin and 
destination stations but none of the OD stations are in operation, passengers of this OD pair do not use 
rail transit. 

    The impedance 𝐶𝑖𝑗
𝑘  equals the rail transit fare 𝑓 plus the user’s time costs, which include waiting cost 

and in-vehicle cost. Then for passengers who use rail transit in Period 𝑘, the impedance is given by (for 
𝑖 < 𝑗): 

𝐶𝑖𝑗
𝑘 = 𝑓 + 𝑢𝑣𝑡𝑣,𝑖𝑗

𝑘 + 𝑢𝑤𝑡𝑤
𝑘 , ∀𝑖 < 𝑗 ∧ [

(𝐸1
𝑘 ≤ 𝑖 ≤ 𝐸2

𝑘 − 1 ∧ 𝑗 ≥ 𝐸1
𝑘 + 1)

∨ (𝑖 ≤ 𝐸1
𝑘 − 1 ∧ 𝐸1

𝑘 + 1 ≤ 𝑗 ≤ 𝐸2
𝑘)
] 

(1) 

where 𝑢𝑣 is the average value of in-vehicle time, 𝑢𝑤 is the average value of waiting time, 𝑡𝑣,𝑖𝑗
𝑘  is the in-

vehicle time for a passenger from Station 𝑖 to 𝑗 during Period 𝑘, and 𝑡𝑤
𝑘  is the average waiting time per 

transit trip during Period 𝑘. 

    For passengers who do not use rail transit in Period 𝑘, the impedance is given by (for 𝑖 < 𝑗): 

𝐶𝑖𝑗
𝑘 = 𝑏𝑖𝑗, ∀𝐸2

𝑘 ≤ 𝑖 < 𝑗, ∀𝑖 < 𝑗 ≤ 𝐸1
𝑘 , ∀𝑖 ≤ 𝐸1

𝑘 − 1 ∧ 𝑗 ≥ 𝐸2
𝑘 + 1 (2) 

where 𝑏𝑖𝑗 is the pre-determined maximal acceptable impedance for passengers from Station 𝑖 to 𝑗 

    When determining values of travel impedance 𝐶𝑖𝑗
𝑘  in equation (1), for 𝑖 < 𝑗 we have:  

𝑡𝑣,𝑖𝑗
𝑘 =

∑ 𝑑𝑙
𝑗

𝑙=𝐸1
𝑘+1

𝑉𝑡𝑟
+
∑ 𝑑𝑙
𝐸1
𝑘

𝑙=𝑖+1

𝑉𝑜𝑡
+ (𝑗 − 𝐸1

𝑘)𝑡𝑑, ∀ 𝑖 < 𝐸1
𝑘 < 𝑗 

(3a) 
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𝑡𝑣,𝑖𝑗
𝑘 =

∑ 𝑑𝑙
𝐸2
𝑘

𝑙=𝑖+1

𝑉𝑡𝑟
+
∑ 𝑑𝑙
𝑗

𝑙=𝐸2
𝑘+1

𝑉𝑜𝑡
+ (𝐸2

𝑘 − 𝑖)𝑡𝑑 , ∀ 𝑖 < 𝐸2
𝑘 < 𝑗 

(3b) 

𝑡𝑣,𝑖𝑗
𝑘 =

∑ 𝑑𝑙
𝑗
𝑙=𝑖+1

𝑉𝑡𝑟
+ (𝑗 − 𝑖)𝑡𝑑 , ∀ 𝐸1

𝑘 ≤ 𝑖 < 𝑗 ≤ 𝐸2
𝑘 

(3c) 

𝑡𝑤
𝑘 =

ℎ𝑘

2
 

(4) 

where 𝑉𝑡𝑟 is the average running speed of a train, 𝑉𝑜𝑡 is the average speed of alternatives to rail transit, 

𝑡𝑑 is the average dwell time at a station, and ℎ𝑘 is the train headway during Period 𝑘. Waiting time for 
alternatives to rail transit is not specifically considered because 𝑉𝑜𝑡 has taken it into account.  𝑉𝑡𝑟, 𝑉𝑜𝑡, 
and 𝑡𝑑 are assumed to be constant over time.  

    During each period, the in-vehicle time is assumed to be symmetric for each OD pair: 

𝑡𝑣,𝑖𝑗
𝑘 = 𝑡𝑣,𝑗𝑖

𝑘 , ∀𝑖 ≠ 𝑗 (5) 

which makes the impedance symmetric for each OD pair: 

𝐶𝑖𝑗
𝑘 = 𝐶𝑗𝑖

𝑘 , ∀𝑖 ≠ 𝑗 (6) 

    According to assumption 7, there is an underlying linear demand function for determining the actual 
ridership of each OD pair, as shown in Figure 2. The actual hourly passenger flow from Station 𝑖 to 𝑗 at 

Period 𝑘 is denoted as 𝑞𝑖𝑗
𝑘 . Its approximate average value during this period is given by: 

𝑞𝑖𝑗
𝑘 = 𝑄𝑖𝑗(1 + 𝑔)

𝑡𝑘+𝑡𝑘+1
2

𝑏𝑖𝑗 − 𝐶𝑖𝑗
𝑘

𝑏𝑖𝑗
 

(7) 

The hourly ridership at the midpoint of this period is used as the approximate average. Using assumption 

3, the initial hourly potential demand 𝑄𝑖𝑗  is multiplied by the factor (1 + 𝑔)
𝑡𝑘+𝑡𝑘+1

2  to obtain the hourly 

potential demand at this midpoint. If the impedance 𝐶𝑖𝑗
𝑘  exceeds the maximal acceptable impedance 𝑏𝑖𝑗, 

the actual ridership for the corresponding OD pair becomes zero. 

    With this demand function the approximate average hourly consumer surplus (CS) during Period 𝑘 can 

be calculated. This value is denoted as 𝑆𝑘 and expressed as: 

𝑆𝑘 =∑∑𝑞𝑖𝑗
𝑘
𝑏𝑖𝑗 − 𝐶𝑖𝑗

𝑘

2
𝑗≠𝑖𝑖

= (1 + 𝑔)
𝑡𝑘+𝑡𝑘+1

2 ∑∑𝑄𝑖𝑗
(𝑏𝑖𝑗 − 𝐶𝑖𝑗

𝑘)2

2𝑏𝑖𝑗
𝑗≠𝑖𝑖

 
(8) 

where the hourly CS value at the midpoint of the period is used as the approximate average. 
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Figure 2 Linear demand curve and related parameters & amounts 

2.4 Determining train headway 

 

    A set of OD pairs is defined whose corresponding passengers will use rail transit in Period 𝑘. This set is 
denoted as Ω𝑘, given by: 

Ω𝑘 = {(𝑖, 𝑗)|𝑖 < 𝑗 ∧ [
(𝐸1

𝑘 ≤ 𝑖 ≤ 𝐸2
𝑘 − 1 ∧ 𝑗 ≥ 𝐸1

𝑘 + 1)

∨ (𝑖 ≤ 𝐸1
𝑘 − 1 ∧ 𝐸1

𝑘 + 1 ≤ 𝑗 ≤ 𝐸2
𝑘)
]}

∪ {(𝑖, 𝑗)|𝑗 < 𝑖 ∧ [
(𝐸1

𝑘 ≤ 𝑗 ≤ 𝐸2
𝑘 − 1 ∧ 𝑖 ≥ 𝐸1

𝑘 + 1)

∨ (𝑗 ≤ 𝐸1
𝑘 − 1 ∧ 𝐸1

𝑘 + 1 ≤ 𝑖 ≤ 𝐸2
𝑘)
]} 

    To determine the maximum allowable train headway in Period 𝑘, the capacity of each identical train 
(denoted as 𝐾) and the peak hour factor 𝜂 are considered. If the higher one-directional hourly passenger 

flow through Link 𝑖 at the end of Period 𝑘 is denoted as 𝑞𝑖
𝑘, then: 

𝑞𝑖
𝑘 = max{𝑞𝑖,𝑢𝑝

𝑘 , 𝑞𝑖,𝑑𝑛
𝑘 } , ∀𝐸1

𝑘 + 1 ≤ 𝑖 ≤ 𝐸2
𝑘 (9) 

where 𝑞𝑖,𝑢𝑝
𝑘  is the actual hourly “upbound” passenger flow in the direction from Station 1 to 𝑚 through 

Link 𝑖 at the end of Period 𝑘, and 𝑞𝑖,𝑑𝑛
𝑘  is the corresponding “downbound” flow in the direction from 

Station 𝑚 to 1. Letting 𝑡𝑘𝑚𝑎𝑥+1 = 𝑇, 𝑞𝑖,𝑢𝑝
𝑘  and 𝑞𝑖,𝑑𝑛

𝑘  are given by: 

𝑞𝑖,𝑢𝑝
𝑘 = (1 + 𝑔)𝑡𝑘+1 ∑ 𝑄𝑙𝑗

𝑏𝑙𝑗 − 𝐶𝑙𝑗
𝑘

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

, ∀𝐸1
𝑘 + 1 ≤ 𝑖 ≤ 𝐸2

𝑘 
 

(10a) 



 149 

𝑞𝑖,𝑑𝑛
𝑘 = (1 + 𝑔)𝑡𝑘+1 ∑ 𝑄𝑗𝑙

𝑏𝑗𝑙 − 𝐶𝑗𝑙
𝑘

𝑏𝑗𝑙
𝑙<𝑖≤𝑗,(𝑗,𝑙)∈Ω𝑘

, ∀𝐸1
𝑘 + 1 ≤ 𝑖 ≤ 𝐸2

𝑘 
 

(10b) 

    If the highest hourly passenger flow over the operating line at the end of Period 𝑘 is denoted as 𝑞𝑚𝑎𝑥
𝑘 , 

then: 

𝑞𝑚𝑎𝑥
𝑘 = max {𝑞

𝐸1
𝑘+1
𝑘 , 𝑞

𝐸1
𝑘+2
𝑘 , … , 𝑞

𝐸2
𝑘
𝑘 } (11) 

    According to assumption 9, the maximum allowable headway ℎ𝑚𝑎𝑥
𝑘  is determined by the peak hourly 

passenger flow at the end of Period 𝑘: 

ℎ𝑚𝑎𝑥
𝑘 =

𝐾

𝜂𝑞𝑚𝑎𝑥
𝑘

 
 

(12) 

    Since the impedance 𝐶𝑙𝑗
𝑘  increases linearly as the headway ℎ𝑘 increases, and actual passenger flows 

𝑞𝑖,𝑢𝑝
𝑘 , 𝑞𝑖,𝑑𝑛

𝑘  decrease linearly as 𝐶𝑙𝑗
𝑘  increases, 𝑞𝑖,𝑢𝑝

𝑘 , 𝑞𝑖,𝑑𝑛
𝑘  decrease linearly as ℎ𝑘 increases. Then, to 

determine the value of ℎ𝑚𝑎𝑥
𝑘 , a quadratic equation must be solved. For each 𝑞𝑖,𝑢𝑝

𝑘  (𝐸1
𝑘 + 1 ≤ 𝑖 ≤ 𝐸2

𝑘) the 

following equation is used: 

ℎ𝑖,𝑢𝑝
𝑘 𝜂𝑞𝑖,𝑢𝑝

𝑘 = 𝐾 (12a) 

    It is expanded stepwise: 

ℎ𝑖,𝑢𝑝
𝑘 𝜂(1 + 𝑔)𝑡𝑘+1 ∑ 𝑄𝑙𝑗

𝑏𝑙𝑗 − 𝐶𝑙𝑗
𝑘

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

− 𝐾 = 0 
 

(12b) 

ℎ𝑖,𝑢𝑝
𝑘 𝜂(1 + 𝑔)𝑡𝑘+1 ∑ 𝑄𝑙𝑗

𝑏𝑙𝑗 − 𝑓 − 𝑢𝑣𝑡𝑣,𝑙𝑗
𝑘 − 𝑢𝑤𝑡𝑤

𝑘

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

− 𝐾 = 0 
 

(12c) 

ℎ𝑖,𝑢𝑝
𝑘 𝜂(1 + 𝑔)𝑡𝑘+1 [ ∑ 𝑄𝑙𝑗

𝑏𝑙𝑗 − 𝑓 − 𝑢𝑣𝑡𝑣,𝑙𝑗
𝑘

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

− ∑ 𝑄𝑙𝑗
𝑢𝑤ℎ𝑖,𝑢𝑝

𝑘

2𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

] 

−𝐾 = 0 

 

(12d) 

𝑢𝑤𝜂(1 + 𝑔)
𝑡𝑘+1

2
∑

𝑄𝑙𝑗

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

ℎ𝑖,𝑢𝑝
𝑘 2

− 𝜂(1 + 𝑔)𝑡𝑘+1 ∑ 𝑄𝑙𝑗
𝑏𝑙𝑗 − 𝑓 − 𝑢𝑣𝑡𝑣,𝑙𝑗

𝑘

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

ℎ𝑖,𝑢𝑝
𝑘

+ 𝐾 = 0 

 

(12e) 

    For simplicity, coefficients in the quadratic equation (12e) are denoted: 

𝛼𝑖1
𝑘 =

𝑢𝑤𝜂(1 + 𝑔)
𝑡𝑘+1

2
∑

𝑄𝑙𝑗

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

 
 

(13a) 

𝛽𝑖1
𝑘 = −𝜂(1 + 𝑔)𝑡𝑘+1 ∑ 𝑄𝑙𝑗

𝑏𝑙𝑗 − 𝑓 − 𝑢𝑣𝑡𝑣,𝑙𝑗
𝑘

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑙,𝑗)∈Ω𝑘

 
 

(13b) 
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    The quadratic equation (12e) with unknown variable ℎ𝑖,𝑢𝑝
𝑘  has two positive real roots when: 

𝛽𝑖1
𝑘 2 − 4𝐾𝛼𝑖1

𝑘 ≥ 0 (14a) 

    The smaller root is chosen because a longer headway that reduces ridership is undesirable: 

ℎ𝑖,𝑢𝑝
𝑘 =

−𝛽𝑖1
𝑘 −√𝛽𝑖1

𝑘 2 − 4𝐾𝛼𝑖1
𝑘

2𝛼𝑖1
𝑘  

 

(15a) 

    Since 𝑞𝑖,𝑢𝑝
𝑘  decreases linearly as ℎ𝑖,𝑢𝑝

𝑘  increases, the value of ℎ𝑖,𝑢𝑝
𝑘 𝜂𝑞𝑖,𝑢𝑝

𝑘  (the peak number of loaded 

“upbound” passengers in a train through Link 𝑖 at the end of Period 𝑘) reaches the maximum when ℎ𝑖,𝑢𝑝
𝑘 =

−𝛽𝑖1
𝑘 /(2𝛼𝑖1

𝑘 ). If (14a) is not satisfied, then the quadratic equation (12e) has no real roots, which means 

that 𝐾 > (ℎ𝑖,𝑢𝑝
𝑘 𝜂𝑞𝑖,𝑢𝑝

𝑘 )𝑚𝑎𝑥, and the highest possible number of passengers in a train traveling “upbound” 

on Link 𝑖 in Period 𝑘 is below the train capacity. To maximize the utilization of train capacity. the headway 

for such “upbound” flow 𝑞𝑖,𝑢𝑝
𝑘  is given by: 

ℎ𝑖,𝑢𝑝
𝑘 = −

𝛽𝑖1
𝑘

2𝛼𝑖1
𝑘  

 

(15b) 

    Similarly, for each “downbound” flow 𝑞𝑖,𝑑𝑛
𝑘  (𝐸1

𝑘 + 1 ≤ 𝑖 ≤ 𝐸2
𝑘) the equation ℎ𝑖,𝑑𝑛

𝑘 𝜂𝑞𝑖,𝑑𝑛
𝑘 = 𝐾 is used. 

After expansion, coefficients in the resulting quadratic equation are denoted:  

𝛼𝑖2
𝑘 =

𝑢𝑤𝜂(1 + 𝑔)
𝑡𝑘+1

2
∑

𝑄𝑙𝑗

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑗,𝑙)∈Ω𝑘

 
 

(13c) 

𝛽𝑖2
𝑘 = −𝜂(1 + 𝑔)𝑡𝑘+1 ∑ 𝑄𝑙𝑗

𝑏𝑙𝑗 − 𝑓 − 𝑢𝑣𝑡𝑣,𝑙𝑗
𝑘

𝑏𝑙𝑗
𝑙<𝑖≤𝑗,(𝑗,𝑙)∈Ω𝑘

 
 

(13d) 

    Then when 

𝛽𝑖2
𝑘 2 − 4𝐾𝛼𝑖2

𝑘 ≥ 0 (14b) 

the equation for headway becomes: 

ℎ𝑖,𝑑𝑛
𝑘 =

−𝛽𝑖2
𝑘 −√𝛽𝑖2

𝑘 2 − 4𝐾𝛼𝑖2
𝑘

2𝛼𝑖2
𝑘  

 

(15c) 

    If (14b) is not satisfied: 

ℎ𝑖,𝑑𝑛
𝑘 = −

𝛽𝑖2
𝑘

2𝛼𝑖2
𝑘  

 

(15d) 

    Then the maximum allowable headway ℎ𝑚𝑎𝑥
𝑘  in each period can be determined. Under assumption 8, 

ℎ𝑚𝑎𝑥
𝑘  is used as the operating train headway ℎ𝑘 in Period 𝑘: 

ℎ𝑖
𝑘 = min{ℎ𝑖,𝑢𝑝

𝑘 , ℎ𝑖,𝑑𝑛
𝑘 }, ∀𝐸1

𝑘 + 1 ≤ 𝑖 ≤ 𝐸2
𝑘 (16) 
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ℎ𝑘 = ℎ𝑚𝑎𝑥
𝑘 = min{ℎ

𝐸1
𝑘+1
𝑘 , ℎ

𝐸1
𝑘+2
𝑘 , … , ℎ

𝐸2
𝑘
𝑘 } (17) 

    With temporary terminal stations 𝐸1
𝑘 to 𝐸2

𝑘 in operation, the round-trip time of a train during Period 𝑘 
is:  

𝑅𝑘 = 2[
∑ 𝑑𝑖
𝐸2
𝑘

𝑖=𝐸1
𝑘+1

𝑉𝑡𝑟
+ (𝐸2

𝑘 − 𝐸1
𝑘 + 1)𝑡𝑑 + 𝑡𝑑𝑡] 

(18) 

where 𝑡𝑑𝑡 is the required time for a train to reverse direction at each terminal station.  

    The required number of trains (fleet size) for the rail transit line during Period 𝑘 is: 

𝑁𝑘 = 𝑅𝑘/ℎ𝑘 (19) 

Under assumption 10, the fleet size 𝑁𝑘 can be non-integer. In a more rigorous analysis, 𝑁𝑘 should be 
limited to integers, thus limiting possible values of headway ℎ𝑘 with given 𝑅𝑘. 

 

2.5 Objective function and constraints 

 

    The objective of this model is to maximize net present value (NPV), i.e. the discounted net benefit. It is 
achieved by optimizing completion times of planned stations and links, so that the resulting overall NPV 
over the analysis period is maximized.  

    First, the components of the objective function (OF) are explained. 

    There are 𝐻 operating hours per year, and Period 𝑘 lasts for 𝑇𝑘 years. When calculating the present 
value (PV) of consumer surplus, a constant interest rate 𝑟 is used here. Then the PV of consumer surplus 
in Period 𝑘 is: 

𝑃𝐶𝑆
𝑘 =

𝑆𝑘𝐻𝑇𝑘

(1 + 𝑟)
𝑡𝑘+𝑡𝑘+1

2

= 𝐻𝑇𝑘(
1 + 𝑔

1 + 𝑟
)
𝑡𝑘+𝑡𝑘+1

2 ∑∑𝑄𝑖𝑗
(𝑏𝑖𝑗 − 𝐶𝑖𝑗

𝑘)2

2𝑏𝑖𝑗
𝑗≠𝑖𝑖

 
 

(20) 

An approximation used here is that when discounting total consumer surplus in Period 𝑘, the original sum 
is concentrated at the midpoint of the period (as shown in Figure 3).  
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Figure 3 Approximation of total PV of consumer surplus during period k  

    Using Figures 2 and 3, the approximate PV of fares to be collected from passengers in Period 𝑘 can be 
determined similarly: 

𝑃𝑓
𝑘 =

𝑓𝐻𝑇𝑘

(1 + 𝑟)
𝑡𝑘+𝑡𝑘+1

2

∑∑𝑞𝑖𝑗
𝑘

𝑗≠𝑖𝑖

= 𝑓𝐻𝑇𝑘(
1 + 𝑔

1 + 𝑟
)
𝑡𝑘+𝑡𝑘+1

2 ∑∑𝑄𝑖𝑗
𝑏𝑖𝑗 − 𝐶𝑖𝑗

𝑘

𝑏𝑖𝑗
𝑗≠𝑖𝑖

 
 

(21) 

    Then the PV of various supplier cost components can be determined. The approximate PV of total 
vehicle operation cost during Period 𝑘 is: 

𝑃𝑜
𝑘 =

𝑐𝑜𝑁
𝑘𝐻𝑇𝑘

(1 + 𝑟)
𝑡𝑘+𝑡𝑘+1

2

 
 

(22) 

where 𝑐𝑜 is the average hourly operation cost of each train.  

