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INTRODUCTION 

The transportation industry is one of the largest industries in the U.S. in terms of its contribution 
to fossil fuel and energy consumption and pollution. In 2020, the transportation sector alone 
accounted for 26% of the total consumption of energy in the U.S. (1). Out of that energy 
consumption, more than 90% comes from petroleum, making the transportation industry one of 
the major polluting industries (1). In 2019, the transportation industry was considered the most 
polluting industry in terms of greenhouse gas emissions, contributing to global warming as shown 
in Figure 1. The greenhouse gas emissions of the transportation industry alone account for 29% of 
the total greenhouse gas emissions in the U.S., making transportation emissions a major 
contributor to global warming.  

 

Figure 1: Contribution of different industries to Greenhouse Gas Emissions (Source: U.S. Environmental Protection Agency 
website) 

 Urban traffic emissions constitute a major problem for urban air quality (2). Within a city, 
traffic flow is continuously interrupted by red lights, resulting in numerous accelerations and 
decelerations at signalized intersections and significant stop and go movements. The constant 
acceleration and deceleration resulting from stop and go movements can increase fuel consumption 
and greenhouse gas emissions. Most cities depend on signalized intersections for their main 
arterials, making the stop and go movements a key problem affecting urban air quality as well as 
fuel consumption. 

  Stop and go movements at signalized intersections introduce additional problems to the 
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transportation system apart from fuel consumption and emissions. A major problem is safety 
concerns because a lack of knowledge about when a signal turns red catches drivers in what is 
known as yellow light dilemma zone (3; 4). Yellow light dilemma zones occur when the driver 
cannot make a clear-cut decision on whether to proceed through an intersection during the amber 
interval or brake forcefully to stop the vehicle before the stop line. An additional concern is the 
traffic throughput, where consistent stop and go can generate shockwaves that can reduce the 
overall traffic throughput in some cases (5). This introduces additional delays and increases the 
overall vehicle travel time in the system. 

Green Light Optimal Speed Advisory and Eco-driving 

Green Light Optimal Speed Advisory (GLOSA) and eco-driving have been proposed as potential 
ways to reduce stop and go waves. This can reduce fuel and energy consumption and emissions at 
signalized intersections by reducing unnecessary stops and adjusting vehicle speeds to allow 
vehicles to smoothly traverse their routes through green waves if possible.  

Rakha and Kamalanathsharma (6) proved that by incorporating microscopic fuel 

consumption models, optimization of the fuel consumption profile of a vehicle approaching an 

intersection can be achieved with V2I (vehicle to infrastructure) communication about signal 

timing. The incorporation of the microscopic fuel consumption model yielded a better result than 

other simplified objective functions. Rakha et al. (7) created a velocity advisory tool to compute 

the fuel optimal velocity profile. The tool considers the information about signal change times, 

vehicle properties, communication from the lead vehicle and vehicle dynamics as well as a 

microscopic fuel consumption model as inputs. These inputs are used to run a complex 

optimization to come up with the optimal trajectory in terms of fuel efficiency. Dynamic 

programming was used along with path finding algorithms to create optimized upstream traffic 

trajectories while comparing various discretized cases for downstream traffic yielding a faster 

more efficient computational approach (8). The proposed approach yielded fuel savings of 32% 

and reduced travel time by 19%. It also provided potential benefits for following vehicles.  

Chen et al. (9) conducted field testing of eco-driving systems on various grade levels, 
addressing issues such as communication latencies, computation time, data errors and driving 
comfort and achieving fuel savings amounting to between 8.4% and 17.4%. Almanaa et al. (10) 
conducted another field test study of eco-cooperative adaptive cruise control (Eco-CACC) and 
found that automated systems were superior to human control, leading to about a 19% reduction 
in fuel consumption when implementing Eco-CCC. The study also found that fuel savings of up 
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to 31% for downhill driving and 9% when going uphill can be attained through Eco-CACC.  

 Stahlman et al. (11) examined the existing GLOSA systems and introduced metrics to 
make the inputs to GLOSA simulation studies less optimistic and more realistic in terms of the 
communication latency and technology available in the field. Karoui et al. (12) add driver reaction 
time and GLOSA market penetration rate to existing simulation studies, yielding more realistic 
expectations in terms of fuel consumption and reduced vehicle stops. Yang et al. (13) developed 
an eco-cooperative adaptive cruise control (Eco-CACC) algorithm at signalized intersections, 
taking into account the queuing at the intersection, that led to saving up to 40% of fuel 
consumption. The study also concluded that to attain a reduction in fuel consumption, the market 
penetration rate of Eco-CACC has to be at least 30%. Suzuki and Marumo (14) used simulation 
models to prove GLOSA implementation can lead to improvements in traffic safety and fuel 
efficiency through decreasing deceleration rates in the vicinity of intersections. 