    The approximate PV of total track maintenance cost during Period 𝑘 is: 

𝑃𝑚
𝑘 =

𝑐𝑚𝐻𝑇𝑘 ∑ 𝑑𝑖
𝐸2
𝑘

𝑖=𝐸1
𝑘+1

(1 + 𝑟)
𝑡𝑘+𝑡𝑘+1

2

 

 

(23) 

where 𝑐𝑚 is the average hourly maintenance cost per unit length of the rail transit line.  

    It should be noted that all the above approximations that involve (1 + 𝑟)
𝑡𝑘+𝑡𝑘+1

2  or (1 + 𝑔)
𝑡𝑘+𝑡𝑘+1

2  are 
acceptable when the interest rate 𝑟 and the demand growth rate 𝑔 are small and (1 + 𝑟) is close to (1 +
𝑔). Integration methods that yield more accurate PV’s may be considered in future versions of the model. 

    Using assumption 11, the PV of construction costs of new stations and links at the start of Period 𝑘 is: 
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𝑃𝑐𝑜
𝑘 =

{
 
 

 
 𝑐𝑠𝑡(𝐸1

𝑘−1 − 𝐸1
𝑘) + 𝑐𝑙𝑛∑ 𝑑𝑖

𝐸1
𝑘−1

𝑖=𝐸1
𝑘+1

+ 𝑐𝑒𝑛𝑑

(1 + 𝑟)𝑡𝑘
𝛾𝑘 ,   𝑖𝑓 𝐸1

𝑘 < 𝐸1
𝑘−1 

𝑐𝑠𝑡(𝐸2
𝑘 − 𝐸2

𝑘−1) + 𝑐𝑙𝑛∑ 𝑑𝑖
𝐸2
𝑘

𝑖=𝐸2
𝑘−1+1

+ 𝑐𝑒𝑛𝑑

(1 + 𝑟)𝑡𝑘
𝛾𝑘 ,   𝑖𝑓 𝐸2

𝑘−1 < 𝐸2
𝑘

,  

∀1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 

 

(25) 

where 𝑐𝑠𝑡 is the average construction cost of a new station, 𝑐𝑙𝑛 is the average construction cost per unit 
length of the transit line, and 𝑐𝑒𝑛𝑑 is the cost of removing old terminal facilities and setting new ones 
when the line is extended. Terminal facilities include tracks for turning back trains, and are used at both 

ends of the transit line. The binary variable 𝛾𝑘  equals 0 when the completion time of the 𝑘th step 𝑡𝑘 = 𝑇, 
and equals 1 when 𝑡𝑘 < 𝑇. This indicates that if Period 𝑘 is not realized within the analysis period (i.e., 
has a duration of zero) for some extension plan, the construction costs are not incurred in this period. 

    In the evaluation of each chromosome (extension plan) in GA, using assumption 2, the completion time 
𝑡𝑘 of each potential extension step is numerically determined using the binding budget constraint: 

𝐹0 + 𝐹𝑡𝑘+1 + 𝜌∑𝑃𝑓
𝑖(1 + 𝑟)

𝑡𝑖+𝑡𝑖+1
2

𝑘

𝑖=0

−∑𝑃𝑐𝑜
𝑖+1(1 + 𝑟)𝑡𝑖+1

𝑘

𝑖=0

= 0,  

∀0 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 − 1 

 

(26) 

where 𝐹0 is the initial available budget for construction, 𝐹 is the yearly external budget, and 𝜌 is the 
fraction of transit fare revenues that contribute to total available budget. In this constraint, sources of 
construction budget include a specified external budget and a fraction of fares collected from passengers. 
With assumption 2, upon completion of each group of stations and links, the available budget for 
construction reaches zero. With 𝑘 = 0 in equation (26) the completion time of the first extension step 𝑡1 
is found first, given 𝑡0 = 0. Then, with 𝑘 = 1, the second completion time 𝑡2 is found given the first 
completion time 𝑡1. With 𝑘 = 2, 𝑡3 is found given 𝑡2, and so forth. As long as the most recently determined 
completion time is within the analysis period (𝑡𝑘 < 𝑇), this search continues until the completion time of 
the last potential extension step 𝑡𝑘𝑚𝑎𝑥  is found. Once some completion time is found to be larger than 

the duration of analysis period (𝑡𝑘′ > 𝑇), we stop the search and let 𝑡𝑘= 𝑇 for 𝑘′ ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 for 
unrealizable potential extension steps. Upon finding each realizable completion time (𝑡𝑘 < 𝑇), the various 

present value items (𝑃𝐶𝑆
𝑘−1, 𝑃𝑓

𝑘−1, 𝑃𝑜
𝑘−1, and 𝑃𝑚

𝑘−1) that compose the system NPV in Period (𝑘 − 1) are 

computed. The PV of construction cost at the beginning of Period 𝑘 (𝑃𝑐𝑜
𝑘 ) is also computed. If the final 

completion time is within the analysis period (𝑡𝑘𝑚𝑎𝑥 < 𝑇), non-zero PV items in the period after the last 

potential extension step (𝑃𝐶𝑆
𝑘𝑚𝑎𝑥, 𝑃𝑓

𝑘𝑚𝑎𝑥, 𝑃𝑜
𝑘𝑚𝑎𝑥, and 𝑃𝑚

𝑘𝑚𝑎𝑥) are computed. When some unrealizable 

completion time 𝑡𝑘′ > 𝑇 is found for the 𝑘′th extension step, let Period (𝑘′ − 1) terminate at the end of 

the analysis period without next line extension (that is, let 𝑡𝑘′ = 𝑇, 𝑇𝑘′−1 = 𝑇 − 𝑡𝑘′−1, and 𝑃𝑐𝑜
𝑘′ = 0). Non-

zero PV items in Period (𝑘′ − 1) (𝑃𝐶𝑆
𝑘′−1, 𝑃𝑓

𝑘′−1, 𝑃𝑜
𝑘′−1, and 𝑃𝑚

𝑘′−1) are computed. Since potential periods 

later than Period (𝑘′ − 1) cannot be realized, let 𝑃𝐶𝑆
𝑘−1 = 𝑃𝑓

𝑘−1 = 𝑃𝑜
𝑘−1 = 𝑃𝑚

𝑘−1 = 𝑃𝑐𝑜
𝑘 = 0 for all 𝑘′ + 1 ≤

𝑘 ≤ 𝑘𝑚𝑎𝑥, and let 𝑃𝐶𝑆
𝑘𝑚𝑎𝑥 = 𝑃𝑓

𝑘𝑚𝑎𝑥 = 𝑃𝑜
𝑘𝑚𝑎𝑥 = 𝑃𝑚

𝑘𝑚𝑎𝑥 = 0. The overall NPV over the analysis period is 

given by: 
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𝑃𝑁𝐵 = ∑ (𝑃𝐶𝑆
𝑘 + 𝑃𝑓

𝑘 − 𝑃𝑜
𝑘 − 𝑃𝑚

𝑘)

𝑘𝑚𝑎𝑥

𝑘=0

− ∑ 𝑃𝑐𝑜
𝑘

𝑘𝑚𝑎𝑥

𝑘=1

 

 

(27) 

    In this problem, the objective is to find the optimal extension plan of the rail transit line which maximizes 
𝑃𝑁𝐵 for a given analysis period. This optimization search is done by the customized GA method presented 
in Section 3. 

 

3. Optimization Method  

 

    A customized genetic algorithm (GA) is proposed here for optimizing a two-directional extension plan. 
The whole GA module with the mathematical model is coded in Python (Version 3.7.3) and run on Spyder 
IDE. The flowchart of this customized GA is shown in Figure 4.  

    At first, an initial population (Generation 0) is generated. Individuals in this generation are first 
evaluated for their fitness values, which are the NPV of each candidate solution. A small fraction of 
individuals with best (largest) fitness values are reserved for the next generation. Then some individuals 
are selected as “parents” based on their fitness values, and “children” are generated using the crossover 
operator and the mutation operator. The next generation is generated when the total number of 
individuals (reserved best individuals and newly generated “children”) reaches pop_size. For each 
generation thereafter, GA operators (evaluation, selection, crossover, mutation) are applied to individuals 
so that its next generation is created. This iteration continues until the best fitness value in a generation 
remains unimproved for a certain number (denoted as max_stall) of generations or the maximal iteration 
count (denoted as max_iter) is reached. 
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Figure 4 Flowchart of customized GA 

 

3.1 Initialization of Population 

 

    The genetic algorithm starts with an initial population with a certain number (denoted as pop_size, 
usually an even number between 20 and 50) of individuals. Each individual is represented by a 
chromosome with two rows of integers. When a single rail transit line has 𝑛1 planned stations at one end 
and 𝑛2 planned stations at the other, each row has (𝑛1 + 𝑛2) locations with integers. Integers in Row 1 
represent the sequence of planned stations to be completed in the future, while the binary ones in Row 
2 indicate groups of stations to be completed. In Row 2, each integer is either 1 or 0. If the integer at a 
certain location of Row 2 is 1, it indicates that the station represented by the integer at the same location 
of Row 1 will be completed together with that represented by the integer at the preceding location. Figure 
5 shows an example of a chromosome, given 𝑛1 = 𝑛2 = 3 and 𝑛𝑒 = 4 existing stations. This example 
indicates an extension plan where Stations 2 and 3 will be completed together first, then Stations 8 to 10 
will be completed together, and finally Station 1 will be completed. 
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Figure 5 Example of a Chromosome 

    To randomly generate an individual, 𝑛1 locations randomly selected out of (𝑛1 + 𝑛2) locations are 
assigned integer 1, and the remaining 𝑛2 locations are assigned integer 2. Then, for each location (except 
the first) in Row 1 that shares an integer with the preceding location, we randomly assign either 0 or 1 
(with equal probability) to this location in Row 2. Other locations in Row 2 are assigned 0. According to 
assumption 1, completion of multiple stations can be grouped in one extension step only when they are 
at the same end of the rail transit line. Finally, from left to right, replace 𝑛1 integers 1 in Row 1 with 𝑛1, 
𝑛1 − 1, …, 1, and replace 𝑛2 integers 2 in Row 1 with 𝑚 − 𝑛2 + 1, 𝑚− 𝑛2 + 2, …, 𝑚. These steps generate 
an individual (chromosome) that represents a possible extension plan. These steps are looped for pop_size 
times to initialize the population of Generation 0.  

 

3.2 Fitness Value Evaluation 

 

    After each generation is created, the GA evaluates the fitness values of its individuals The fitness value 
of each individual is equivalent to the NPV incurred within the analysis period under the extension plan 
that individual represents.  

    The evaluation of each individual takes the following steps. First, each chromosome is decoded into an 
extension plan with multiple potential periods, each having temporary terminal stations (with station 

codes 𝐸1
𝑘 and 𝐸2

𝑘) at both sides. The number of potential periods equals the number of integer 0’s in Row 
2 (which equals the number of potential extension steps 𝑘𝑚𝑎𝑥) plus 1. Figure 6 shows an example, given 
𝑛1 = 𝑛2 = 5 and 4 existing stations. The chromosome below indicates an extension with 6 potential 

periods (𝑘𝑚𝑎𝑥 = 5). Temporary terminal station codes in Period 0 are 𝐸1
0 = 6 and 𝐸2

0 = 9, which are 
terminals of the line without any extension. After the first extension, in Period 1 the temporary terminal 

station at one end is updated to Station 4 (𝐸1
1 = 4), while the other terminal remains Station 9 (𝐸2

1 = 9). In 
each period after each extension step, only one of two temporary terminal stations is changed, as is 
highlighted in Figure 6. 
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Figure 6 Decoding a Chromosome into Potential Periods and Temporary Terminals 

    In the second step, the completion times (𝑡𝑘, 1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥) are determined for each planned step in 
an extension plan. The available budget stays non-negative during the whole analysis period and reaches 
zero at each completion time. Using the “fsolve” function in the Python package of “scipy.optimize”, the 
first completion time 𝑡1 is numerically found such that the available budget (as shown in equation (26)) 
reaches zero upon the completion. Given 𝑡1, Period 0 starts at time 0 and ends at time 𝑡1, and has a 
duration of 𝑇0 = 𝑡1. Then, for each 𝑡𝑘 given (1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 − 1), the (𝑘 + 1)th completion time 𝑡𝑘+1 is 
numerically found such that the available budget reaches zero upon this completion. If 𝑡𝑘𝑚𝑎𝑥 ≤ 𝑇, then 

all completion times are within the analysis period. In this case, Period 𝑘 (1 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥 − 1) has a 
duration of 𝑇𝑘 = 𝑡𝑘+1 − 𝑡𝑘, and Period 𝑘𝑚𝑎𝑥, which starts at time 𝑡𝑘𝑚𝑎𝑥  and ends at time 𝑇, has a duration 

of 𝑇𝑘𝑚𝑎𝑥 = 𝑇 − 𝑡𝑘𝑚𝑎𝑥. Note that the periods in an extension plan are treated as “potential” because the 

last periods may not be realized within the analysis period. During the numerical search, if there exists 
some 𝑡𝑘′ > 𝑇 (1 ≤ 𝑘′ ≤ 𝑘𝑚𝑎𝑥), then let 𝑡𝑘 = 𝑇 for 𝑘′ ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥, and end the search. In this case the 
last period to be realized within the analysis period is Period (𝑘′ − 1), which starts at time 𝑡𝑘′−1 (we set 
𝑡0 = 0) and ends at time 𝑇. It is given that 𝑇𝑘′−1 = 𝑇 − 𝑡𝑘′−1. If 𝑘′ ≥ 2, then for all 0 ≤ 𝑘 < 𝑘′ − 1, it is 
given that 𝑇𝑘 = 𝑡𝑘+1 − 𝑡𝑘. 

    The third step is to compute the components of NPV (including present values of consumer surplus, 
fare revenues, and supplier’s costs) incurred during each of the realized periods within the analysis period 
using the model presented in Chapter 2, and aggregate to obtain the NPV incurred during the whole 
analysis period for the extension plan. Note that the construction cost is not counted in the last realized 
period. The NPV of this extension plan is used as the fitness value of its corresponding individual 
(chromosome).  

 

3.3 Selection of “Parents” 

 

    After evaluating all individuals in a generation, “parent” individuals are selected for generating 
“children” in the next generation. Before selection, the fitness values of individuals in this generation are 
sorted in descending order, and directly succeed a certain number (denoted as best_chroms, usually an 
even number smaller than half of pop_size) of individuals with highest fitness values to the next 
generation. Then, the number of “children” needed in the next generation equals to pop_size minus 
best_chroms. The same number of “parents” is selected in the current generation. Each individual may be 
selected multiple times and some “parent” individuals may be duplicate.  

    To mimic the natural selection process, individuals with higher fitness values should be given higher 
probabilities of being selected as “parents”. For this optimization problem, the selection probabilities are 
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based on the fitness rankings of individuals. With this method, the selective pressure (in other words, the 
dominance of individuals with higher fitness value over those with lower fitness value in terms of selection 
probabilities) stays constant over successive generations and is not affected by absolute differences of 
fitness values (Whitley, 1989). If the selection probability is directly based on fitness values rather than 
the ranking, then as iterations proceed, the absolute gaps of fitness values among individuals tend to 
shrink, which reduces selective pressure and increases chance of staleness and prematurity.  

    The ranking-based selection probabilities are determined as follows. The individual with the highest 
fitness value has the ranking value of 1. Let 𝑖 be the ranking value (an integer between 1 and pop_size) of 
an individual in the current generation. The selection probability of this individual is given by: 

𝑝𝑖 =
𝛼(1 − 𝛼)𝑖−1

1 − (1 − 𝛼)𝑝𝑜𝑝_𝑠𝑖𝑧𝑒
 

where 0 < 𝛼 < 1. A greater 𝛼 poses greater selective pressure. The value of 𝛼 should be carefully 
determined. If 𝛼 is too large, there is excessive selective pressure that leads to extremely low selection 
probability of individuals with lower fitness values and limits the GA’s search breadth. If 𝛼 is too small, the 
pace of solution improvement is retarded. With a proper value of 𝛼, while better individuals are more 
likely to be chosen and generate potentially better offspring, worse individuals still have a non-negligible 
chance to pass on their potentially beneficial components to the next generation. 

    In each selection operation, two different “parent” individuals are selected from the current generation 
with their corresponding probabilities. After potential crossover and mutation, they produce two 
“children” for the next generation. These two “parents” are replaced into the population for the next 
selection. The operation loop of selection-crossover-mutation is executed (pop_size - best_chroms)/2 
times until the number of individuals in the next generation reaches pop_size. 

 

3.4 Crossover operator 

 

    Each pair of selected “parent” individuals (chromosomes) in the current generation is processed by the 
crossover operator. The crossover operator deals with two “parents” at a time and produces two 
“children”. The probability that crossover between two “parents” actually occurs is given by a parameter 
p_c. Before the crossover operation, a number uniformly distributed between 0 and 1 is randomly 
generated. Crossover will actually occur only if this number is smaller than p_c. Otherwise, no crossover 
occurs and the “children” are identical to their “parents” before possible mutation. 

    The whole process of crossover is illustrated in the example shown in Figure 7 (where 𝑛1 = 𝑛2 = 5 and 
there are 4 existing stations coded 6 to 9). 
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Figure 7 Process of PMX crossover and repairing infeasible results 

    The first crossover step is to swap segments in two chromosomes. In a chromosome with a length of 
(𝑛1 + 𝑛2) integers in each row, two different locations are randomly chosen in (𝑛1 + 𝑛2 + 1) possible 
locations (including two ends). For each of two chromosomes to be operated, the segment between these 
two locations is swapped with that segment in the other chromosome, as shown in (a1) and (a2) of Figure 
7. This may create infeasible chromosomes with duplicate station codes in Row 1. In that case the Partial 
Mapped Crossover (PMX) method, proposed by Goldberg and Lingle (1985), is applied to fix the error. The 
mapping process is shown in the example in (a2) of Figure 7. In this example, station codes 5, 4, and 14 
are duplicate in Chromosome 1, and station codes 11, 12, and 2 are duplicate in Chromosome 2. As shown 
by solid arrows, the mapping relation is set up by examining station codes at locations within the swapped 
sections. For duplicate station code 5 in Chromosome 1, the station code at the same location in 
Chromosome 2 is 11, which is not found in the swapped section in Chromosome 1. Thus, station code 5 is 
mapped to 11. For duplicate station code 4 in Chromosome 1, the station code at the same location in 
Chromosome 2 is 3, which is found in the swapped section in Chromosome 1. For the code 3 in 
Chromosome 1, the station code at the same location in Chromosome 2 is 2, which is not found in the 
swapped section in Chromosome 1. Thus, station code 4 is mapped to 2. Similarly, station code 14 is 
mapped to 12. After the mapping relation is determined, the mapping station codes are found outside 
the swapped segments, as shown by dashed arrows in (a2). Then these station codes are swapped 
together with the indicators at the same locations in Row 2, between two chromosomes. The result is 
shown in (a3), without any duplicate station codes in Row 1 in each chromosome. 



 160 

    After these operations, the resulting chromosomes may still be infeasible. These chromosomes should 
be fixed further to get rid of infeasible completion sequences and infeasible grouping of completion. 

    First, completion sequences are repaired. In the example in (b1) of Figure 7, station codes that belong 
to the same end of the line are highlighted with the same color. Then, station codes that belong to the 
same end are rearranged so that the order of station completion becomes feasible for this end (for 
example, the order {11, 10, 13, 14, 12} in Row 1 of Chromosome 1 is rearranged to {10, 11, 12, 13, 14}) , 
while the set of locations these station codes occupy in this chromosome is not changed. The indicator 
values in Row 2 move together with their corresponding station codes in Row 1. The resulting 
chromosomes are shown in (b2) of Figure 7.  

    Next, the grouping of completions (links and stations to be completed at each extension step) is 
repaired. The 1’s in the indicators in Row 2 of each chromosome are checked. If the corresponding station 
code and that station code at the previous location do not belong to the same end of the line, this indicator 
1 is infeasible because it is assumed that multiple links and stations to be completed in one extension step 
must belong to the same end. Each infeasible indicator 1 in Row 2 is moved together with its 
corresponding station code in Row 1 to a destination location such that this station code, together with 
that station code at the previous location of this destination location, belong to the same end of the line, 
as shown in (b2). The resulting chromosomes in (b3) are the final products of the crossover of two 
“parents”, if crossover occurs. 

  

3.5 Mutation operator 

 

    “Children” individuals may experience mutation before they are finally passed on to the next 
generation. The probability that mutation of a “child” actually occurs is given by a parameter p_m. Before 
the mutation operation, a number uniformly distributed between 0 and 1 is randomly generated. 
Mutation will actually occur only if this number is smaller than p_m. All possible mutation cases are 
illustrated in examples (where 𝑛1 = 𝑛2 = 5 and there are 4 existing stations coded 6 to 9) in Figure 8. 

    In a mutation operation, a location (except the first location) is randomly selected in a chromosome. 
Depending on whether the station code at the chosen location shares one end of the line with codes at 
neighboring locations, there will be three types of possible operations: 

    1) If the chosen station code shares one end of the rail transit line with the previous code and the next 
code, then the chosen indicator in Row 2 is changed from 0 to 1 (or from 1 to 0), as is highlighted in (a1) 
in Figure 8. If the last location is chosen, then the indicator is changed if the chosen station code shares 
one end with the previous code, as shown in (a2). This operation type yields the final result of mutation.  

   2) If the chosen station code does not share one end of the line with the previous code, then the chosen 
station code and indicator are moved to a randomly chosen new location such that the station completion 
sequence that the chromosome represents is still feasible after this move. As illustrated in (b1) and (b2) 
of Figure 8, possible moves are shown by dashed arrows while the actual move is shown by the solid 
arrow. 

    3) If the last location is not chosen, and the chosen station code shares one end of the line with the 
previous code but not the next one, as shown in (c), then a random number uniformly distributed between 
0 and 1 is generated.  If it is smaller than 0.5, then the chosen indicator in Row 
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Figure 8 Types of operations in the mutation operator 

 

2 is changed from 0 to 1 (or from 1 to 0). The operation type in 1) is used, and the final result of mutation 
is obtained. If it is larger than 0.5, then the chosen elements are moved to a new feasible location. The 
operation type in 2) is used. 
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    The operation type in 2) may produce chromosomes that represent infeasible groups of stations to be 
completed. These chromosomes are repaired using the method shown in Figure 9. First, the infeasible 
indicator 1’s that group stations in different ends into one completion step are counted and located. Then, 
the indicator 0’s that can be changed into 1’s without producing infeasible completion groups are counted 
and located. If the number of changeable 0’s (denoted here as 𝑎) exceeds that of infeasible 1’s (denoted 
here as 𝑏), then 𝑏 randomly chosen changeable 0’s out of 𝑎 are changed into 1’s, and all 𝑏 infeasible 1’s 
are changed into 0’s. If 𝑎 ≤ 𝑏, all changeable 0’s are changed into 1’s and all infeasible 1’s are changed 
into 0’s. After this correction the final result of mutation is obtained.  

 

 

Figure 9 Repairing infeasible results of mutation 

 

4. Numerical Results 

 

4.1 Solving the problem in a base scenario 

 

    A numerical case is synthesized to demonstrate the model for this two-directional extension problem 
and its solution method, with 𝑚=20 stations and 19 links in a rail transit line similar to that shown in Figure 
1. 𝑛𝑒=4 stations (Stations 9 to 12) and 3 links (Links 10 to 12) in the CBD are currently in operation. 𝑛1=8 
stations at End 1 (with codes 1 to 8), 𝑛2=8 stations at End 2 (with codes 13 to 20) and their corresponding 
links may be completed in the upcoming analysis period of 𝑇=30 years. Link lengths and potential demand 
values in the base scenario are listed in Table 2. The synthetic potential demand matrix assumes that the 
existing segment (with 4 stations and 3 links) of the rail transit line is located in the city’s CBD, and the 
planned segments extend to suburban residential areas. Commuting between the CBD and residential 
areas is assumed to be the dominant trip purpose, and stations closer to the CBD have higher rates of trip 
production and attraction. For most stations (especially those in the CBD), the potential demands of rail 
transit trips to nearby stations tend to be lower than those to farther stations, because for shorter trips 
using rail transit tends to save less travel costs (fare plus time) over walking and cycling, especially given 
the waiting time for trains. Values of 𝑏𝑖𝑗 are given by: 

𝑏𝑖𝑗 = 4 + 1.75 ∑ 𝑑𝑙

𝑗

𝑙=𝑖+1

,   ∀𝑖 < 𝑗 

𝑏𝑖𝑗 = 𝑏𝑗𝑖, ∀𝑗 < 𝑖 
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𝑏𝑖𝑗 = 4, ∀𝑖 = 𝑗 

Other parameters in the base scenario use the values as listed in Table 1.  

 

Table 2 Link lengths and potential demand values in the base scenario 

𝑗 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
𝑑𝑗   2.0 2.0 1.5 1.2 1.1 1.0 0.8 1.0 0.8 0.8 1.0 1.0 1.1 1.2 1.2 1.4 1.0 1.6 1.8 
𝑄1𝑗  0 50 60 120 100 150 200 305 335 440 470 360 305 255 200 135 110 70 90 55 
𝑄2𝑗  50 0 45 90 70 140 190 270 370 490 465 365 350 295 225 180 135 85 80 65 
𝑄3𝑗  60 45 0 90 90 160 225 305 375 575 505 375 335 280 240 160 145 95 95 90 
𝑄4𝑗  120 90 90 0 75 110 185 240 350 490 480 340 280 255 185 145 105 75 130 110 
𝑄5𝑗  100 70 90 75 0 95 185 315 400 585 490 405 295 280 210 150 140 105 110 120 
𝑄6𝑗  150 140 160 110 95 0 145 245 370 495 510 375 280 270 210 185 145 125 145 135 
𝑄7𝑗  200 190 225 185 185 145 0 185 335 450 510 400 310 270 230 210 150 175 175 185 
𝑄8𝑗  305 270 305 240 315 245 185 0 280 425 415 310 305 305 265 230 240 225 250 270 
𝑄9𝑗  335 370 375 350 400 370 335 280 0 335 370 295 280 335 350 315 360 330 350 335 
𝑄10,𝑗  440 490 575 490 585 495 450 425 335 0 305 280 290 310 385 390 455 450 510 495 
𝑄11,𝑗  470 465 505 480 490 510 510 415 370 305 0 265 310 350 360 430 440 505 560 520 
𝑄12,𝑗  360 365 375 340 405 375 400 310 295 280 265 0 250 265 345 370 400 410 530 410 
𝑄13,𝑗  305 350 335 280 295 280 310 305 280 290 310 250 0 210 270 265 280 350 375 360 
𝑄14,𝑗  255 295 280 255 280 270 270 305 335 310 350 265 210 0 230 210 250 215 250 250 
𝑄15,𝑗  200 225 240 185 210 210 230 265 350 385 360 345 270 230 0 175 195 150 130 120 
𝑄16,𝑗  135 180 160 145 150 185 210 230 315 390 430 370 265 210 175 0 130 95 80 85 
𝑄17,𝑗  110 135 145 105 140 145 150 240 360 455 440 400 280 250 195 130 0 70 70 55 
𝑄18,𝑗  70 85 95 75 105 125 175 225 330 450 505 410 350 215 150 95 70 0 50 75 
𝑄19,𝑗  90 80 95 130 110 145 175 250 350 510 560 530 375 250 130 80 70 50 0 65 
𝑄20,𝑗  55 65 90 110 120 135 185 270 335 495 520 410 360 250 120 85 55 75 65 0 

 

    The GA optimization model coded in Python 3.7.3 is run on a personal laptop with an Intel® Core™ i7-
8750H CPU @ 2.20GHz. For this numerical case, GA parameters are set as shown in Table 3. 

 

Table 3 GA parameters used for the base scenario 

Parameter Value Parameter Value 

pop_size 40 best_chroms 4 

max_iter 1000 max_stall 30 

p_c 0.8 p_m 0.5 

𝛼 0.06   
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    The model is run 10 times on the base scenario. The average computation time per run is 712.49 
seconds, and the average iteration count is 48. Each iteration takes 14.84 seconds on average. With the 
max_stall of 30, the average iteration count needed for GA to attain the optimized chromosome is 18, 
which requires 720 evaluations of fitness values (NPV) of chromosomes. With different initial populations, 
6 of 10 runs return the same optimized chromosome with the best (largest) fitness value in these 10 runs. 
The best chromosome is shown as: 

13 8 7 14 15 6 5 16 17 4 3 18 19 2 1 20 

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

which represents an extension plan with 9 potential extension steps. This plan can be denoted as the 
following array, where station codes inside each pair of round brackets are to be completed together, and 
extension steps are shown chronologically from left to right, separated by commas. 

[(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2 1), (20)] 

    With the binding constraint on available budget, all these extension steps can be realized within the 
analysis period. Results show the following completion times: 

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 

2.873 6.881 10.021 12.297 14.455 16.371 18.055 20.084 21.140 

This means that, extension steps 1 to 9 should be completed in years 2.873, 6.881, 10.021, 12.297, 14.455, 
16.371, 18.055, 20.084, and 21.140 into the analysis period, respectively. Periods 0 to 9 should last 2.873, 
4.008, 3.140, 2.276, 2.158, 1.916, 1.684, 2.029, 1.056, and 8.860 years, respectively. For this optimized 
extension plan, 𝑃𝑁𝐵 = $15.781 × 10

9, which means the overall NPV over 30 years is $15.781 billion. 

 

4.2 Effects of terminal cost 

 

    Next, the effect of terminal cost (𝑐𝑒𝑛𝑑) on the model and the optimized extension plan is examined. The 
original value of 𝑐𝑒𝑛𝑑 is halved to 7.5×107 first, and then doubled to 3.0×108, with other parameters 
unchanged. In each modified scenario the model is run 10 times. 

    When 𝑐𝑒𝑛𝑑=7.5×107, the average computation time per run is 850.40 seconds, and the average iteration 
count is 40.1. Each iteration takes 21.21 seconds on average. All 10 runs return the same optimized 
chromosome that represents the following extension plan: 

[(13), (8), (14), (15), (7 6), (16), (5), (17), (4), (3), (18), (19), (2), (20), (1)] 

    The GA converges, i.e. attains the optimized chromosome in fewer iterations, because most 
chromosomes in the initial population have much more 0’s than 1’s in Row 2, and attaining the optimized 
chromosome with 15 0’s and only one 1 in Row 2 requires fewer mutations than attaining that with 9 0’s 
and 7 1’s in Row 2. Average calculation time per iteration increases, because as iterations proceed, 
chromosomes with more 0’s in Row 2 are favored. Since these chromosomes represent more extension 
steps, more completion times need to be numerically determined.  

    All 15 extension steps can be realized within the analysis period at the following completion times: 

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15 

2.022 4.256 6.124 7.754 9.825 10.999 12.030 13.129 14.071 15.084 15.851 16.813 17.877 18.826 19.809 
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For this optimized extension plan, the overall NPV over 30 years (𝑃𝑁𝐵) is $17.067 billion. 

    When 𝑐𝑒𝑛𝑑=3.0×108, the average computation time per run is 698.50 seconds, and the average iteration 
count is 61.5. Each iteration takes 11.36 seconds on average. 9 out of 10 runs return the same optimized 
chromosome that represents the following extension plan: 

[(13 14), (8 7 6), (15 16 17), (5 4 3), (18 19 20), (2 1)] 

    Compared to the case where 𝑐𝑒𝑛𝑑=1.5×108, the GA terminates after more generations due to more 
mutations needed for attaining the optimized chromosome with 6 0’s and 9 1’s in Row 2. Average 
computation time per iteration, however, becomes shorter than when 𝑐𝑒𝑛𝑑=1.5×108. As iterations 
proceed, chromosomes with more 1’s in Row 2 are favored. Since these chromosomes represent fewer 
extension steps, fewer completion times need to be numerically determined.  

    All 6 extension steps can be realized within the analysis period at the following completion times: 

 

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 

6.359 11.437 15.336 18.325 21.045 23.225 

For this optimized extension plan, the overall NPV over 30 years (𝑃𝑁𝐵) is $14.265 billion. 

    The optimized extension steps with different terminal cost values are shown in Figure 10. It explicitly 
reveals that higher costs of terminal facilities lead to fewer extension steps and more stations to be 
completed together in each step. A higher 𝑐𝑒𝑛𝑑 increases the economic advantage of completing multiple 
neighboring stations in a single step, while completion of the rail transit line is delayed. For almost any 
given operating length, the optimized extension plan with higher 𝑐𝑒𝑛𝑑 achieves this length later. The 
delayed coverage of the operating segment on OD pairs reduces total consumer surplus and total fare 
revenues over the analysis period, resulting in a lower NPV for an extension plan with a higher 𝑐𝑒𝑛𝑑.  

 

 

Figure 10 Optimized extension steps under different values of 𝑐𝑒𝑛𝑑 
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    To check the quality of optimized solutions obtained from the GA with customized operators, a 
statistical test is used, as in Jong and Schonfeld (2003). At first, a probability distribution function that fits 
the distribution of fitness values is sought. For the numerical case where 𝑛1 = 𝑛2 = 8, the total number 
of all possible permutations of chromosome is given by: 

2 × [∑(
7

𝑖
) ∙ (

7

𝑖
) ∙ 214−2𝑖

7

𝑖=0

+∑(
7

𝑖
) ∙ (

7

𝑖 + 1
) ∙ 213−2𝑖

6

𝑖=0

] = 3,968,310 

    For each numerical case in 4.2 with different values of 𝑐𝑒𝑛𝑑, 50,000 different chromosomes are 
randomly sampled from the full set of all 3,968,310 possible permutations and are evaluated. The 
distribution of fitness values (𝑃𝑁𝐵) regarding these sampled chromosomes in cases with 𝑐𝑒𝑛𝑑 value of 
7.5×107, 1.5×108, and 3.0×108, are shown in histograms (a), (b), and (c) in Figure 11, respectively. 

    It appears that no commonly known distribution can generalize the sample distribution of 𝑃𝑁𝐵 under 
three scenarios with different 𝑐𝑒𝑛𝑑. Hence, statistical tests using probability distribution fitting are not 
appropriate for these cases. However, the best (highest) fitness value among sampled chromosomes in 
each case with a 𝑐𝑒𝑛𝑑 value of 7.5×107, 1.5×108, and 3.0×108 is 17.058×109, 15.759×109, and 14.235×109, 
respectively. Each one is lower than the fitness value of the optimized chromosome obtained through GA 
for the same 𝑐𝑒𝑛𝑑 value. 

(a) (b)

 (c) 

Figure 22 Distribution of fitness values of sampled chromosomes with different 𝑐𝑒𝑛𝑑 

    In each case, since the 50,000 chromosomes are randomly selected from all 3,968,310 unique 
chromosomes, the probability that at least one chromosome from the 0.01% of chromosomes with the 

best fitness value is selected is: 1 − ∏
3968310−396−𝑖+1

3968310−𝑖+1
50000
𝑖=1 = 0.9934. This means, given that the best 

fitness value among 50,000 randomly selected chromosomes is lower than that of the GA-optimized 
chromosome, we can claim with over 99% confidence that the fitness value of the GA-optimized 
chromosome dominates 99.99% of all possible chromosomes. This demonstrates the effectiveness of the 
proposed GA framework and operators customized for this problem. Heuristic methods such as GA’s 
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cannot guarantee the global optimality of the solution, and the globally maximal fitness value is unknown 
(unless we exhaustively evaluate all possible chromosomes, which is expected to take more than a week), 
but a 99.99% dominance in fitness value is acceptable for optimizing an extension plan in this problem. 
Moreover, in practice the uncertainties in input parameters (e.g., 𝑢𝑣, 𝑢𝑙𝑛, 𝐹, 𝑔, 𝑄𝑖𝑗) outweigh the 

uncertainty in optimality of solutions under given input parameters. 

 

4.3 Effects of analysis period duration 

 

    In numerical cases shown above with analysis period length of T=30 years, all potential extension steps 
can be realized within 30 years, with binding constraint of available budget. If a shorter analysis period is 
used, some later potential extension steps could not be completed within T years, and the optimized 
extension plans could be affected. 

    For each of 𝑐𝑒𝑛𝑑 values 7.5×107, 1.5×108, and 3.0×108, shorter analysis period durations of T=25 and 
T=20 are applied. Other parameters are unchanged. For each numerical case, the GA model is run multiple 
times until the optimized extension plan (chromosome) with the best fitness value among optimized plans 
in all finished runs is obtained at least three times. max_stall is adjusted to 50. The optimized results are 
shown in Table 4. 

Table 4 Optimized extension plans under different values of 𝐜𝐞𝐧𝐝 and 𝐓 

𝑐𝑒𝑛𝑑/$ T/year Optimized plan (only showing steps that can be completed within T years) 

 

7.5×107 

 

30 [(13), (8), (14), (15), (7 6), (16), (5), (17), (4), (3), (18), (19), (2), (20), (1)] 

25 [(13), (8), (14), (15), (7 6), (16), (5), (17), (4), (3), (18 19), (2 1), (20)] 

20 [(13), (8), (14), (15), (7), (6), (16), (5), (17), (4), (3), (18), (19), (2), (20)]* 

 

1.5×108 

 

30 [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2 1), (20)] 

25 [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19 20), (2 1)] 

20 [(13 14), (8 7), (15 16), (6 5), (17), (4), (18 19)]* 

 

3.0×108 

30 [(13 14), (8 7 6), (15 16 17), (5 4 3), (18 19 20), (2 1)] 

25 [(13 14), (8 7 6), (15 16), (5 4), (17 18), (3), (19), (20)]* 

20 [(13 14), (8 7 6), (15 16 17)]* 

 

    Given that 𝑐𝑒𝑛𝑑 equals to 7.5×107 (1.5×108), if T is reduced from 30 to 25, all potential extension steps 
can still be completed and the first 10 (6) steps in optimized extension plans are identical in terms of 
sequence and station grouping, but several later steps are combined, with more stations to be completed 
in each step (as is underlined in Table 4). When T=20, or 𝑐𝑒𝑛𝑑=3.0×108 and T=25, the last potential steps 
in optimized extension plans cannot be completed, and only the steps that can be completed within T 
years are shown in Table 4 with a star mark (*).For each 𝑐𝑒𝑛𝑑, later extension steps under a shorter T tend 
to be smaller than those later steps containing same stations under a longer T. Also note that given that 
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T=20, as 𝑐𝑒𝑛𝑑 increases, the number of extension steps as well as stations that can be completed within 
the analysis period decreases sharply. 

    It can be learned from above that, if all potential steps in the optimized extension plan can be completed 
within the analysis period, a shorter analysis period T could decrease the fraction of completion of 
optimized extension plans and affect station grouping in steps, with late steps likely to be smaller. On the 
other hand, a longer T yields more and smaller extension steps, with most steps unchanged. One possible 
explanation is as follows. If 𝑐𝑒𝑛𝑑 is not too large, when a late extension step with multiple stations is 
decomposed into smaller steps without changing any other steps, inner stations in the original extension 
step are completed earlier, while the completion of outermost stations in this original step as well as 
stations in succeeding steps may be delayed. Typically, the completion advance of each inner station is 
greater than the completion delay of each outer and succeeding station. Given the same T, earlier 
completion of stations provides longer time in operation during the analysis period and therefore 
increases PV of consumer surplus (𝑃𝐶𝑆) and fare revenues (𝑃𝑓) from related OD pairs, while delayed 

completion of stations has opposite effects on 𝑃𝐶𝑆 and 𝑃𝑓. More extension steps also lead to higher PV of 

terminal cost. If all potential steps can be completed within the analysis period T regardless of grouping 
of completion and a shorter analysis period makes T closer to the final completion time (𝑡𝑘𝑚𝑎𝑥), negative 

effects of decomposing steps on NPV are more likely to outweigh positive ones. The negative effects 
include decreased 𝑃𝐶𝑆 and 𝑃𝑓 due to delayed completion, shortened operation duration of some stations, 

and increased PV of terminal cost. The positive effects include increased 𝑃𝐶𝑆 and 𝑃𝑓 due to advanced 

completion and lengthened operation duration of inner stations. 

    It should be noted that with a smaller T, the proposed GA method is more susceptible to prematurity. 
A shorter analysis period means that more extension steps cannot be realized within T years, and more 
different chromosomes will have the same fitness value (NPV). Thus the optimization search becomes 
more likely to be trapped in local optima. 

 

4.4 Analysis of sensitivity to selected parameters 

 

    For sensitivity analysis, five parameters that are likely to have major impacts on NPV or completion time 
are analyzed: 𝑐𝑙𝑛 (unit construction cost of rail line), 𝐹 (yearly external budget), 𝑄𝑖𝑗  (potential hourly 

ridership), 𝑢𝑣 (value of in-vehicle time), and 𝜌 (fraction of fare revenues to be used for construction). The 
sensitivity of the optimized solution to these parameters is examined. For each of these parameters, its 
value is slightly changed from its base scenario value (within ±20%), while other parameters stay 
unchanged (except that 𝑐𝑠𝑡, the construction cost of a station, changes proportionally with 𝑐𝑙𝑛). The model 
is run to obtain the optimized solution. In each of the modified scenarios, the optimized extension plan is 
fully completed. 

    The optimized extension plans with changes of various parameters are shown in Table 5. Table 6 lists 
all changes of parameters in modified scenarios, the corresponding optimized NPVs and their change rates 
from the base scenario, the corresponding final completion time 𝑡𝑘𝑚𝑎𝑥  under optimized plans and their 

change rates from the base scenario, and the proportional change (elasticity, calculated from the ratio of 
percentage changes) of NPV and 𝑡𝑘𝑚𝑎𝑥  in response to the change of each parameter.  

    For each parameter the elasticity calculation uses the two scenarios closest to the base value. For 
example, with all other parameters unchanged, a decrease of 𝑐𝑙𝑛 by 10% from its base value leads to a 
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3.07% increase of NPV, while an increase of 𝑐𝑙𝑛 by 10% from its base value leads to a 2.88% decrease of 
NPV. The elasticity of NPV to 𝑐𝑙𝑛 is [-2.88%-3.07%]/[10%-(-10%)] = -0.297. 