 All these studies agree that Eco-CACC, eco-driving or GLOSA are ways to reduce the 
fuel and energy consumption, safety concerns and in some cases travel time through signalized 
intersections. The studies also show that having a reliable estimate of the traffic signal switching 
times is crucial to enable GLOSA, eco-driving or Eco-CACC (15). The traffic signal switching 
time is, in fact, the key piece of information required for transmission from the infrastructure to 
the vehicle through V2I technology in order to be able to compute an optimal trajectory and attain 
the aforementioned benefits. This project aims to utilize machine learning to obtain a reasonable 
estimate of this traffic signal switching time by utilizing LSTM deep learning.  

Uses of Machine Learning in Traffic Signal Systems Research 

The use of machine learning (ML) with traffic signal systems involves two main tasks: 
traffic signal control and traffic signal prediction. The traffic signal control application is 
concerned with using data to change the controller settings to make it more adaptive to traffic 
conditions and improve system performance, for example, in terms of vehicle delay or emissions. 
Traffic signal prediction, on the other hand, is concerned with being able to predict the switching 
time of the actuated traffic signals under the existing settings and traffic conditions. This study is 
not focused on changing the controller settings, rather it is concerned with the prediction of the 
actuated traffic signal switching times with the controller settings currently implemented in the 
field. Providing a reliable estimate of these switching times is very practical, and communicating 
these estimates to vehicles can enable GLOSA to be more widely adopted.  

Most of the existing body of knowledge in the literature utilizes ML combined with agent-
based modelling for the traffic signal control task. Several studies used reinforcement learning to 
optimize the signal timings to adapt to traffic demand (16-19). Other studies utilized multi-agent 
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systems with machine learning or game theory to optimize systems of traffic signal controllers 
(20-23).  

Only a few studies have tackled the idea of providing a prediction of actuated traffic signal 
switching times under existing controller settings to enable GLOSA. Support vector machines have 
been used as a simple classifier for the green time in a simple actuated traffic signal with only four 
different options for possible green times and were able to provide high accuracy classification 
predictions (24). Moreover, graph-based Bayesian methods have been used to predict the time 
until the next phase based on time of day, controller logic and detector data (15). This study 
expands on a previous study that used LSTM neural networks to predict the remaining time to 
change from green to red or vice versa for actuated traffic signals (25). 

Problem Statement 

Obtaining the traffic signal switching time for a fixed time signal is a very simple task. The 
switching times can be directly read from the signal timing plan and communicated to the vehicles 
through the V2I Signal Phase and Timing (SPaT) message stream. For the actuated traffic signals, 
on the other hand, this task is much more complex. Unlike fixed time traffic signals, actuated 
traffic signals have a minimum and maximum time for each phase. Every time a vehicle arrives, 
the phase time is extended by a preset amount known as passage time as long as it does not exceed 
the maximum time setting (Figure 2). This makes predicting how long each phase will be 
particularly tricky as the termination time of each phase depends not only on the number of vehicle 
arrivals but also on the pattern of arrivals, which can be random based on several studies (26-28). 
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Figure 2: Actuated Traffic Signal Control (Source: Federal Highway Administration Signal Timing Manual) 

Existing traffic signal controllers are very flexible in terms of accommodating different 
road users and allocating varying times to different movements. But this flexibility makes them 
less predictable because the more flexible the controller is to accommodate different traffic 
conditions, the less predictable its timing is. The complexity of predicting the traffic signal state 
can be attributed to two factors. The first is the controller logic where the D4 controller logic is 
highly adaptable and allows for different ways to adapt to the incoming traffic. Examples of this 
adaptability include options like having floating green times that can be allocated to different 
movements, allowing all settings to vary according to time of day, allowing locked calls for 
vehicles or pedestrians to be placed on a certain phase, and allowing reserving left turning vehicles 
that have not been serviced, meaning that one cycle can have two left turn phases, if needed. Even 
if these features are not used, they make the traffic signal highly unpredictable and increase the 
complexity of the prediction task. The second factor is the highly stochastic nature of traffic and 
pedestrian arrivals. Several studies have attempted to predict the effect of traffic arrivals on signal 
timing using low frequency probe vehicle data, GPS trajectory big data and data from upstream 
intersections combined with platoon dispersion modelling (26-28). Their results show the highly 
stochastic nature of traffic arrivals. 