 

Table 5 Changes of parameters in modified scenarios and corresponding changes of  

optimized extension plans 

 

Para-
meter 

Value Change 
Rate 

Optimized Extension Plan 

𝑐𝑙𝑛 

1.12×108 -20% [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18), (19), (2), (20), (1)] 

1.26×108 -10% [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2), (20), (1)] 

1.54×108 10% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

1.68×108 20% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

F 

4.0×107 -20% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

4.5×107 -10% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

5.5×107 10% [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2), (20), (1)] 

6.0×107 20% [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2), (20), (1)] 

Q 

0.8 Q -20% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

0.9 Q -10% [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2 1), (20)] 

1.1 Q 10% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2), (20), (1)] 

1.2 Q 20% [(13 14), (8 7), (15 16), (6 5), (17), (4), (3), (18), (19), (2), (20), (1)] 

𝑢𝑣 

14.4 -20% [(13 14), (8 7), (15 16), (6 5), (17), (4), (3), (18), (19), (2), (20), (1)] 

16.2 -10% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18), (19), (2), (20), (1)] 

19.8 10% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

21.6 20% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

𝜌 

20% -20% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

22.5% -10% [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] 

27.5% 10% [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2 1), (20)] 

30% 20% [(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2 1), (20)] 

 

Table 6 Changes of parameters in modified scenarios and corresponding changes of  
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NPV and final completion time 

 

Para-
meter 

Value Change 
Rate 

NPV 

(×$109) 

Change 
Rate 

Elasticity of 
NPV 

𝑡𝑘𝑚𝑎𝑥  

Value 

Change 
Rate 

Elasticity of 
𝑡𝑘𝑚𝑎𝑥  

𝑐𝑙𝑛 

1.12×108 -20% 16.758 6.19% 

-0.297 

19.344 -8.50% 

0.492 
1.26×108 -10% 16.265 3.07% 20.244 -4.24% 

1.54×108 10% 15.326 -2.88% 22.325 5.61% 

1.68×108 20% 14.896 -5.61% 23.467 11.01% 

F 

4.0×107 -20% 15.420 -2.29% 

0.117 

21.945 3.81% 

-0.110 
4.5×107 -10% 15.598 -1.16% 21.538 1.88% 

5.5×107 10% 15.966 1.17% 21.074 -0.31% 

6.0×107 20% 16.137 2.26% 20.697 -2.10% 

Q 

0.8 Q -20% 11.009 -30.24% 

1.654 

24.356 15.21% 

-0.626 
0.9 Q -10% 13.363 -15.32% 22.634 7.07% 

1.1 Q 10% 18.582 17.75% 19.987 -5.45% 

1.2 Q 20% 21.266 34.76% 19.378 -8.34% 

𝑢𝑣 

14.4 -20% 22.553 42.91% 

-1.986 

19.861 -6.05% 

0.425 
16.2 -10% 19.244 21.94% 20.523 -2.92% 

19.8 10% 12.976 -17.78% 22.318 5.57% 

21.6 20% 10.525 -33.31% 23.527 11.29% 

𝜌 

20% -20% 15.297 -3.07% 

0.141 

23.873 12.93% 

-0.569 
22.5% -10% 15.554 -1.44% 22.410 6.01% 

27.5% 10% 15.999 1.38% 20.006 -5.36% 

30% 20% 16.184 2.55% 19.001 -10.12% 

 

    Recall that the optimized extension plan in the base scenario is denoted as: 

[(13), (8 7), (14 15), (6 5), (16 17), (4 3), (18 19), (2 1), (20)] 

    It can be learned from the results that the optimized NPV is fairly sensitive to 𝑄𝑖𝑗  (potential hourly 

ridership) and 𝑢𝑣 (value of in-vehicle time). An increase of 𝑄𝑖𝑗  or a decrease of 𝑢𝑣 by a small percentage 

leads to an increase in NPV by a greater percentage. It should also be noted that the change of optimized 
extension plans is highly correlated with the change of the optimized NPV. The optimized extension plans 
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denoted as [(13 14), (8 7), (15 16), (6 5), (17), (4 3), (18 19), (2 1), (20)] all correspond to decreased NPV. 
While slight increases of NPV caused by decrease of 𝑐𝑙𝑛 (unit construction cost of rail line), increase of 𝐹 
(yearly external budget), or increase of 𝜌 (fraction of fare revenues to be used for construction) 
correspond to slight changes in extension plans (with a few stations regrouped), significant increases of 
NPV (caused by increase of 𝑄𝑖𝑗  or decrease of 𝑢𝑣) correspond to greater changes in extension plans (with 

more stations regrouped and more extension steps). Here is the explanation: Both the increase of 𝑄𝑖𝑗  and 

decrease of 𝑢𝑣 increase actual hourly ridership for all OD pairs served by the operating segment. By 
completing some neighboring stations in multiple steps instead of one, some stations can be completed 
earlier, and the increase of PV of total consumer surplus and fare revenues incurred over T years could 
overcome the increase of PV of terminal cost.  

    The final completion time 𝑡𝑘𝑚𝑎𝑥  is moderately sensitive to 𝑄𝑖𝑗, 𝜌, 𝑐𝑙𝑛 (along with 𝑐𝑠𝑡), and   

𝑢𝑣. 𝑡𝑘𝑚𝑎𝑥  is much less sensitive to 𝐹, because in this numerical case, the future ridership as well as the 

reservation rate of revenue is relatively high, making internal funding (i.e., fares collected from 
passengers) dominant over the external funding. Note that while 𝑡𝑘𝑚𝑎𝑥  is similarly sensitive to 𝑄𝑖𝑗  and 𝜌, 

the changes of optimized extension plans in response to 𝑄𝑖𝑗  and 𝜌 do not appear to be similar, which 

implies that changes of optimized extension plans are more correlated to those of optimized NPVs than 
to those of optimized 𝑡𝑘𝑚𝑎𝑥. 

 

5. Conclusions 

 

    A novel optimization model is developed for solving the phased development problem of a rail transit 
line with two extending directions. Demand elasticity is considered, and the closed form of the maximal 
allowable headway is derived. Time is treated as being continuous rather than subdivided into discrete 
periods. The objective is to maximize system NPV over the analysis period, while line continuity and the 
available budget at the start of each period serve as constraints. The economies of completing multiple 
links together and the option of not completing some links within the analysis period are captured in the 
model. The model is coded in Python 3.7.3, and customized operators of GA are developed for solution 
search in the two-directional extension problem. Under the assumption of a binding available budget 
constraint, an optimized extension plan is obtained with the customized GA for the base scenario of the 
two-directional extension problem. With other parameters unchanged, when the analysis period is 
lengthened, the completion of outermost planned links within the analysis period becomes justified, and 
when the construction cost of terminal facilities is increased, the optimized extension plan increasingly 
favors simultaneous completion of multiple links in one step. Sensitivities of the maximized NPV and the 
optimized completion sequence and grouping of planned stations to five selected parameters are 
examined. Sensitivity analysis reveals that decision makers should be especially careful in determining the 
potential future demands, the value of users’ in-vehicle time, and the unit construction cost of the rail 
transit line before making extension plans. 

    The model presented here may be improved in several ways in the future: 

1) Due to the difficulty in formulating the closed form of the optimal train headway that maximizes 
total net social benefit in each period, the headway used in each period is assumed to be the 
maximal allowable headway. Some numerical method may be developed to optimize headways in 
each period. Fares, train capacity, and train speed may also be optimizable in more complex 
versions of this model. 
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2) Some additional demand features, such as faster growth due to new station completion, effect of 
access time, and nonlinear demand functions, may be developed. 

3) Land use development induced by rail line extensions may be considered. 
4) The computations of total PV of consumer surplus and supplier’s revenue, operation cost and 

maintenance cost include approximations, which may be replaced with a more precise integration 
method.  

5) Integer fleet sizes may be imposed. 
6) Cyclical operations (e.g. peak and off-peak) may be considered. 
7) Uncertainties regarding demand, budget and construction costs may be considered. 
8) This model could be further extended beyond single rail lines to solve phased development 

problems for rail transit networks and connecting bus routes.  
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ABSTRACT  

The shortest tour distance for visiting all points exactly once and returning to the origin is 

computed by solving the well-known Traveling Salesman Problem (TSP). Due to the large 

computational effort for optimizing TSP tours, researchers have developed approximations that 

relate the average length of TSP tours to the number of points n visited per tour. The existing 

approximations are used in transportation system planning and evaluation for estimating the 

distance for vehicles with a large capacity (e.g., delivery trucks) where n is relatively large. 

However, the approximations are derived from large instances are underestimating the TSP tour 

lengths for some recent delivery alternatives. The estimates of the approximation formula increase 

at a decreasing rate (i.e., with √𝑛) as n increases. A comprehensive review is presented here of 

existing studies in approximating the TSP tour lengths for low n values, which have become 

important for some recently favored delivery alternatives (e.g., deliveries by bikes, drones, and 

robots).  

Keywords: Distance approximation, Tour length approximation, Travelling salesman problem   
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INTRODUCTION 

The shortest tour distance for visiting all  n points exactly once and returning to the origin is 

computed by solving the well-known Traveling Salesman Problem (TSP) [5]. This problem 

belongs to the class of NP-hard problems in which finding the optimal path requires computation 

time that increases exponentially with the number of points n [6]. Due to this large computational 

effort, researchers have developed approximations for the relation between the average length of 

TSP tours and n values. Since the distance approximation models are capable of analyzing complex 

transportation systems reasonably well, the approximations have been used in various 

transportation planning and system design applications, such as for transit systems, facility 

location and fleet sizing.  

 

Figure 1 Some Examples of Delivery Tours to a Few Points 

Adapted from Choi ………… [3] 

     An approximation provides flexibility to operators and researchers who seek to reduce costs or 

improve system efficiency in large-scale problems. However, the approximation models tend to 

underestimate the average tour length if n, i.e. the number of points served, is relatively small; 

their approximated tour lengths asymptotically approach a specific value when n approaches 

infinity. For practical applications, it is more useful to estimate average tour lengths with relatively 

small n values, which reflect paratransit (e.g., carpool, dial-a-ride, and airport shuttle) [1, 2] or 

package delivery services by vehicles with limited carrying capacities, such as autonomous ground 

robotic vehicles, unmanned aerial vehicles, or environmentally friendly vehicles (e.g., bike 

deliveries) in Figure 1 [3]. Even for vehicles with a large capacity (i.e., trucks), Holguín-Veras and 

Patil [4] showed that more than 50% of truck routes had less than six stops, while 95% of the truck 

routes had less than 20 stops in Denver, Colorado. Although these types of vehicles may not handle 

economically many shipments per tour, new businesses adopting new technologies have grown 

due to their advantages, which include speed, responsiveness, or freshness for some items. 

Therefore, the tour length for these transportation alternatives may not be reliably approximated. 

The approximations for small numbers of n points will show promise in analyzing new type of 
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vehicles and delivery alternatives because actual tours serve relatively few customers, particularly 

with vehicle loading capacity or working period constraints. 

     This study summarizes a review of existing studies in 1) approximation methods for the 

Travelling Salesman Problem (TSP) and 2) experiment settings for obtaining the TSP tour length 

approximation. For the latter, the study includes the point generation, solution methods, sample 

size, and ordinary least squares (OLS) regression analysis. From the review, the gaps in the current 

knowledge and further possible improvements in approximation models are identified.  

LITERATURE REVIEW 

Overview of Average TSP Tour Length Approximation 

Approximations for the TSP Tour Lengths 

     The average distance between two points in both Euclidean and rectilinear space can be 

mathematically derived [3, 4, 5]. Here, the Euclidean space allows vehicle movements in straight 

lines between any pair of points, while rectilinear space refers to movements which are restricted 

to two orthogonal coordinates. Although average TSP distance with three points can still be 

analytically computed, estimating the tour lengths becomes challenging as the number of points n 

increases.  

     In early studies for distance approximation models, Mahalanobis [10] suggested that average 

TSP tour lengths for visiting a set of points n in a region served by a single vehicle asymptotically 

converged to √𝑛 with large n, where the points n were scattered at random within the space. Later, 

Marks [11] mathematically proved the approximation by providing a lower bound for the expected 

value of the distance as shown in Equation (1): 

Average TSP Tour Length  ≅ 𝛽√
𝐴

2

𝑛−1

√𝑛
                                          (1) 

where β  is a coefficient and A is the zone size .  

     With a large n, the coefficient β found by Marks [11] was roughly 0.7071. Beardwood et al. 

[12] later estimated the constant β to be 0.749 for √𝑛𝑎 (Beardwood’s formula) in Euclidean space 

with a mathematical proof and numerical experiments by constructing tour instances. Note that 

irregular networks can be analyzed with the Euclidean β coefficient multiplied by an appropriate 

circuity factor. After Stein [13] estimated β at 0.765 through Monte Carlo experiments, many 

researchers estimated the coefficients using different algorithms. For instance, Ong and Huang 

[14] reported that β converged to 0.7425 with normalized TSP tour lengths.  

Table 11 Summary of Literature with Beardwood’s Formula 

Authors Solution 

Method 

Estimated 

Coefficient* 

Problem 

Type 

Number of 

Points n 

Special 

Considerations 

Marks (1948) [11] Theoretical 

Derivation 

0.7071 TSP N/A N/A 

Beardwood et al. (1959) 

[12] 

Theoretical 

Derivation 

0.749 TSP N/A N/A 

Christofides and Eilon 

(1969) [15] 

N/A N/A VRP 10 - 70 N/A 
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* the estimates β in the Euclidean space were listed 

** Salesman’s origin (e.g., a depot) was positioned at a fixed location 

*** The studies considered other decision variables or other terms from Beardwood’s 

formula, such as the spatial distribution and variance of points 

**** Clarke and Wright, Fisher and Jaikumar, and Gillet and Miller algorithm 

     Fiechter [19] found the constant β at 0.7298 for large values of n ranging from 500 to 100,000. 

Lee and Choi [20] showed β to be 0.721, while Percus and Martin [22] estimated β to be 0.7120 ± 

0.0002 in Euclidean space. Johnson et al. [23] generated large sets of points with n up to 100,000 

and found the constant β to be 0.7124 within the 95% confidence intervals of ± 0.0002. Note that 

the multiplier β is correlated with the value of n [32]. Applegate et al. [5] estimated the coefficient 

β by running a regression on the optimized TSP solution instances for randomly generated n 

ranging from 100 to 2000. Lei et al. [30] used a similar approach to Applegate et al. [5] where n 

ranged between 20 and 90. With the two studies combined, the estimated β asymptotically 

Stein (1977) [13] Partition 

Heuristic 

0.765 TSP N/A N/A 

Daganzo (1984) [16] Theoretical 

Derivation 

0.9  

 

TSP N/A Shape of a Space  

Ong and Huang (1989) [14] 3-optimal  

Heuristic 

0.7425 TSP 5 – N/A  N/A 

Brunetti et al. (1991) [17] Cavity Method 0.7251 TSP 50 - 800 N/A 

Chien (1992) [18] Exact Solution 

 

0.88** TSP 5 - 30 Shape of a Space  

Fiechter (1994) [19] Parallel Tabu 

Search 

0.7298 TSP 500 – 

100,000 

N/A 

Lee and Choi (1994) [20] Multicanonical 

Annealing 

0.7239 ~ 

0.8075 

TSP 50 - 40,000 N/A 

Kwon et al. (1995) [21] Exact Solution -** TSP 10 - 80 Shape of a Space  

Percus and Martin (1996) 

[22] 

Chained local 

optimization 

0.7120  

± 0.0002 

TSP 12 - 100 N/A 

Johnson et al. (1996) [23] Iterated Lin-

Kernighan  

0.7124  

± 0.0002 

TSP 100 – 

100,000 

N/A 

Finch (2003) [24] N/A 0.62499 ~ 

0.91996 

TSP N/A N/A 

Hindle and Worthington 

(2004) [25] 

Cheapest 

Insertion 

-*** TSP 5 - 50 Point Distribution 

Robusté et al. (2004) [26] Three Heuristic 

Algorithms**** 

 

-*** TSP, 

VRP 

15 - 139 Shape of a Space 

Figliozzi (2008) [27] Monte Carlo 

Simulation 

-*** VRP N/A Point Distribution,  

and Depot location 

Applegate et al. (2011) [5] Cutting-plane 

method 

0.7764689 

~ 0.7241373 

TSP 100 – 

2,500 

N/A 

Cavdar and Sokol (2015) 

[28] 

Exact Solution 

 

-*** TSP N/A Point Distribution,   

Shape of a Space 

Mei (2015) [29] Cutting-plane 

method 

-*** TSP, 

VRP 

N/A Point Distribution 

Lei et al. (2016) [30] The Concorde 

TSP Solver 

0.8584265  

~ 0.7773827 

TSP 20 - 90 N/A 

Nicola et al. (2019) [31] Pilot Method -*** TSP,  

VRP 

25 – 1,000 Time Window, 

Demands 
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approached an interval ranging from 0.7256264 to 0.8584265 and had a downward trend as n 

increased, as shown in Table 1. More rigorous bounds were found between 0.62499 and 0.91996 

in other studies [20, 29]. 

Approximations for TSP Variants and VRP Tour Lengths 

For the TSP variants and Vehicle Routing Problem (VRP), many researchers have attempted to 

estimate the coefficient β through both analytical and experimental studies, for different 

operational settings such as considered vehicle capacity, zone shape, geometry, or point 

distributions. The major difference between the TSP and VRP is whether the problem considers  

vehicle loading capacities, time constraints, or time windows [34]. Therefore, the TSP solution 

would have a single route served by one vehicle, while the VRP has multiple routes possibly served 

by multiple vehicles. Therefore, the number of vehicles should be known a priori for VRP 

problems. Alternatively, the single TSP route can be split into several equal tours with an 

optimistic assumption that a penalty in terms of extra travel distance does not exist [7].  

     Christofides and Eilon [15] first incorporated a vehicle capacity per tour in the formula and 

suggested approximations to the VRP tour length based on the shape and area of a region. Daganzo 

[16] proposed an intuitive approximation for a generic irregular district; a space was divided into 

multiple subareas containing clusters of points. A vehicle route was developed to serve each 

cluster. In this setting, he estimated β  at 0.9 for Euclidean and 1.15 for rectilinear space. Although 

β for the Euclidean might overpredict the tour distance, it suited spaces with typical shapes.  

     Chien [18] derived the constant β at 0.88 through empirical simulations and multiple 

regressions. The paper considered 16 different shapes varying in the 1) elongation and 2) angle of 

a space. Rectangular areas with different length-to-width ratios from 1 to 8 were proposed in Figure 

2 (a). Sectorial-shaped areas were developed with eight central angles from 45° to 360° as 

illustrated in Figure 2 (b). The starting point (i.e., a depot) was positioned at the lower left side of 

the district. From generated TSP instances, the best-fitted coefficients for Beardwood’s formula 

were derived though  OLS regression.  

 

(a) Elongation for Rectangular Areas 
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(b) Angle of Sectorial-shaped Areas 

Figure 2 Shape of Areas Developed by Chien [18] 

     Aside from the widely used form of Beardwood, later studies included various terms in the 

models, such as a length-to-width ratio or area of the smallest rectangle that covered all points. 

Kwon et al. [21] carried out both simulations and OLS  regressions to test the previous variations 

(i.e., Beardwood et al. [12], Daganzo [16], and Chien [18]). That research team also compared 

results from the regression with a neural network (NN) model in estimating the TSP tour length; 

the latter model provided slightly better approximations than the former. However, the NN model 

was difficult to interpret geometrically due to its characteristic as a so-called “a black box”, where 

the model would not give any insights. Hindle and Worthington [25] approximated the average 

TSP tour length through simulations and regressions as shown in Equation (2).  

                                      Average TSP distance = a × n + 𝑏 × ln(𝑛) + 𝑐                                 (2)   

where a, b, and c are constants in a 100 x 100 unit square. a = 3.63, b = 85.78, and c = 62.67. Two 

models were proposed based on demand patterns, namely uniformly random and probabilistic 

point distribution. The probabilistic demands were designed to simulate point distributions and 

settlement patterns.  

Special Considerations in Tour Length Approximations 

Later studies for TSP approximations, considered zone shape, geometry, or point distributions. An 

extended version of Daganzo’s approximation [16] that considered circular and elliptical spaces 

was proposed by Robusté et al. [26]. Figliozzi [27] proposed VRP tour length approximations 

using six different spatial distributions. His models also considered time windows, demands, and 

depot location. The study showed that time windows negatively affected the accuracy of the 

models; the time windows increased travel distance not only because the number of routes was 

increased but also because the distance between points per route was increased. Cavdar and Sokol 

[28] developed approximations where the point distribution was not uniform and random. The 

approximation models consisted of a few variables (e.g., the standard deviations of coordinates 

and of distances between the point and center in a region). The models were tested with different 

spatial distributions, including uniform and triangular distribution. In addition, the models also 

performed well for various shapes of a space, such as triangular or polygon district. Mei [29] 

incorporated spatial distributions in approximating the tour lengths. The average nearest neighbor 
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index was introduced for measuring the dispersion of points; the index utilized the distance 

between centroid and each point. As the point distribution changed from dense (e.g., clustered) to 

dispersed, the estimates for β increased linearly. Nicola et al. [31] proposed approximations based 

on regression models by adding more variables, such as time windows, vehicle capacities, and 

demands. The proposed model was compared with the previous models from Cavdar and Sokol 

[28] and from Hindle and Worthington [25].  

Guidelines for Using Distance Approximations 

     Larson and Odoni [7] pointed out that all these expressions could provide a good approximation 

if 1) one of the measurements (e.g., width) of space was not much greater than the other 

measurement (e.g., length) of a region, and 2) no obstructions or boundaries existed in the region. 

Such conditions for a tour’s operating zone were generally called “fairly compact and fairly 

convex.” For a rigorous definition for the rule of thumb, numerous measures for both compactness 

and convexity had been proposed in the literature. Compactness measures were borrowed from 

geometric concepts, such as perimeters, areas, centroids, and vertices [35]. Some measures are as 

follows; 1) length-width ratio: the ratio between the length and width of the minimum bounding 

rectangle. 2) convex hull: the ratio of the area between the space and minimum bounding convex 

hull (i.e., the smallest convex polygon containing all the given points). 3) Polsby-Popper: the ratio 

of the area of the space to the squared perimeter of the space. Similarly, convexity measures have 

been based on the area or boundary of a space [36]. A boundary-based convexity measure is 

computed as the ratio of the perimeter of a space and that of convex hull. An area-based convexity 

measure computes the normalized average visible area of a space, divided by the area of the space 

[33, 34]. The latter method is slightly more challenging to compute.  

Experimental Approach  

Experiment Procedures: Point Generations, Heuristics, and Sample Size 

 

Figure 3 Overall Process for Estimating Beardwood's Coefficient β 



 182 

     Except for the theoretical derivations of Beardwood’s coefficients in Table 1, this section shed  

light on the derivation of the estimates β from experiments. The experimental method is illustrated 

in Figure 3. First, points (i.e., nodes or visited sites) are generated uniformly and randomly in a 

unit space whose area is one.. For the point generation, most studies focus on a random and uniform 

distribution, while the shape of space is limited to a unit square. Random numbers provided in 

recent simulation programs are generated with the congruential algorithm, which has been widely 

used in programming to mimic randomness [39]. By generating two random numbers uniformly 

distributed in the interval (0,1), the numbers are regarded as a x- and y-coordinate of a point in the 

space; each point in the x-y plane with both x and y between 0 and 1 is equally likely to be selected. 

Second, a solution method is chosen to compute optimized TSP tour lengths. For every TSP run, 

the visited points are regenerated after the TSP solution is obtained. From Table 1, no clear 

preference or explanation is apparent from researchers in choosing the solution method. 

Furthermore, no consensus exists on the “best” heuristic algorithm for solving the TSP instances, 

as shown in Table 2; ranks imply the lowest TSP solution, while percentage differences show the 

ratio between the best solution and the solution obtained by the selected heuristic method. This is 

done mainly because the results sensitively vary with some parameter values of heuristic methods 

and computation time.  

     In Adewole et al. [40], a simulated annealing (SA) procedure for the optimized TSP tour lengths 

ranging from n of 10 to 60 performed better than a genetic algorithm (GA). The GA provided a 

good solution if the time was sufficient meaning that a large population size was provided. In 

contrast, Damghanijazi and Mazidi [41] showed that the GA performed the best in searching for 

the TSP solution for 10- and 59-points, individually; the SA and hill climbing method were the 

worst. More comparisons for the performance of heuristic had been carried out by Gupta [42], 

Ansari et al. [6], Abdulkarim and Alshammari [43], and Gupta [44]. For a study conducted by 

Antosiewicz et al. [45], six well-known metaheuristic algorithms were compared for n values 

ranging from 20 to 80. The key idea was to find the best solution method when the computation 

time was restricted (e.g., 100 seconds). The authors presented several criteria for performance 

(e.g., accuracy, computation time, and standard deviation); however, none of the algorithms 

outperformed the others for all the suggested criteria. Third, repeated iterations on a given n are 

produced. After the predefined iterations for each n are reached (e.g., 1,000 runs per n values), the 

TSP tour lengths for each n value are averaged. Then, the repeated runs move next for n+1. Finally, 

the averaged TSP tour length is fitted with OLS regression.  



 183 

Table 12 Comparison of Heuristic Algorithms 

 

* SA: Simulated Annealing, TS: Tabu Search, GA: Genetic Algorithm, MA: Memetic Algorithm, 

BCO: Bee Colony Optimization, ACO: Ant Colony Optimization, FA: Firefly, CS: Cuckoo Search, 

HC: Hill Climbing, PSO: Particle Swarm Optimization, NN: Nearest Neighbor, GH: Greedy 

Heuristic, HS: Harmony Search, and FA: Firefly 

     The recommended sample size (i.e., the number of intervals in the 3rd column of Table 2) for 

running a regression should exceed 23 according to Green [46]. Green compiled a comprehensive 

guide for choosing the minimum sample size as a function of  the number of independent variables 

and effect size (e.g., a correlation between two variables); the effect size referred to standardized 

measures of the size of the mean difference, which generally used in multiple regression analysis. 

Many metrics could be used for deriving the effect size, such as Cohen’s d (t distribution) or ω (χ2 

distribution). If the effect size was small, a large number of observations were needed. Sample 

SA TS GA MA BCO ACO FA CS HC PSO NN GH HS

Rank 1 2

% difference 0.0 1.7

Rank 1 2 7 6 8 3 3 3

% difference 0.0 0.0 -5.6 -5.7 -5.2 -5.7 -5.7 -5.7

Rank 5 1 2 4 3

% difference N/A N/A N/A N/A N/A

Rank 1 2

% difference 0.0 24.9

Rank 1 2

% difference 0.0 5.7

Rank 7 8 3 6 5 4 2 1

% difference -19.4 -19.4 -2.2 -7.3 -4.4 -2.2 -2.2 0.0

Rank 1 2

% difference 0.0 50.2

Rank 1 2 3

% difference 0.0 32.8 8.4

Rank 1 2

% difference 0.0 39.0

Rank 1 2

% difference 0.0 4.4

Rank 1 2

% difference 0.0 11.9

Rank 3 1 2

% difference 18.5 0.0 11.2

Rank 6 8 3 4 7 5 2 1

% difference 111.6 159.4 0.1 0.4 128.4 10.3 0.1 0.0

Rank 3 5 3 7 6 8 2 1

% difference 0.5 0.8 0.5 3.8 2.3 7.4 0.5 0.0

Rank 1 2

% difference 0.0 25.4

Rank 1 2

% difference 0.0 3.3

Rank 1 2

% difference 0.0 20.3

Rank 1 2

% difference 0.0 32.9

Rank 1 2

% difference 0.0 23.4

Rank 3 1 2

% difference 35.0 0.0 21.6

Rank 7 8 4 6 5 2 3 1

% difference 197.6 215.5 4.0 6.9 4.5 0.0 1.6 0.0

Rank 5 1 2 4 3

% difference N/A N/A N/A N/A N/A

Rank 1 N/A 2

% difference 0.0 N/A 24.0

Rank 3 1 2

% difference 50.4 0.0 39.2

Rank 2 3 1

% difference 9.3 14.4 0.0

Rank 3 1 2

% difference 45.7 0.0 36.8
100

Gupta et al 

(2020)
N/A N/A N/A

100
Abdulkarim and 

Alshammari 
N/A N/A N/A

75
Gupta et al 

(2020)
N/A N/A N/A

N/A N/A

60
Adewole et al 

(2012)
N/A

N/A

51 Gupta (2013) N/A

59
Damghanjiza 

(2017)
N/A N/A

50
Ansari et al. 

(2015)
N/A N/A

50
Gupta et al 

(2020)
N/A N/A

42
Ansari et al. 

(2015)
N/A N/A

50
Adewole et al 

(2012)
N/A N/A

30
Ansari et al. 

(2015)
N/A N/A

40
Adewole et al 

(2012)
N/A N/A

29 Gupta (2013) N/A

30 Gupta (2013) N/A

25
Gupta et al 

(2020)
N/A N/A N/A

25
Adewole et al 

(2012)
N/A N/A

25
Ansari et al. 

(2015)
N/A N/A

N/A

20
Ansari et al. 

(2015)
N/A N/A

20
Adewole et al 

(2012)
N/A N/A

20
Abdulkarim and 

Alshammari 

Elongated 

Space
N/A N/A

15
Ansari et al. 

(2015)
N/A N/A

16 Gupta (2013) N/A

N/A

15
Adewole et al 

(2012)
N/A N/A

10 Gupta (2013) N/A

10
Damghanjiza 

(2017)

Not a random 

point generation
N/A N/A N/A

# of 

Points
Category Authors Note

Solution Method

10
Adewole et al 

(2012)
N/A N/A
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sizes ranged from 23 (large effect size), 53 (medium effect size) and 400 (small effect size). 

Alternatively, the number of iterations should be greater or equal to 50 plus 8 multiplied by the 

number of estimates (e.g., one n for this case). This guideline for calculating the instance size is 

simple and easy to use for a parsimonious model.  

Literature with Experimental Approaches 

Table 3 summarizes the experiment settings for distance approximations from the literature. Ong 

and Huang [14] used 25 iterations for each n value starting from n = 5. In their experiments, the 

sample variable of the optimized TSP tour length was shown to fluctuate, as shown in Figure 4.  

Table 13 Summary of Studies with Experiments for TSP/VRP Tour Approximation 

Authors Number of 

points n  

Number of 

intervals  

Increment 

for n 

Iterations 

per n* 

Shape of 

space 

Problem 

type 

Ong and Huang (1989) 

[14] 

5 – N/A N/A Irregular 25 Square TSP 

Brunitti et al. (1991) [17] 50 – 800   5 2x** 500 – 

20,000 

Square TSP 

Fiechter (1994) [19] 500 – 100,000 8 Irregular 10 – 30  Square TSP 

Lee and Choi (1994) [20] 50 – 40,000 14 Irregular 4 – 1,300 Square TSP 

Kwon et al. (1995) [21] 10 – 80  8 10 10 Irregular TSP 

Percus and Martin (1996) 

[22] 

12 – 100 8 Irregular 5 – 20 Square TSP 

Johnson et al. (1996) [23] 100 – 100,000 7 √10x** 2 – 2,098 Square TSP 

Hindle and Worthington 

(2004) [25] 

5 – 50  46 1 500 Square TSP 

Applegate et al. (2011) 

[5] 

100 – 2,500 13 Partially 

Irregular 

10,000 Square TSP 

Lei et al. (2016) [30] 20 – 90  8 10 100 Square TSP 

Nicola et al. (2019) [31] 25 – 1,000 N/A N/A 130 – 400  Square VRP 

* Iterations here imply random configurations of point distribution for each n (e.g., Point 

generation in Figure 3) 

** x implies ‘a factor of’ 
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Figure 4 Sample Variance of Optimized TSP Tour Lengths by Ong and Huang [14] 

     Brunetti et al. [17] found TSP solutions for their selected n values, which were 50, 100, 200, 

400, and 800. For each n, iterations ranged from 500 to 20,000. Lee and Choi [20] conducted 

different iterations for the selected 14 interval of n values, where the values ranged from 50 to 

40,000. As few as four iterations were used for large n values (i.e., n = 40,000), while 1,300 

iterations were conducted for small n values (i.e., n = 50).  

     Using the eight intervals of n, Fiechter [19] ran 10 to 30 iterations for each n. Since Kwon et 

al. [21] separated training and testing sets for the optimized TSP tour lengths, the number of 

instances was smaller than in other studies. For Johnson et al. [23], n ranged from 100 to 100,000 

points, increasing by factors of √10. The exact TSP tour lengths were obtained for n values 

between 100 and 316. Then, the number of iterations decreased as n increased. Percus and Martin 

[22] derived the TSP instances for the eight n values between 12 and 100; iterations were 

conducted between 5 and 12 runs. Unlike other researchers, Hindle and Worthington [25] 

conducted the iterations using continuous intervals n.  

     Applegate et al. [5] ran 10,000 iterations for generating the TSP instances visiting each n values. 

In their experiments, an increment of 100 was chosen for n between 100 and 1,000. Beyond n = 

1000, the  increment of 500 was selected between 1,500 and 2,500 for n values. In Lei et al. [30] 

experiments were conducted with 100 iterations for each n ranging from 20 to 90. The number of 

iterations for large n increased in Nicola et al. [31]. Since half of the TSP instances were used for 

test sets, the unused instances were excluded in Table 3. In brief, the number of iterations per n 

was arbitrary. Some researchers suggested descriptive statistics (e.g., mean or standard deviation) 

and normality test for the obtained TSP instances [1, 13, 19]. From this, one can better understand 

the central tendency and variability of the generated TSP instances. In addition, the instances with 

small n values can be compared with those for large n values. 

SUMMARY 

     Most reviewed studies focused on the derivation of asymptotic coefficients for the TSP tour 

length; the estimated coefficients were based on a relatively large number of points visited per 
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tour, at least five or more visited points in the 5th column of Table 1 [14, 21]. However, without 

using the approximations estimated with appropriate n values, the approximated distances would 

be underestimated. First, this is attributed to a downward trend of the square root form  √𝑛, As 

more the optimized TSP instances from large n values are used for fitting a regression, smaller 

coefficients would be estimated. Second, a larger increment in intervals (observable in the 4th 

column of Table 3) results in a smaller value of the coefficient β. Since the smaller intervals 

produce a larger deviation in the instances (i.e., samples), the estimated β would decrease. In other 

words, regression results with the omitted intervals (i.e., missing samples) of n underestimate the 

coefficients due to small mean and large deviation in deriving β. Such a small mean is attributed 

to the fact that the TSP tour length increases non-linearly (i.e., with √𝑛) as n increases. Except for 

Hindle and Worthington [25], researchers have used a discrete interval of n as an independent 

variable for regression. 

      In experimental approaches for Beardwood’s coefficients, the number of iterations for 

obtaining the optimal TSP tour length significantly varied in the existing studies, as shown in the 

5th column of Table 2. Kwon et al. [21], Applegate et al. [5], and Lei et al. [30] used the same runs 

across all n values, while others did not present any criteria for the number of iterations (e.g., less 

iterations for large n, and vice versa). Therefore, consistent runs would help in providing 

descriptive statistics of each n (e.g., mean, median, standard deviation, skewness or kurtosis); the 

dataset of the optimum tour lengths can be investigated further, such as by using sample variance 

provided in Ong and Huang [14] in Figure 4. In addition, the estimates for β change not only with 

the value of n but also with other factors (e.g., the point distribution or shape of space).  

     Lastly, the VRP and distribution-free approximations may be less flexible than the TSP models 

due to the required variables that were often unavailable or known a priori, such as the number of 

vehicles, length-to-width ratio, predetermined number of routes, or standard deviations of a point 

distribution in space.  

     Therefore, the approximations providing the estimates for few points would open new research 

avenues for analyzing and planning such systems (e.g., paratransit and deliveries by drones or 

robots). 

POSSIBLE EXTENTIONS 

     Some potential extensions beyond the existing literature are suggested below.  

1. Distance metrics: two types of distance measures can be considered, namely Euclidean and 

rectilinear. In Euclidean space, movement directions are unrestricted and, hence, the 

shortest air distances apply. In rectilinear space where movements are restricted to two 

orthogonal coordinates, as in rectangular grid street networks, travel distances are longer. 

For irregular networks distances can be approximated by multiplying Euclidean distances 

with appropriately computed circuity factors. 

2. Shape of service area: although an exact shape of service area varies with roadway 

geometry, the basic shape categories to be considered are square and circular. The 

elongations of area can be further investigated by changes in length-to-width ratio. 

3. Distribution of points: the effects of concentrations of points n toward a particular direction 

(e.g., non-uniform distribution of the points) or in certain clustering patterns may be 

explored. 

4. Approximations for tour distances with time windows may be developed. 
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5. Approximations for tours by vehicles with limited capacity, which may constrain the 

sequence of pickups and drop-offs, may be developed. 
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Abstract 

A model is proposed for estimating the value of reserve capacity in a rail transit network (RTN), 

which consists of (1) the reduction in the passengers’ total generalized travel cost (GTC) in 

normal operations, (2) the value of reliability enhancement in normal operations, and (3) the 

value of robustness enhancement due to reserve capacity when disturbances occur. The 

passengers’ GTC equals the fare and monetary value of passengers’ perceived travel time (PTT), 

which considers the seat availability, crowding in trains as well as transfer times. The perceived 

buffer time (PBT), which is the difference between the 95th and the average PTT, represents the 

extra PTT needed for arriving at the destination station reliably. The value of reliability 

enhancement is the monetary value of decreased PBT with and without reserve capacity when 

the RTN operates normally. The value of robustness enhancement is the difference in the 
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passengers’ total GTC with and without reserve capacity when disturbances occur. The net value 

of the reserve capacity equals its value minus its cost. A model for optimizing reserve capacity to 

maximize net value is developed and solved with a Quantum Genetic Algorithm (QGA). A case 

study of Chengdu’s RTN shows that the proposed model and method are practical and effective 

for estimating the value of reserve capacity and optimizing it. This can guide policy makers and 

operators in quantifying the value of reliability and robustness when expanding an RTN’s 

capacity. 

  

Keywords: Rail transit network; Reserve capacity; Net value; Network reliability; Network 

robustness; 

1. Introduction 

Due to their advantages of environmental protection, large capacity and high speed, rail 

transit networks (RTNs) have expanded rapidly in cities (Litman, 2015). With rapid urban 

development, passengers expect high-quality service in rail transit (Beirão and Cabral, 2007). 

However, disturbances often occur in rail transit for various reasons, such as technical and 

mechanical failures, man-made damages or natural disasters. Those disturbances cause 

passengers to experience reduced travel comfort, increased travel time, travel cost and travel 

time uncertainty, and thus decrease the passenger service quality.  

The robustness of an RTN is the network’s ability to withstand disturbances without a 

significant reduction in system performance (Cats and Jenelius, 2015). A network is robust when 

it reacts well to disturbances (De-Los-Santos et al. 2012), and it is reliable when it can transport 

passengers to their destination within a certain time (Bell and Cassir, 2000). The reliability and 

robustness of an RTN are important manifestations of transportation performance and service 

quality, which play significant roles in transportation planning and policymaking. Therefore, 

investments in an RTN should aim at improving the reliability and robustness of the 

transportation networks, rather than just reducing the passengers’ travel time and cost (Mackie et 

al. 2014). Investment analyses should evaluate and quantify the value of reliability and 

robustness enhancement according to the U.S. Department of Homeland Security (U.S. DHS., 

2010) and related studies (Jeekel, 2010 and Cats, 2016).  
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Reserve capacity is an investment in an RTN network, which not only increases the 

possibility of transporting passengers to their destination reliably when the network operates 

normally, but also enhance the network’s ability to withstand disturbances. Thus, the reserve 

capacity of an RTN can improve its reliability and robustness (Jeekel, 2010, Cats, 2016, Cats and 

Jenelius, 2015). However, the value of reliability and robustness enhancement due to reserve 

capacity has not been both evaluated when measuring the value of reserve capacity on an RTN. 

It reduces the accuracy and reasonableness of decisions to provide reserve capacity for an RTN 

network. Therefore, this paper considers the values of RTN reliability and robustness in 

estimating the reserve capacity value for an RTN. Then, a model for maximizing the net value of 

reserve capacity for an RTN is proposed here for the first time and solved with a Quantum 

Genetic Algorithm (QGA). The proposed model and QGA can be applied practically in 

determining the reserve capacity that maximizes the net value.  

The remainder of this paper is organized as follows: the research on the travel time 

reliability and robustness of transportation networks is reviewed in section 2. The methodology 

in section 3 presents (a) the framework for evaluating the value and net value of reserve capacity, 

(b) the models for measuring the value and net value of reserve capacity and (c) the model for 

maximizing the net value of reserve capacity. The application of QGA to solve the net value 

maximization model is presented in section 4. The proposed model and method are applied to 

Chengdu’s RTN in section 5. Finally, the conclusions of the study are discussed in section 6.  

 

2. Literature review 

2.1 The travel time reliability of transportation networks 

Many studies analyzed the reliability of a transportation network based on travel time 

reliability (Carrion and Levinson, 2012). Various proposed metrics that measure the travel time 

reliability on transportation networks are shown in Table 1. The buffer time index was widely 

used for measuring travel time reliability, since it not only measured the travel time reliability, 

but also guided passengers to allow additional travel time for reliably reaching their destinations. 

For example, the travel time reliability on the London Underground was evaluated with the 

buffer time index according to the passengers’ trip time obtained from Automatic Fare 
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Collection data (Uniman et al. 2010). The buffer time index for London bus routes was evaluated 

using Automatic Vehicle Location data (Ehrlich, 2010). The design criteria for the travel time 

reliability metric from the passengers’ perspective was proposed by Wood (2015) and she noted 

that the buffer time index satisfies the criteria for measuring travel time reliability. 

Table 1 Indicators for measuring the travel time reliability of transportation networks 

Indicators Description 

Coefficient of variation 

(Pu, 2011) 
The ratio of the standard deviation to the mean.  

Skewness of travel time 

(Van Lint, et al. 2008) 

The ratio of the difference between 90th percentile 

trip time and 50th percentile trip time to the difference 

between 50th percentile trip time and 10th percentile trip 

time.  

90th or 95th percentile trip 

time (Lomax and Margiotta, 2003) 

90th or 95th percentile trip time used as the reliable 

travel time 

Buffer time (Furth and 

Muller, 2006) 

The difference between the average travel time and 

95th percentile travel time. 

Buffer time index (Furth 

and Muller, 2006) 

The buffer time as a percentage of the average travel 

time. 

On-time arrival (Lo, et al. 

2006) 

The probability that a trip arrives within the travel 

time budget. 

Travel time unreliability 

(Lomax and Margiotta, 2003) 
The fraction of late arriving trips   

Total travel time budget 

(Lo, et al. 2006) 

The minimum travel time threshold that satisfies a 

certain reliability requirement is given by decision-makers at 

a certain confidence level. 

Mean-excess total travel 

time (Xu, et al. 2014) 

The conditional expectation of travel times exceeding 

the corresponding total travel time budget at a given 

confidence level. 

 

Although many researchers were attracted to work on measuring travel time reliability, only 

a small part of them measured the value of travel time reliability. The value of time reliability 

was evaluated with different methods, such as experimental design, theoretical analysis and 

travel time estimation (Carrion and Levinson, 2012). Different models were proposed to measure 

the value of time reliability. For example, Nam et al. (2005) expressed the value of reliability on 

a road network in terms of standard deviation and maximum delay. Hensher et al. (2011) 

measured the value of expected travel time savings with Multinomial and Nested Logit models. 

The results showed that the value of expected travel time savings considering time reliability was 

much higher than that without considering reliability. Some analytical models for measuring the 
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value of time and value of time reliability were constructed based on the utility maximization 

principle (Börjesson et al. 2012 & Uchida, 2014). Although measuring the value of travel time 

reliability on a transportation network has received increasing attention, most studies focused on 

the value of road network reliability. A few studies have measured the value of travel time 

reliability on an RTN. In recent years, researchers have started to consider passengers’ trip 

details (the crowding in vehicles, seat availability as well as transfer times) when estimating the 

travel time reliability and its value. These details were reflected in the passengers’ perceived 

travel time (PTT) which was used by Jenelius (2018) to measure the transportation network 

reliability.  

 

2.2 The robustness of transportation networks 

Many studies on the robustness of transportation networks focused on constructing 

indicators for measuring topological characteristics of networks and analyzing the effects of 

physical links degradation on network connectivity. The indicators included the number of cyclic 

paths in the network (Derrible and Kennedy, 2010), the mean of the reciprocal of the shortest 

distances among all nodes and the proportion of connected nodes in the largest connected 

subgraph before and after the network was damaged (Yang et al. 2015). Researchers investigated 

the impact of random interruptions and intentional attacks on the robustness of urban rail transit 

networks (Derrible and Kennedy, 2010 & Zhang et al. 2011), public transportation networks 

(Rodriguez-Nunez and Garcia-Palomares, 2014) and an air transportation network (Lordan et al. 

2014). The results showed, unsurprisingly, that intentional attacks had a greater negative impact 

on transportation networks than random interruptions. The critical links or nodes in the network 

were identified according to the network performance reduction due to the failure of links or 

nodes (Lordan and Albareda-Sambola 2019 & Barker, et al. 2013).  

The robustness indicators proposed based on topologies of networks could be applied to a 

wide range of transportation networks. However, these indicators could not measure the service 

quality changes in transportation networks, such as congestion of the network, passengers’ 

transfer times and travel comfort. Therefore, traffic demand and transportation supply were 

considered in studying the robustness of a transportation network (Mattsson and Jenelius, 2015). 

Nagurney and Qiang (2007) analyzed the robustness of a road network when the capacities of 
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links decrease by utilizing Bureau of Public Road link travel cost functions and a network 

efficiency measure. Muriel-Villegas et al. (2016) considered traffic flows and capacity when 

deriving the vulnerability and connectivity reliability of inter-urban transportation systems under 

network disruptions. Sullivan et al. (2010) identified the critical links of a road network with 

link-based capacity-disruption values and quantified the network robustness of a road network. 

They found that the relations among network robustness, the capacity-disruption level and 

network connectivity were non-linear. Faturechi et al. (2014) proposed a stochastic integer model 

to assess and maximize the resilience of an airport’s runway and taxiway network under different 

potential damage scenarios, which aimed at quickly restoring post-event takeoff and landing 

capacities.  

The studies on measuring the robustness of transportation networks were much more than 

measuring its value. Cats (2016) estimated the robustness value of public transportation 

development plan based on the passengers’ travel time loss. The result showed that neglecting 

the robustness value resulted in the underestimation of the benefits of plans. Jenelius and Cats 

(2015) assessed the value of new links for the robustness of a rail-based public transportation 

network in Stockholm, Sweden in terms of passenger welfare under disruptions. Cats and 

Jenelius (2015) also estimated the value of reserve capacity for alternative links on the public 

transportation network in Stockholm, which aimed at mitigating the impact of disruptions. They 

used the hypothesized traffic disturbances rather than actual disturbances data to measure the 

value of network robustness enhancement. Finally, they suggested that the costs of providing 

reserve capacity and constructing new links, which are not estimated in their study, should be 

considered when measuring the value of network robustness.  

 

2.3 Literature review summary  

Many valuable studies have been done on measuring the reliability and robustness of 

transportation networks. While some models and methods have been proposed separately for 

estimating the value of the reliability and robustness of road networks, only a few articles have 

measured the value of reliability or robustness for RTNs. Although some studies (U.S. DHS., 

2010; Jeekel, 2010; Cats, 2016) suggest that estimating the value of an investment should 

consider the value of reliability and robustness enhancement, no studies are found that estimate 
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the value of reserve capacity which is an investment in an RTN while considering the values of 

both network reliability and network robustness. In addition, no model has been found for 

maximizing the net value of reserve capacity while considering the value of network reliability 

and network robustness.   

 

3 Methodology 

3.1 Framework for estimating the value and net value of reserve capacity  

The value of reserve capacity on an RTN considering the values of reliability and 

robustness is estimated from both the passengers’ perspective and the operator’s perspective. 

Passengers pay attention to the reliability of the RTN, travel time, travel comfort and fare 

when the RTN operates normally. The travel time, travel comfort (crowding in the vehicle and 

seat availability) and fare can be comprehensively measured by the passengers’ generalized 

travel cost (GTC), which equals fare and the monetary value of the perceived travel time (PTT). 

A trip’s PTT is the sum of the weighted time components and increased PTT due to transfers. In 

Jenelius (2018), the travel reliability is measured with perceived buffer time (PBT) which equals 

the 95th percentile PTT minus the average PTT, since it represents the extra PTT needed for 

arriving at the destination station with 95% on-time arrival probability.  

Operators are mainly concerned with the robustness of an RTN when disturbances occur and 

with the cost of providing reserve capacity. The RTN’s robustness is its ability to withstand 

disturbances without a significant reduction in system performance. The system performance 

here is measured by the passengers’ total GTC and an RTN’s robustness is measured by the 

difference in system performance with and without disturbances.  

Reserve capacity reduces the passengers’ GTC and PBT (i.e., improves travel time 

reliability) when the network operates normally. Reserve capacity also enhances the RTN’s 

ability to withstand disturbances (i.e., enhances robustness) when disturbances occur. Therefore, 

the value of reserve capacity consists of three parts: (1) reduction in passengers’ total GTC 

compared with no reserve capacity when the RTN operates normally; (2) the value of reliability 

enhancement, which is the decrease in the monetary cost of PBT compared with no reserve 
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capacity when the RTN operates normally; (3) the value of robustness enhancement, which is the 

reduction in passengers’ total GTC compared with no reserve capacity when disturbances occur 

(Cats and Jenelius, 2015). The cost of providing reserve capacity consists of the maintenance 

cost, depreciation fee, electricity cost and labor cost. The net value of reserve capacity is the 

value of reserve capacity minus its cost. The value and net value of reserve capacity are 

estimated in four steps, as shown in Fig.1:  

Step 1: The data are prepared for the estimation.  

Step 2: The passengers’ GTC and PTT are estimated by applying a stochastic user 

equilibrium model (Liu et al. 2009) to assign passenger OD trips on the RTN.  

Step 3: The value of reserve capacity is converted into monetary terms from the passengers’ 

and operator’s perspectives.  

Step 4: The net value of reserve capacity is estimated. 
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Fig. 1 The framework for estimating the value and net value of reserve capacity.  

 

3.2 Assumptions and notations 

Some basic assumptions are made for estimating the value and net value of reserve 

capacity: 

A1. The direct impacts of disturbances in an RTN can be examined in train operations, i.e. 

in train cancellations and delays. The train delays may cause subsequent train cancellations. To 
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reduce the number of disturbance scenarios, train delays are converted into train cancellations. 

The quotient of the delay time divided by headway of the line on which it occurs is rounded to 

estimate the number of canceled trains due to a train delay. 

A2. Due to the disturbances, some passengers may not able to board any train. Those 

passengers may transfer to other transportation modes (bus and taxi) or abandon their trips to 

avoid long waits for trains. Their GTC is assumed to be the maximum GTC of passengers who 

can travel on the RTN. 

A3. New passengers attracted by reserve capacity are not considered. Thus, the passenger 

OD trips distribution with and without the reserve capacity remains the same. 

A4. The probabilities of disturbances occurring on each line are independent. 

The notations used in the model formulation are listed in Table 2. 

Table 2 Notation used in the model formulation. 

Set Definition 

𝐸 Set of links. 

𝑁 Set of stations. 

𝐿 Set of rail transit lines 

𝑌 Set of disturbances during the analysis period. 

𝑍 Set of trains running on the RTN during the analysis period. 

𝑍𝑦  Set of canceled trains due to disturbance 𝑦 during the analysis period. 

𝑃𝑜𝑑 Set of travel paths from station 𝑜 to station 𝑑. 

Element Definition 

𝑖 Rail transit line 𝑖, 𝑖 ∈ 𝐿. 

𝑜 and 𝑑 Origin station 𝑜 and destination station 𝑑, 𝑜, 𝑑 ∈ 𝑁. 

𝑦 Disturbance 𝑦, 𝑦 ∈ 𝑌. 

𝑘 Path 𝑘 from station 𝑜 to station 𝑑, 𝑘 ∈ 𝑃𝑜𝑑 . 

Parameters Definition 

𝛽1, 𝛽2, 𝛽3 and 

𝛽4 

Value of time weights for waiting time, walking time, in-vehicle time and 

transfer times, respectively. 

𝛼 Value of time parameter (¥/hour). 



 202 

𝜇1,𝑖, 𝜇2,𝑖, 𝜇3,𝑖 

𝜇4,𝑖 and 𝜇5,𝑖 

Maintenance cost per vehicle-hour, maintenance cost per vehicle-kilometer, 

depreciation fee per vehicle-hour, electricity cost per vehicle-kilometer and labor 

cost per vehicle-hour, respectively, for trains on line 𝑖 (¥).  

Variables Definition 

𝑏 Total number of lines on an RTN. 

𝐵𝛿𝑖,𝑥 Net value of reserve capacity 𝛿𝑖,𝑥 during the analysis period (¥). 

𝐵𝑘
𝑜𝑑 PBT from station 𝑜 to station 𝑑 on path 𝑘 (hours). 

𝐵𝑘
𝑜𝑑(0,0) and 

𝐵𝑘
𝑜𝑑(0, 𝛿𝑖,𝑥) 

PBTs from station 𝑜 to station 𝑑 on path 𝑘 without and with reserve capacity 

𝛿𝑖,𝑥, respectively, during normal operations (hours). 

𝐶𝛿𝑖,𝑥 Cost of providing reserve capacity 𝛿𝑖,𝑥 during the analysis period (¥). 

𝐶∗ A specified cost (¥). 

𝐶𝑛,𝑘
𝑜𝑑 (0,0) and 

𝐶𝑛,𝑘
𝑜𝑑 (0, 𝛿𝑖,𝑥) 

GTC for passenger 𝑛 from station 𝑜 to station 𝑑 on path 𝑘 without and with 

reserve capacity 𝛿𝑖,𝑥, respectively, when the RTN operates normally (¥). 

𝐶𝑛,𝑘
𝑜𝑑 (𝑦, 0) and 

𝐶𝑛,𝑘
𝑜𝑑 (𝑦, 𝛿𝑖,𝑥) 

GTC for passenger 𝑛 from station 𝑜 to station 𝑑 on path 𝑘 without and with 

reserve capacity 𝛿𝑖,𝑥, respectively, when the disturbance y  occurs (¥). 

𝐶𝑛,𝑘
𝑜𝑑  GTC for passenger 𝑛 traveling from station 𝑜 to station 𝑑 on path 𝑘 (¥). 

𝑓𝑛,𝑘
𝑜𝑑 Passenger 𝑛’s fare from station 𝑜 to station 𝑑 on path 𝑘 (¥). 

ℎ𝑖 Minimum safe headway of line 𝑖 (hour). 

𝑙𝜏,𝑖 A train’s running distance on line 𝑖 during 𝜏 hours (kilometers). 

𝑚𝑘
trans Passenger 𝑛’s transfer times on path 𝑘. 

𝑛𝑖 Number of cars per train on line 𝑖. 

𝑇𝑛,𝑘
𝑜𝑑  PTT for passenger 𝑛 from station 𝑜 to station 𝑑 on path 𝑘 (hours). 

𝑇𝑘,95
𝑜𝑑  and 𝑇𝑘,∗

𝑜𝑑 
95th percentile PTT and the mean of PTT, respectively, from station 𝑜 to station 

𝑑 on path 𝑘 (hours). 

𝑡𝑛,𝑘
wait, 𝑡𝑛,𝑘

walk and 

𝑡𝑛,𝑘
in   

Passenger 𝑛’s waiting time, walking time and in-vehicle time on path 𝑘 (hours). 

𝑉GTC(0, 𝛿𝑖,𝑥) 
Value of reserve capacity 𝛿𝑖,𝑥 to reduce passengers’ total GTC during the 

analysis period when the RTN operates normally (¥). 

𝑉rel(0, 𝛿𝑖,𝑥) 
Value of reserve capacity 𝛿𝑖,𝑥 for reliability enhancement during the analysis 

period when the RTN operates normally (¥). 
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𝑉rob(𝑦, 𝛿𝑖,𝑥) 
Value of reserve capacity 𝛿𝑖,𝑥 for robustness enhancement during the analysis 

period when the disturbance 𝑦 occurs (¥). 

𝑉(0, 𝛿𝑖,𝑥) and 

𝑉(𝑌, 𝛿𝑖,𝑥) 

Value of reserve capacity 𝛿𝑖,𝑥 during the analysis period when the RTN operates 

normally and disturbances occur, respectively (¥). 

𝑉𝛿𝑖,𝑥 Value of reserve capacity 𝛿𝑖,𝑥 during the analysis period (¥). 

𝑣𝑜𝑑 
Passenger trips from station 𝑜 to station 𝑑 during the analysis period (trips per 

hour). 

𝑣𝑘
𝑜𝑑 

Passenger trips from station 𝑜 to station 𝑑 on path 𝑘 during the analysis period 

(trips per hour). 

𝑧𝑖 Actual train frequency on line 𝑖 during the analysis period. 

𝛿𝑖,𝑥 Providing 𝑥 reserve trains on line 𝑖 during the analysis period. 

𝜏 Duration of the analysis period (hours). 

𝜌 Probability that the RTN operates normally (%). 

Decision 

variables 
Definition 

𝑎𝑖 
A binary variable. If line 𝑖 is chosen to provide reserve capacity, then 𝑎𝑖 = 1, 

otherwise 𝑎𝑖 = 0. 

𝑥 The number of reserve trains on line 𝑖, which is a natural number. 

 

3.3 RTN, disturbances and reserve capacity  

An RTN is represented here as a directed and weighted graph 𝐺 = (𝑁, 𝐸). 𝑁 and 𝐸 

represent the station collection and link collection, respectively, on the RTN. The set of rail 

transit lines on the RTN is represented 𝐿. The set of trains running on the RTN is represented as 

𝑍 during the analysis period. 

Disturbances that cause train cancellations and train delays are considered in estimating the 

value of reserve capacity. A set of disturbances during the analysis period in the RTN is 

represented as 𝑌. 𝑍𝑦, 𝑍𝑦 ⊆ 𝑍 is the set of canceled trains due to disturbance 𝑦, 𝑦 ∈ 𝑌 during the 

analysis period.  
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The reserve capacity on an RTN network is realized by providing reserve trains on lines. 

The reserve capacity for line 𝑖, 𝑖 ∈ 𝐿 is represented by 𝛿𝑖,𝑥, which means 𝑥 reserve trains are 

provided on line 𝑖 during the analysis period.  

3.4 GTC and PBT estimation 

Passengers’ trip time is separated into walking time (access, egress and transfer walking 

time), waiting time (waiting time at the origin and transfer stations) and in-vehicle time. Each 

time component has its own value and weights (Todd 2008). Studies show that the time 

components are perceived differently by passengers, e.g. waiting time has a much higher 

perceived value compared with in-vehicle time when the vehicle is not crowded. The crowding 

in vehicles, seat availability and transfer times affect passengers’ PTT (Bruzelius, 1981). The 

passengers’ PTT on a path is the sum of the weighted time components and increased PTT due to 

transfers in the trip. The PTT for passenger 𝑛 from station 𝑜 to station 𝑑 on path 𝑘 represented as 

𝑇𝑛,𝑘
𝑜𝑑  is computed with Eq. (1): 

𝑇𝑛,𝑘
𝑜𝑑 = 𝛽1 ∙ 𝑡𝑛,𝑘

wait + 𝛽2 ∙ 𝑡𝑛,𝑘
walk + 𝛽3 ∙ 𝑡𝑛,𝑘

in + 𝛽4 ∙ 𝑚𝑘
trans                     (1) 

where 𝑡𝑛,𝑘
wait, 𝑡𝑛,𝑘

walk, 𝑡𝑛,𝑘
in  and 𝑚𝑘

trans are passenger 𝑛’s waiting time, walking time, in-vehicle time 

and transfer times on path 𝑘. 𝛽1, 𝛽2, 𝛽3 and 𝛽4 are weights for waiting time, walking time, in-

vehicle time and transfer times, respectively. The values of the weights for trip time components 

are introduced in section 5.1. 𝛽3 is special, since it is related to seat availability and crowding in 

trains. The load factor, which is the ratio of passenger trips to the number of seats on a train, is 

used to indicate the crowding in the train. The values of 𝛽3 at different load factors when sitting 

or standing are shown in Table 7.  

The passengers’ GTC is the sum of the fare and the monetary value of passenger’s PTT, 

which is estimated with Eq. (2): 

𝐶𝑛,𝑘
𝑜𝑑 = 𝑓𝑛,𝑘

𝑜𝑑 + 𝛼 ∙ 𝑇𝑛,𝑘
𝑜𝑑                                                  (2) 

where 𝐶𝑛,𝑘
𝑜𝑑  and 𝑓𝑛,𝑘

𝑜𝑑 are passenger 𝑛’s GTC and fare for traveling from station 𝑜 to station 𝑑 on 

path 𝑘. 𝛼 is the value of time parameter related to the passengers’ income (Litman, 2008) that 

converts the passenger’s PTT into money.  

The PBT is the difference between the 95th and the average PTT: 
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𝐵𝑘
𝑜𝑑 = 𝑇𝑘,95

𝑜𝑑 − 𝑇𝑘,∗
𝑜𝑑                                                    (3) 

where 𝐵𝑘
𝑜𝑑, 𝑇𝑘,95

𝑜𝑑  and 𝑇𝑘,∗
𝑜𝑑 are the PBT, 95th percentile PTT and average of PTT, respectively, 

from station 𝑜 to station 𝑑 on path 𝑘.  

 

3.5 The value and net value of reserve capacity  

3.5.1 The value of reserve capacity from the passengers’ perspective  

(1) Reducing the passengers’ total GTC during normal network operations 

Reserve capacity reduces the passengers’ total GTC when the network operates normally. 

The reduction in passengers’ total GTC is estimated with Eq. (4): 

𝑉GTC(0, 𝛿𝑖,𝑥) = ∑ ∑ ∑ ∑ 𝐶𝑛,𝑘
𝑜𝑑 (0,0) − 𝐶𝑛,𝑘

𝑜𝑑(0, 𝛿𝑖,𝑥)𝑛∈𝑣𝑘
𝑜𝑑𝑘∈𝑃𝑜𝑑𝑑∈𝑁,𝑜≠𝑑𝑜∈𝑁           (4) 

where 𝑉GTC(0, 𝛿𝑖,𝑥) is the reduction in passengers’ total GTC with reserve capacity 𝛿𝑖,𝑥 during 

the analysis period when the RTN operates normally. 𝑃𝑜𝑑 is the set of travel paths from station 𝑜 

to station 𝑑. 𝐶𝑛,𝑘
𝑜𝑑 (0,0) and 𝐶𝑛,𝑘

𝑜𝑑(0, 𝛿𝑖,𝑥) are estimated with Eqs.1 and 2, which are passenger 𝑛’s 

GTC from station 𝑜 to station 𝑑 on path 𝑘 without and with reserve capacity, respectively, when 

the RTN operates normally. 

(2) Enhancing the RTN reliability during normal network operations 

The value of reliability enhancement is the monetary value converted from decreased PBT 

when the RTN operates normally, which is estimated with Eq. (5): 

𝑉rel(0, 𝛿𝑖,𝑥) = ∑ ∑ ∑ 𝑣𝑘
𝑜𝑑 ∙ (𝐵𝑘

𝑜𝑑(0,0) − 𝐵𝑘
𝑜𝑑(0, 𝛿𝑖,𝑥)) ∙ 𝛼𝑘∈𝑃𝑜𝑑𝑑∈𝑁,𝑜≠𝑑𝑜∈𝑁         (5) 

where 𝑉rel(0, 𝛿𝑖,𝑥) is the value of reserve capacity 𝛿𝑖,𝑥 for reliability enhancement during the 

analysis period when the RTN operates normally. 𝐵𝑘
𝑜𝑑(0,0) and 𝐵𝑘

𝑜𝑑(0, 𝛿𝑖,𝑥) are estimated with 

Eqs.1 and 3, which are PBTs from station 𝑜 to station 𝑑 on path 𝑘 without and with reserve 

capacity 𝛿𝑖,𝑥
𝑗

, respectively, when the RTN operates normally. 𝑣𝑘
𝑜𝑑 is the passenger trips from 

station 𝑜 to station 𝑑 on path 𝑘 during the analysis period.  
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3.5.2 The value and cost of providing reserve capacity from the operator’s perspective 

(1) Enhancing the robustness of the RTN when disturbances occur 

The value of robustness enhancement is the passengers’ total GTC with reserve capacity minus 

the passengers’ total GTC without reserve capacity when disturbances occur, which is estimated 

with Eq. (6): 

𝑉rob(𝑦, 𝛿𝑖,𝑥) = ∑ ∑ ∑ ∑ 𝐶𝑛,𝑘
𝑜𝑑 (𝑦, 0) − 𝐶𝑛,𝑘

𝑜𝑑(𝑦, 𝛿𝑖,𝑥)𝑛∈𝑣𝑘
𝑜𝑑𝑘∈𝑃𝑜𝑑𝑑∈𝑁,𝑜≠𝑑𝑜∈𝑁          (6) 

where 𝑉rob(𝑦, 𝛿𝑖,𝑥) is the value of reserve capacity 𝛿𝑖,𝑥 for enhancing the RTN’s robustness 

during the analysis period when the disturbance 𝑦 occurs. 𝐶𝑛,𝑘
𝑜𝑑 (𝑦, 0) and 𝐶𝑛,𝑘

𝑜𝑑(𝑦, 𝛿𝑖,𝑥) are 

estimated with Eqs.1 and 2, which are passenger 𝑛’s GTC from station 𝑜 to station 𝑑 on path 𝑘 

without and with reserve capacity, respectively, when the disturbance 𝑦 occurs. 

 

(2) The cost of providing reserve capacity 

The cost of providing reserve capacity includes the maintenance cost for reserve trains, 

reserve trains depreciation, electricity cost for reserve trains operation and labor cost for 

operating reserve trains, which is thus expressed as Eq. (7): 

𝐶𝛿𝑖,𝑥 = 𝑥 ∙ 𝑛𝑖 ∙ [𝜇1,𝑖 ∙ 𝜏 + 𝜇2,𝑖 ∙ 𝑙𝜏,𝑖 + 𝜇3,𝑖 ∙ 𝜏 + 𝜇4,𝑖 ∙ 𝑙𝜏,𝑖 + 𝜇5,𝑖 ∙ 𝜏]                (7) 

where 𝐶𝛿𝑖,𝑥 is the cost of proving reserve capacity 𝛿𝑖,𝑥 during the analysis period. 𝑛𝑖 is the 

number of cars per train on line 𝑖. 𝜏 denotes the analysis period duration in hours. 𝜇1,𝑖 and 𝜇2,𝑖 

are maintenance cost per vehicle-hour and maintenance cost per vehicle-kilometer, respectively, 

for trains on line 𝑖. 𝜇3,𝑖 𝜇4,𝑖 and 𝜇5,𝑖 are depreciation fee per vehicle-hour, electricity cost per 

vehicle-kilometer and labor cost per vehicle-hour, respectively, for trains on line 𝑖. 𝑙𝜏,𝑖 is a train’s 

running distance on line 𝑖 during the analysis period.  

 

3.5.3 The value and net value of reserve capacity 
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The value of reserve capacity is estimated with Eq. (8) when an RTN operates normally and 

with Eq. (9) when disturbances occur. The value of reserve capacity considering probabilities of 

normal operation and disturbances occurrence is estimated with Eq (10). 

𝑉(0, 𝛿𝑖,𝑥) = 𝑉GTC(0, 𝛿𝑖,𝑥) + 𝑉rel(0, 𝛿𝑖,𝑥)                                  (8) 

𝑉(𝑌, 𝛿𝑖,𝑥) = ∑ 𝑉𝑟𝑜𝑏(𝑦, 𝛿𝑖,𝑥)𝑦∈𝑌                                          (9) 

𝑉𝛿𝑖,𝑥 = 𝑉(0, 𝛿𝑖,𝑥) ∙ 𝜌 + 𝑉(𝑌, 𝛿𝑖,𝑥) ∙ (1 − 𝜌)                               (10) 

where 𝑉(0, 𝛿𝑖,𝑥) and 𝑉(𝑌, 𝛿𝑖,𝑥) are the value of reserve capacity 𝛿𝑖,𝑥 during the analysis period 

when the RTN operates normally and disturbances occur, respectively. 𝜌 is the probability that 

the RTN operates normally. 𝑉𝛿𝑖,𝑥 is the value of reserve capacity 𝛿𝑖,𝑥 during the analysis period.  

The net value of reserve capacity 𝛿𝑖,𝑥 equals the value minus the cost of providing reserve 

capacity, which is estimated with Eq. (11):  

𝐵𝛿𝑖,𝑥 = 𝑉𝛿𝑖,𝑥 − 𝐶𝛿𝑖,𝑥                                                 (11) 

where 𝐵𝛿𝑖,𝑥 is the net value of reserve capacity 𝛿𝑖,𝑥 during the analysis period.  

 

3.6 Maximizing the net value of reserve capacity for the RTN 

To obtain optimal reserve capacity for the RTN, a model that maximizes the net value of 

reserve capacity is developed and shown in relations (12) to (17). 

maximize ∑ ∑ 𝑎𝑖 ∙ 𝐵𝛿𝑖,𝑥𝑖∈𝐿𝑖∈𝑀                                         (12) 

subject to:  

𝑎𝑖 ∈ {0,1}                                                         (13) 

0 ≤ 𝑎𝑖 ≤ 𝑏                                                        (14) 

𝑥 = 𝑎𝑖 ∙ 𝑥, 𝑥 ∈ ℕ                                                    (15) 

0 ≤ 𝑥 ≤ (
1

ℎ𝑖
− 𝑧𝑖) ∙ 𝜏, 𝑥 ∈ ℕ                                           (16) 
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∑ 𝑎𝑖 ∙ 𝐶𝛿𝑖,𝑥𝑖∈𝑙 ≤ 𝐶∗                                                   (17) 

where 𝑎𝑖 is a binary decision variable. If line 𝑖 is chosen to provide reserve capacity, then 𝑎𝑖 =

1; otherwise 𝑎𝑖 = 0. Constraint (14) limits that the lines chosen to provide reserve capacity is 

between 0 and the total number of lines 𝑏. 𝑥 is a decision variable which means the number of 

reserve trains on the line 𝑖 during the analysis period. Constraint (15) specifies that if line 𝑖 is 

chosen to have reserve capacity, then x  reserve trains will be provided for it. Otherwise, the 

number of reserve trains on the line 𝑖 is 0. Constraint (16) specifies that the number of reserve 

trains on line 𝑖 during the analysis period is limited by the maximum safe frequency and actual 

train frequency on line 𝑖. ℎ𝑖 and 𝑧𝑖 are the minimum safe headway and actual frequency on line 𝑖, 

respectively, during the analysis period. 𝜏 is the analysis period duration in hours. Constraint (17) 

specifies that the cost of providing reserve capacity cannot exceed a specified 𝐶∗.   

 

4 Solution Procedure  

Passenger trips are assigned on the RTN to determine passenger flows on links, load factors 

on links, and passengers’ route choices. Then, passengers’ GTC and PBT are estimated to 

estimate the value and net value of reserve capacity. The model developed to maximize the net 

value of reserve capacity in section 3 is a Nonlinear Integer Programming model, which is 

difficult to solve. The Quantum genetic algorithm (QGA) is used here to solve the optimization 

model due to its fast convergence, as well as its global and local search capabilities, which are 

stronger than a standard genetic algorithm’s (SGA). QGA improves the convergence speed and 

search capability by adopting the coding mechanism of a Quantum probability vector and the 

crossover operator from SGA, as well as an update strategy from quantum computation (Lee et 

al. 2011).  

 

4.1 Net value estimation for reserve capacity 

Passenger trips are assigned to the RTN with a stochastic user equilibrium assignment 

model during the analysis period, which is solved by the method of successive weighted 

averages (Liu et al. 2009).  
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4.1.1 The method of successive weighted averages   

The steps of applying the method of successive weighted averages to solve the stochastic 

user equilibrium assignment model are as follows: 

Step 1: Set the iteration’s number ℎ = 1, the algorithm variable 𝛾0 = 1, the algorithm 

parameter 𝑑 ≥ 0, and the stop iteration criterion 휀. The travel paths sets between OD pairs are 

determined using Yen's algorithm. The GTCs of paths in travel path sets are computed without 

considering passenger flow. 

Step 2: Assign passenger OD trips to the URT network with the Logit model according to 

the GTCs of travel paths to compute passenger flow on each link, which is represented 

as 𝑓𝑒
ℎ, ∀𝑒 ∈ 𝐸. 

Step 3: Compute the GTCs of travel paths according to the passenger flow on links 

 𝑓𝑒
ℎ, ∀𝑒 ∈ 𝐸. The passenger trips are assigned to the RTN again with the Logit model according 

to the GTCs of travel paths. The passenger flows on each link  𝑧𝑒
ℎ, ∀𝑒 ∈ 𝐸 is re-computed.  

Step 4: Let ℎ = ℎ + 1, 𝜏ℎ = ℎ
𝑑 and 𝜃ℎ = 𝛾ℎ−1 + 𝜏ℎ. Passenger flow on each link is 

updated with the Eq. (18): 

 𝑓𝑒
ℎ+1 =  𝑓𝑒

ℎ + 𝜃ℎ ∙ ( 𝑧𝑒
ℎ −  𝑓𝑒

ℎ)                                         (18) 

Step 5: Convergence judgment. If 
√( 𝑓𝑒

ℎ+1 −  𝑓𝑒
ℎ)
2

∑  𝑓𝑒
ℎ

𝑒∈𝐸

⁄
≤ 휀, then stop iteration and 

 𝑓𝑒
ℎ+1 is passenger flow after passenger trip assignment; otherwise, go to step 3. 

 

4.1.2 Passengers’ GTC and PBT estimation  

After traffic assignment, the passengers’ GTC is estimated with Eqs. 1 and 2. To compute 

passengers’ PBT on a path, enough passengers’ PTTs on the path are generated by applying a 

Monte Carlo simulation (Mooney, 1997 & Johansson et al. 2013). The passengers’ PBT from 

station 𝑜 to station 𝑑 on path 𝑘, 𝑘 ∈ 𝑃𝑜𝑑 which represents as 𝐵𝑘
𝑜𝑑 is estimated as:  

Step 1: Initialize.  
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Initialize the iteration number 𝑛=0;  

Set the maximum iteration step 𝐻; 

Step 2: Generate passengers’ PTT on path 𝑘 during 𝑛 iteration. 

Let 𝑛 = 𝑛+1. 

Step 2.1: generate a weighted waiting time for passenger 𝑛. 

The waiting time is a uniformly distributed random variable ranging from 0 to the headways 

of lines (Dixit et al. 2019). Therefore, the waiting time for passenger 𝑛 traveling on path 𝑘 is 

generated according to the headway of the waiting lines on path 𝑘. A weighted waiting time for 

passenger 𝑛 traveling on the path 𝑘 is 𝛽1 ∙ 𝑡𝑛,𝑘
𝑤𝑎𝑖𝑡 . 

Step 2.2: generate a weighted walking time for passenger 𝑛. 

Generate a random walking speed between 53.33 m/min and 90.50 m/min (TranSafety, 

1997). A generated walking time for passenger 𝑛 traveling on path 𝑘 is the quotient of the 

walking distance on the path 𝑘 and the generated walking speed. The weighted walking time for 

passenger 𝑛 traveling on the path 𝑘 is 𝛽2 ∙ 𝑡𝑛,𝑘
𝑤𝑎𝑙𝑘. 

Step 2.3: compute the weighted in-vehicle time for passenger 𝑛. 

  The in-vehicle time on a path is assumed to be fixed, since it fluctuates very slightly (Sun and 

Xu, 2012 & Kusakabe et al. 2010). The weight of in-vehicle time 𝛽3 is related to load factors on 

links. The load factors on links are determined after passenger trips assignment. Then, the values 

of 𝛽3 on links are determined. Therefore, the weighted in-vehicle time for passenger 𝑛 travel on 

path 𝑘 is the sum of weighted in-vehicle time on links belonging to path 𝑘.  

Step 2.4: compute the increased PTT for passenger 𝑛. 

The increased PTT due to transfer for passenger 𝑛 is computed with 𝛽4 ∙ 𝑚𝑘
𝑡𝑟𝑎𝑛𝑠 according 

to transfer times on path 𝑘. 

Step 2.5: estimate the PTT for passenger 𝑛. 
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The PTT for passenger 𝑛 traveling on path 𝑘 is the sum of weighted trip components, 

increased PTT due to transfer, which is estimated with Eq. (1).  

Step 3: Determine whether the iteration is terminated. 

If 𝑛 ≤ 𝐻, return to step 2; otherwise, go to step 4.   

Step 4: Estimate PBT from station 𝑜 to station 𝑑 on path 𝑘. 

The passengers’ PTT is obtained according to steps 1 to 4. The PBT on path 𝑘 that is 

represented as 𝐵𝑘
𝑜𝑑 is estimated with Eq. (3). 

 

4.1.3 Net value estimation 

Passengers’ total GTC on an RTN is estimated with and without reserve capacity when the 

network operates normally after passenger trips are assigned to the network. Thus the value of 

the reduction in passengers’ total GTC is estimated. The passengers’ PBTs on paths between OD 

pairs are estimated with and without reserve capacity when the network operates normally 

according to Monte Carlo simulation introduced in 4.1.2, Thus the value of RTN reliability 

enhancement is estimated with Eq. (4). The value of reserve capacity during normal operations is 

estimated with Eq. (8). 

The trains on the network during the analysis period are canceled corresponding to a 

disturbance. Then, passengers’ GTC is estimated with and without reserve capacity when a 

disturbance occurs. The value of RTN robustness enhancement when a disturbance occurs is 

estimated with Eq. (6). The value of reserve capacity considering different disturbances is 

estimated with Eq. (9). 

The value of reserve capacity is estimated with Eq. (10) when the network operates 

normally or disturbances occur. The cost of providing reserve capacity is estimated with Eq. (7). 

Then, the net value of reserve capacity is estimated with Eq. (11).  
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4.2 QGA application for maximizing the net value of reserve capacity 

The QGA computation flowchart is shown in Fig. 2. 

Measure individuals in the population

Calculating individual fitness in the population:

(1) compute the net benefit of each individual；
(2) evaluation fitness of each individual and record the 

best individual；

generation

maximum  generation
population

Initialize: 

If Output the best solution

Update population with quantum rotation gate.

 𝑡 = 0 
 𝑀 

 𝑄(𝑡) 

𝑡 ≤ 𝑀 

𝑡 = 𝑡 + 1 

Yes

No

 

Fig. 2 QGA computation flowchart. 

 

The detailed steps for using the QGA to maximizes the net value of reserve capacity are as 

follows: 

Step 1: Initialize. 

Initialize the number of generation 𝑡 = 0; 

Set the maximum generation 𝑀; 

Construct 𝑛 quantum chromosomes as the initialization population 𝑄(𝑡) =

{𝑞1
𝑡 , 𝑞2

𝑡 , 𝑞3
𝑡 , … , 𝑞𝑛

𝑡 }. The length of the chromosome corresponding to reserve trains on a line is 

determined according to 2𝑚𝑖 − 1 ≥ 𝑛𝑖
∗. 𝑚𝑖 is the length of the chromosome corresponding to 
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reserve trains on line 𝑖. 𝑛𝑖
∗ is the maximum reserve trains that can run on line 𝑖, which equals the 

maximum safe frequency minus the actual frequency on line 𝑖. The length of the quantum 

chromosome for the reserve capacity of all lines equals ∑ 𝑚𝑖𝑖∈𝐿 . 

A pair of complex numbers are used to define a quantum bit. A quantum chromosome with 

length 𝑚 is described in Eq. (18) during 𝑡 evolving generation. 

𝑞𝑘
𝑡 = [

𝛼1,𝑡
𝛽1,𝑡

|
𝛼2,𝑡
𝛽2,𝑡

| |
𝛼3,𝑡
𝛽3,𝑡

|
…
… |
𝛼𝑓,𝑡
𝛽𝑓,𝑡

|
…
… |
𝛼𝑚,𝑡
𝛽𝑚,𝑡

|] , 𝑘 = 1,2,3,… , 𝑛                    (19) 

In Eq. (19), |𝛼𝑓,𝑡|
2
+ |𝛽𝑓,𝑡|

2
= 1, 𝑓 = 1,2,3, … ,𝑚. Assuming that the reserve capacity on 

line 1 corresponds to the first three quantum bits and the first three quantum bits have the 

probability amplitudes described in Eq. (20), then the numbers of reserve trains on line 1 are 

shown as Eq. (21) based on Eq. (20). 

[
𝛼1,𝑡
𝛽1,𝑡

|
𝛼2,𝑡
𝛽2,𝑡

| |
𝛼3,𝑡
𝛽3,𝑡

|] = [

1

√2
1

√2

|

√3

2
1

2

| |

1

2

√3

2

|]                                       (20) 

 Eq. (21) shows |0 0 0⟩, |0 1 0⟩, …, |1 1 1⟩, which indicates that reserve trains on line 1 are 0 

to 7. The probabilities of providing 0 to 7 reserve trains on line 1 are 
3

32
, 
9

32
, 
1

32
, 
3

32
, 
3

32
, 
9

32
, 
1

32
, and 

3

32
, respectively. 
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Step 2: Measure individuals in the population. 

A common solution set 𝑅(𝑡) = {𝑎1
𝑡 , 𝑎2

𝑡 , 𝑎3
𝑡 , … , 𝑎𝑘

𝑡 , … , 𝑎𝑛
𝑡 } is generated based on the state of 

𝑄(𝑡) = {𝑞1
𝑡 , 𝑞2

𝑡 , 𝑞3
𝑡 , … , 𝑞𝑘

𝑡 , … , 𝑞𝑛
𝑡 }. 𝑎𝑘

𝑡 = {𝑥1,𝑡, 𝑥2,𝑡, 𝑥3,𝑡, … , 𝑥𝑓,𝑡, … , 𝑥𝑚,𝑡}, 𝑘 = 1,2,3, … , 𝑛 is a series 

of 0 or 1. The value of  𝑥𝑓,𝑡, 𝑓 = 1,2,3, … ,𝑚 in a quantum chromosome 𝑎𝑘
𝑡  is determined based 

on the norm squared value of 𝛼𝑓,𝑡 or 𝛽𝑓,𝑡 in  𝑞𝑘
𝑡 . Based on 𝛼𝑓,𝑡, the value of 𝑥𝑓,𝑡 is determined as 

follows: generate a random number between 0 and 1. If the random number exceeds the norm 

squared value of qubit amplitude |𝛼𝑓,𝑡|
2
, then 𝑥𝑓,𝑡 = 1; otherwise, 𝑥𝑓,𝑡 = 0. 
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Step 3: Compute individual fitness in the population.  

Step 3.1: Compute the net value of each individual.  

The reserve trains on each line can be determined based on each individual 𝑎𝑘
𝑡 =

{𝑥1,𝑡, 𝑥2,𝑡, 𝑥3,𝑡, … , 𝑥𝑓,𝑡, … , 𝑥𝑚,𝑡}, 𝑘 = 1,2,3, … , 𝑛, 𝑎𝑘
𝑡 ∈ 𝑅(𝑡). e.g., assume the maximum reserve 

trains on line 1 is 7, thus the chromosome length for line 1’ reserve capacity is 3. The serve trains 

on line 1 is 22 ∙ 𝑥3,𝑡 + 2
1 ∙ 𝑥2,𝑡 + 2

0 ∙ 𝑥1,𝑡 for the individual 𝑎𝑘
𝑡 . Similarly, the reserve trains on 

other lines in the RTN can be determined with the individual 𝑎𝑘
𝑡 . Then, the net value for the 

individual 𝑎𝑘
𝑡  is estimated by applying the methods used in part 4.1  

Step 3.2: Evaluate fitness of each individual and record the best individual. 

The fitness of each individual is evaluated according to their net values. A higher net value 

indicates a higher fitness. The net value for the best individual with the highest fitness is 

recorded as 𝑎𝑘
𝑏𝑒𝑠𝑡 = {𝑥1,𝑡

𝑏𝑒𝑠𝑡, 𝑥2,𝑡
𝑏𝑒𝑠𝑡, 𝑥3,𝑡

𝑏𝑒𝑠𝑡, … , 𝑥𝑓,𝑡
𝑏𝑒𝑠𝑡, … , 𝑥𝑚,𝑡

𝑏𝑒𝑠𝑡}. 

Step 3.3: Stop judgment.  

If 𝑡 ≤ 𝑀, then go step 4, otherwise, stop the algorithm. 

Step 4: Update population 𝑸(𝒕) with quantum rotation gate. 

Step 4.1: Quantum rotation gate application.  

The quantum rotation gate is adopted for changing the bit on chromosomes to achieve 

population evolution, which is beneficial to search the optimal solution. The direction of the 

quantum rotation and value of the quantum rotation angle are determined with Table 3. 𝑥𝑓,𝑡, 𝑓 =

1,2, … ,𝑚 is the bits on the chromosome 𝑎𝑘
𝑡 , 𝑘 = 1,2, … , 𝑛. 𝑥𝑓,𝑡

𝑏𝑒𝑠𝑡, 𝑓 = 1,2, … ,𝑚 is the bits on the 

best chromosome 𝑎𝑘
𝑏𝑒𝑠𝑡. 𝑠(𝛼𝑓 , 𝛽𝑓) and  ∆𝜃𝑡 are the direction and value of the quantum rotation 

angle, respectively, which are determined with Table 3. 𝑓(𝑎𝑘
𝑡 ) and 𝑓(𝑎𝑘

𝑏𝑒𝑠𝑡) are the fitness of the 

individual 𝑎𝑘
𝑡  and fitness of 𝑎𝑘

𝑏𝑒𝑠𝑡, respectively. During the adjustment process, if the individual 

𝑎𝑘
𝑡 ’s fitness 𝑓(𝑎𝑘

𝑡 ) exceeds the best individual’s fitness 𝑓(𝑎𝑘
𝑏𝑒𝑠𝑡), then adjust the quantum bits on 

𝑞𝑘
𝑡  that corresponds to 𝑎𝑘

𝑡  to evolve 𝑠(𝛼𝑓 , 𝛽𝑓) in a direction conducive to the appearance of 𝑎𝑘
𝑡 . 
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Otherwise, adjust the quantum bits on 𝑞𝑘
𝑡  to evolve 𝑠(𝛼𝑓 , 𝛽𝑓) in a direction conducive to the 

appearance of 𝑎𝑘
𝑏𝑒𝑠𝑡. 

Step 4.2: update generation and return to step 2. 

Update generation 𝑡 = 𝑡 + 1 and return to step 2. 

Table 3 The direction of the quantum rotation and value of quantum rotation angle. 

𝑥𝑓,𝑡 𝑥𝑓,𝑡
𝑏𝑒𝑠𝑡 𝑓(𝑎𝑘

𝑡 ) > 𝑓(𝑎𝑘
𝑏𝑒𝑠𝑡) ∆𝜃𝑡 

𝑠(𝛼𝑓 , 𝛽𝑓) 

𝛼𝑓 ∙ 𝛽𝑓 > 0 𝛼𝑓 ∙ 𝛽𝑓 < 0 𝛼𝑓 = 0 𝛽𝑓 = 0 

0 0 False 0 0 0 0 0 

0 0 True 0 0 0 0 0 

0 1 False 0.01𝜋 +1 -1 0 ±1 

0 1 True 0.01𝜋 -1 +1 ±1 0 

1 0 False 0.01𝜋 -1 +1 ±1 0 

1 0 True 0.01𝜋 +1 -1 0 ±1 

1 1 False 0 0 0 0 0 

1 1 True 0 0 0 0 0 

 

5 Case studies 

5. 1 RTN in Chengdu 

Chengdu is the capital of the Chinese province of Sichuan. It is one of the three most 

populous cities in southwestern China. With its rapid development, Chengdu’s RTN has 

improved quickly. There were 174 stations, six metro lines (lines 1 to 6), three suburban railway 

lines (lines 7 to 9) and three intercity high-speed rail lines (lines 10 to 12) in Chengdu in May 

2019. The 174 stations are numbered 1 to 174. The terminal stations and transfer stations with 

their numbers as well as the lines with terminal stations numbers are shown in Fig. 3. The six 

metro lines carry more than 50% of public transportation trips in the central area of Chengdu (the 

area within the green box). The three suburban railway lines and three intercity high-speed rail 

lines serve public transportation in the suburban area of Chengdu, as well as between Chengdu 

and other small cities.  



 216 

157

159 164

161

170

117

171

56

172

174

128

Station

Metro lines

Suburban railway lines

Intercity high-speed rail lines

156

117

13

3

36

5690
50

6
47

10

7
84

80115
44

107 102

67

101

1

Line 1 (1-35)

35

Line 4 (128-102)

66

L
in
e 
5 
(3
-3
)

3

 

Fig. 3 The RTN network in Chengdu in May 2019. 

Chengdu’s RTN serves 355,868 passenger trips per hour during morning peak periods. To 

measure the value of reserve capacity for Chengdu’s RTN network during morning peak periods 

from 7:30 am to 9:30 am, the attributes of lines (as shown in Table 4), transfer walking distances 

at transfer stations, train running time on links during morning peak periods are obtained from 

Chengdu’s rail transit operators and a survey. To limit the length of this paper, we only list the 

transfer walking distances at some randomly selected transfer stations and train running time on 

some randomly selected links in Tables 5 and 6, respectively, during morning peak periods.  

Table 4 The attributes of lines in Chengdu’s RTN during morning peak periods. 

Lines 

Actual 

headway 

(seconds) 

Minimum safe 

headway 

(seconds) 

Actual 

frequency  

Train capacity 

(trips per train) 

Seats on per train 

1 120 90 30 1460 348 

2 164 120 22 1460 348 

3 180 120 20 1460 348 
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4 180 120 20 1460 348 

5 240 120 15 1460 348 

6 360 180 10 1460 348 

7 360 180 10 680 250 

8 600 450 6 680 250 

9 600 450 6 680 250 

10 600 450 6 1280 610 

11 450 360 8 1280 610 

12 450 360 8 1280 610 

 

Table 5 Transfer walking distances at some transfer stations.  

Station 
Transfer 

direction 
Walking distance (m) 

Transfer 

direction 
Walking distance (m) 

3 line 1 to line 5 174 line 5 to line 1 153 

3 line 7 to line 1 232 line 1 to line 7 203 

107 line 4 to line 5 247 line 5 to line 4 153 

117 line 4 to line 9 211 line 9 to line 4 196 

13 line 10 to line 1 196 line 1 to line 10 102 

 

Table 6 Train running times on some links.  

Link 

(station-station) 

Time (min) Link 

(station-station) 

Time (min) 

Downstream Upstream Downstream Upstream 

1-2 1.87 1.88 6-7 1.35 1.33 
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2-3 2.08 2.07 7-8 1.15 1.20 

3-4 1.47 1.47 8-9 1.15 1.17 

4-5 1.57 1.58 9-10 1.32 1.32 

5-6 1.22 1.25 10-11 1.27 1.28 

 

The above data are applied in a stochastic user equilibrium model to estimate passengers’ 

GTC and PBT during morning peak periods in Chengdu’s RTN. The time weights for trip 

components in Eq. (1) are 𝛽1 = 1.75, 𝛽2 = 1.75 and 𝛽4 = 8.35, according to Cats and Jenelius 

(2016). 𝛽3 is related to load factors and the seat availability on links (Wardman and Whelan 

2011), which is shown in Table 7. The World Bank economist Kenneth Gwilliam recommended 

that a value for personal travel time should be 30% of household income per hour (Litman 2009). 

Chengdu’s average household income of 134,187 ¥/per year, which is computed with data from 

“Chengdu Statistical Yearbook-2018”. Thus, the value of time parameter 𝛼 is computed to be 

13.79 ¥/hour. The charging standards for metro lines, suburban railway lines and intercity high-

speed rail lines are different. The fare between an OD pair in Chengdu’s metro system is 

computed based on the shortest distances between that OD pair. The relation of fare to the 

shortest distance between an OD pair in Chengdu’s metro system is shown in Table 8. The fare 

on suburban railway lines and intercity high-speed rail lines are 0.46 ¥/km and 0.31 ¥/km, 

respectively.  

Table 7 Weight of in-vehicle travel time for sitting or standing passengers. 

Load factor (%) Sitting Standing 

0-75 0.86 ---- 

75-100 0.95 ---- 

100-125 1.05 1.62 

125-150 1.16 1.79 

150-175 1.27 1.99 

175-200 1.40 2.20 

>200 1.55 2.44 
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Table 8 Fare corresponding to the shortest distance in Chengdu’s metro system. 

Distance (km) (0,4] (4,8] (8,12] (12,18] (18,24] (24,32] (32,40] (40,50] >50 

Fare (¥) 2 3 4 5 6 7 8 9 10 

 

   The parameters used to estimate the cost of providing reserve capacity in Eq. (9) are obtained 

from Yang et al. (2017), and listed in Table 9. The speeds of trains on Metro lines, Suburban 

railway lines and High-speed rail lines are 60 km/h, 160km/h and 250km/h, respectively. The 

costs of providing reserve capacity for lines during morning peak periods are estimated with Eq. 

(9) according to the parameters listed in Table 9 and the train speeds.  

Table 9 parameters used to estimate the cost of providing reserve capacity. 

Lines Mode 
𝑛𝑖
𝑗
 

(vpt) 

𝜇1,𝑖 

(¥/pvh) 

𝜇2,𝑖 

(¥/pvk) 

𝜇3,𝑖 

(¥/pvh) 

𝜇4,𝑖 

(¥/pvk) 

𝜇5,𝑖 

(¥/pvh) 

1 to 6 Metro 6 50.50 7.69 42.47 2.03 56.25 

7 to 9 Suburban railway 4 46.80 8.09 365.75 3.07 56.25 

10 to 12 High-speed rail 8 46.80 8.09 355.75 3.07 56.25 

Note: vpt= vehicles per train; pvh=per vehicle-hour; pvk=per vehicle-kilometer. 

 

5.2 Historical disturbances data on lines and disturbances simulations 

5.2.1 Historical disturbances data 

The historical disturbances data on each line in Chengdu’s RTN from January 12th, 2018 to 

April 7th, 2019 (a statistical total of 7560 hours.) are obtained from rail transit operators and 

shown in Table 10. The probability of a disturbance on a line is the ratio of the statistical hours 

with a disturbance to the total statistical hours on that line. The average canceled trains per 

disturbance on a line equals the number of canceled trains divided by the number of disturbances 

on that line. The normal operation probability of each line equals 1 minus the probability of a 

disturbance on that line. The probability of Chengdu’s RTN normal operation is 86.71% during 

morning peak period, which equals the product of the normal operation probability of each line 

during morning peak period. 
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Table 10 Historical disturbances data for Chengdu’s rail transit lines. 

Lines Disturbances 
Canceled 

trains 

Probability of a disturbance  

per morning peak period  

Average canceled trains per 

disturbance (rounded) 

1 207 660 1.96% 3 

2 153 496 2.03% 3 

3 157 445 1.85% 3 

4 146 359 1.54% 2 

5 131 327 1.51% 3 

6 90 170 1.41% 2 

7 44 67 0.87% 2 

8 23 29 0.71% 1 

9 21 26 0.64% 1 

10 17 23 0.54% 1 

11 30 39 0.57% 1 

12 27 35 0.53% 1 

     

5.2.2 Disturbance simulations 

The disturbances cause train cancelations, which lead to increased headways, capacity 

reductions and seats reductions on lines. The disturbance simulation on a line during morning 

peak period is illustrated with line 1.  

Before simulating disturbances: Table 4 shows that actual hourly frequency, the headway, 

the capacity and the seats/hour on line 1 are 30 trains per hour, 120 seconds, 30×1460 passenger 

trips and 30×348 seats/hour, respectively, when the RTN operates normally.  

When simulating disturbances: the average canceled trains per disturbance are 3, as 

shown in Table 10. Thus, the actual hourly frequency, the capacity and the seats/hour on line 1 
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decrease to 27 trains per hour, 27×1460 passenger trips and 27×348 seats/hour, respectively. 

The headway on line 1 increases to 133.33 seconds.  

The disturbances on multiple lines are not simulated when estimating the value and net 

value of reserve capacity. The reason is that the probability of disturbances occurring on multiple 

lines simultaneously is very low in Chengdu’s RTN. For example, the probability of 

simultaneous disturbances on lines 1 and 2 is 1.96%×2.03% during morning peak periods.  

 

5.3 Passengers’ GTC without reserve capacity  

5.3.1 Normal network operations  

Passenger trips are assigned to Chengdu’s RTN during morning peak periods when the 

network operates normally. The average travel time per trip and average PTT per trip during 

morning peak period is estimated after traffic assignment, as shown in Fig. 4. (a). The fraction of 

GTC per trip is shown in Fig. 4. (b). The average travel time per trip and the average PTT per 

trip are 36.69 minutes and 61.70 minutes, respectively. Fig. 4 (a) shows that the perceived in-

vehicle time is 1.32 times of in-vehicle time per trip and the increased PTT is 8.69 minutes per 

trip due to transfer times. The average GTC per trip is 21.40 ¥ during morning peak periods. Fig. 

4 (b) indicates that the perceived in-vehicle time and fare are large components in average GTC 

per trip.  

The PBT between OD pairs is estimated with the method proposed in section 4.1.2. The 

PBT per trip and monetary value of PBT per trip are estimated to be 8.37 minutes and 1.92 ¥, 

respectively, during morning peak period.  
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Fig. 4 Average travel time, average PTT, and fraction of GTC per trip. 

 

5.3.2 Disturbed operations 

The disturbance on each line in Chengdu’s RTN is simulated. Fig. 5 shows the percentage 

increase in passengers’ total GTC due to the disturbances on a single line during morning peak 

periods in Chengdu’s RTN.  
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Fig. 5 Percentage increase in passengers’ total GTC due to the disturbances on lines 

Fig. 5 shows that the percentage increase in total GTC varies greatly when disturbances 

occur on a different line during morning peak periods. It shows that the disturbances on lines 1 

and 2 during morning peak hours increase total GTC higher than disturbances on another line. 

The reason is that the passenger flows on lines 1 and 2 during morning peak hours is high. The 

total GTC is 15,231,150 ¥ when the network operates normally. The increase in total GTC is 

1,040,288 ¥ and 793,543 ¥, respectively, when disturbances occur on lines 1 and 2. To avoid a 

high increase in GTC, the operators should avoid the disturbances occur on lines 1 and 2.  

 

5.4 Maximizing the net value of reserve capacity for Chengdu’s RTN 

The net value of reserve capacity for Chengdu’s RTN is maximized using QGA and GA, 

respectively. The QGA and GA are performed on a personal computer (PC) with a 2.80 GHz i7-

7700HQ central processing unit, eight cores and 8GB RAM. The PC runs Windows 10 
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Enterprise and has a 64-bit operating system. MATLAB R2017a is used for obtaining the 

solution.  

The reserve trains on lines are limited by the maximum safe frequency which is the inverse 

of the minimum safe headway on lines shown in Table 4. The optimized solution can be obtained 

by using the QGA and GA under different cost constraints. The model for maximizing the net 

value of reserve capacity is solved by QGA and GA in two cases. In case 1, the net value is 

maximized without a cost constraint (i.e., 𝐶∗ = ∞ ¥). In case 2, the cost constraint is binding at 

𝐶∗ = 150,000 ¥.  

 The maximum net values of reserve capacity in cases 1 and 2 are estimated with QGA and 

SGA. The optimized net value curves over successive SGA generations for cases 1 and 2 are 

shown in Fig. 6 (a) and (b), respectively. Fig. 6 shows that the final solutions for cases 1 and 2 

can be obtained using QGA and SGA within 100 generations. QGA converges in fewer 

generations to the same solutions as SGA. The QGA and SGA computation times for obtaining 

the final solutions for case 1 are 237.32 minutes and 381.23 minutes, respectively. The QGA and 

SGA computation times for obtaining the final solutions for case 2 are 311.57 minutes and 

479.41 minutes, respectively. Thus, QGA computes faster than SGA and the minimum number 

of generations is smaller for QGA than SGA when their computation results converge.  
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Fig. 6 The net value curve over successive generations. 
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The final solutions obtained with QGA for cases 1 and 2 are shown in Table 11. The reserve 

trains do not exceed the maximum allowable reserve trains that can run on lines. The cost of 

providing reserve capacity in case 2 is 149,224 ¥, which is less than the constraint limit 𝐶∗ =

150,000 ¥.  

Table 11 Final solutions obtained with QGA for cases 1 and 2. 

lines 

maximum allowabke reserve 

 trains 

Case 1  Case 2 

reserve trains on lines reserve trains on lines 

1 10 6 5 

2 8 6 3 

3 10 4 2 

4 10 2 2 

5 15 3 3 

6 10 1 0 

7 10 1 1 

8 2 0 0 

9 2 0 0 

10 2 1 0 

11 2 0 0 

12 2 0 0 

    

The values and net values of reserve capacity that correspond to the final solutions for cases 

1 and 2 are shown in Fig. 7. Fig. 7 (a) shows the reductions in the passengers’ total GTC 

compared with no reserve capacity are 423,152 ¥ and 295,974 ¥, respectively, in cases 1 and 2 

during normal operations. Fig. 7 (b) demonstrates that the reliability enhancement values for 

reserve capacity in cases 1 and 2 are 47,759 ¥ and 27,023 ¥, respectively, when Chengdu’s RTN 

operates normally. Fig. 7 (c) shows that the robustness enhancement values for reserve capacity 
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in cases 1 and 2 are 457,208 ¥ and 326,963 ¥, respectively, when disturbances occur on 

Chengdu’s RTN. The probabilities of normal operation and disturbances occurring in Chengdu’s 

RTN are 86.71% and 13.29%, respectively, during morning peak period. The values of reserve 

capacity in cases 1 and 2 are estimated to be 469,090 ¥ and 332,538 ¥ with Eq. (10), 

respectively, which are shown in Fig. 7(d). Fig. 7(d) shows that the costs of providing reserve 

capacity in cases 1 and 2 are 277,774 ¥ and 149,868 ¥, respectively. The net values for reserve 

capacity are 191,316 ¥ and 173,656 ¥ in cases 1 and 2, respectively, as shown in Fig. 7 (d).   

M
o
n
e
ta

ry
/¥

Case 1 Case 2
No reserve 

capacity

6.5

7

7.5

8
10

6

(a) Reduction in passengers total GTC 

5

5.5

6

6.5

7

7.5
10

5

Monetary of GBT

Value



Case 1 Case 2
No reserve 

capacity

(b) value of reliability enhancement

6.5

7

7.5

8

8.5
10

6

Case 1 Case 2
No reserve 

capacity

(c) value of robustness enhancement

0

1

2

3

4

5
10

5

Value

Cost

Net benefit



Case 1 Case 2

(d) Net benefit

M
o
n
e
ta

ry
/¥

M
o
n
e
ta

ry
/¥

M
o
n
e
ta

ry
/¥

Total GTC

Value

Total GTC

Value

 

Fig. 7 The value and net values of reserve capacity for cases 1 and 2.  

 

Table 12 shows the net values of reserved capacity with and without consideration of 

reliability and robustness values. It shows that the fractions of underestimated net value without 

consideration of reliability and robustness values are 24.01% and 16.77%, respectively, for cases 
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1 and 2. The reserve capacity which corresponds to the maximum net value obtainable by 

considering reliability and robustness values.  

Table 12 Net values of reserved capacity with and without considering 

reliability and robustness values. 

Case 
Net value without consideration 

(¥) 

Net value with consideration 

(¥) 

Underestimated net value 

(¥) 

1 145,378 191,316 45,938 

2 136,709 164,378 27,669 

 

6. Conclusions  

The reliability and robustness of rail transit networks are important factors that should be 

considered by transportation operators and planners when developing networks and allocating 

capacity. A model for estimating the value of reserve capacity in an RTN which considers the 

values of reliability and robustness is proposed here for estimating the value of reserve capacity 

comprehensively. In addition, the optimal reserve capacity model that equals the value of reserve 

capacity minus the cost of providing reserve capacity is proposed here to maximize the net value 

on an RTN. This model overcomes an important gap in previous studies, namely that values of 

network reliability and network robustness are neglected when measuring and optimizing the 

value of reserve capacity.  

The QGA and SGA are applied to solve the proposed model, which shows that the QGA can 

obtain the solution more quickly and effectively than SGA. The numerical results demonstrate 

that the proposed model and QGA can be applied practically and yielded the solution for 

applying the reserve capacity effectively. The net value of reserve capacity is maximized by 

applying the optimized reserve capacity. The net values with and without considering the value 

of reliability and robustness are compared. This indicates that the optimal reserve capacity 

corresponding to maximum net value can be obtained only by considering the reliability and 

robustness values.  
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The potential application of the model can be extended to reserve capacity allocation on bus 

networks and to capacity adjustment for demand fluctuation in rail transit and bus networks. 

Although the proposed model and method are only applied for measuring the value and net value 

of reserve capacity and obtaining the optimal reserve capacity on Chengdu’s RTN during 

morning peak periods, they also can be used for the RTN’s in other cities during peak or off-peak 

periods. The demand is assumed here to be inelastic when estimating the value of reserve 

capacity. The value of potential passenger attraction attributable of reserve capacity should be 

considered in further studies. In addition, a more effective and faster algorithm than QGA should 

be sought for solving the model which maximizes the net value of reserve capacity. 
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