 Therefore, in order to obtain the traffic signal switching times for actuated signals, 
there has to be some way of implicitly identifying the traffic arrivals and whether those arrivals 
would be so few that the minimum green would be sufficient, so many that the maximum green 
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time will be reached (max out), or somewhere in between where the time is between the minimum 
and maximum time (gap out). That knowledge is required to obtain a reasonable estimate of when 
the traffic signal is going to switch to enable eco-driving and GLOSA algorithms to control the 
vehicle velocity ahead of time to achieve optimal fuel consumption and reduce emissions. Ideally, 
the required means to predict the traffic signal switching time should take into account all traffic 
conditions and pedestrian traffic as well as signal timing parameters. It should also be scalable and 
replicable to allow for large-scale implementation within smart infrastructure. 

To improve the model scalability and applicability, the model should be relatively easy to 
train within a reasonable amount of computational time and with a reasonable amount of data and 
computational resources including memory, GPU or CPU processing power and data storage. It 
should also be sufficiently robust to allow it to operate under varying conditions without much 
loss of accuracy in predicting the traffic signal switching times. This project works on not only 
providing the models but also improving their performance, robustness and reducing their 
computational complexity, memory and storage needs.  

PROPOSED APPROACH 

This research proposes the use of Long-short term memory (LSTM) recurrent neural networks as 
an approach for the prediction of the signal switching times. This approach allows for not only 
including all the data relevant to the prediction but also recognizes the temporal dependencies 
between the data elements at different time steps. This is allowed by the special building block of 
the LSTM network known as the LSTM cell that models temporal dependency among variables. 
This feature of capturing the temporal dependencies made LSTM lend itself to areas such as 
language modelling, speech recognition and stock market price prediction (8-10). LSTM networks 
have also been used in transportation applications. They have also been applied to areas with strong 
reliance on temporal trends such as predictions for roadway link travel time, traffic flow, and 
accident risk and severity (29-33). 

The key idea is to recognize the importance of temporal dependencies among signal states 
at different times, as well as the temporally dependent nature of most data used in predicting the 
signal switching times. This includes traffic volumes, speed, traffic arrivals and pedestrian arrivals 
data. These parameters not only depend on the time of day but also can show distinct trends in the 
very short term. For example, if the traffic volume on one of the roads is increasing over the past 
few cycles, it might have a higher probability of increasing in the current cycle. 

After building the baseline model, this project examines the effect of varying the time 
window in the past at which data can be fed to the LSTM neural network and the effect of that on 
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the prediction performance. The importance of choice of correct look-back periods for the model 
is twofold. First, it affects the overall model performance and reliability of predictions. Second, it 
affects the overall training time required for the model, thus minimizing the hardware requirements 
for field deployment of a model that can learn from live data and improve while providing 
predictions in the field. This provides a first step toward better understanding the effect of different 
time windows on the predictions of LSTM models in the context of actuated traffic signal 
switching times. It aims at demonstrating the sufficiency of the data to allow the model to make 
more reliable predictions.  

Another aspect is assessing the model robustness and generalization performance. This 
allows our research to be a guideline for other researchers for the sufficiency of training data. It is 
also intended to provide some sense of how often trained models could be retrained to maintain 
acceptable prediction performance. In this project, different regularization methods are also 
assessed in terms of their contribution to both the prediction performance and the generalization 
performance. 

This study could act as a baseline for other researchers working with similar data to 
estimate the amount of data they need to collect and time windows to work with. It can also act as 
a first step toward deploying deep learning methods within connected infrastructure. A simple 
example would be to modify the Signal Phasing and Timing (SPaT) message stream by adding the 
most likely signal switching time using the models presented in this paper. This can significantly 
improve the decision making of intelligent vehicles when using eco-driving systems, leading to 
more fuel-efficient vehicle operations.  

Objectives and Contribution 

This research has seven main objectives: 

• Outline a detailed practical framework for the use of LSTM in traffic signal switching time 
prediction. 

• Test the framework on signal switching time prediction using field data. 
• Compare the effect of using different loss functions on the training process. 
• Propose a novel loss function that enables the predictive model to generalize well across 

various time horizons. 
• Identify the effect of the look-back period on short- and long-term traffic signal state 

prediction. 
• Assess the performance of the LSTM models trained prior to the COVID-19 pandemic on 

data gathered during the pandemic. 
• Test the effect of different regularization parameters on the overall performance of the 

LSTM-based models.  
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To the best of our knowledge, this research is the first to implement LSTM for actuated 
coordinated traffic signal switching time prediction. Unlike most studies that either focus on time 
to green (TTG) switching time or time to red (TTR) switching time, our proposed approach utilizes 
a single model for predicting both TTG and TTR switching times. This model provides a holistic 
approach which considers all the different users of the transportation network including the effect 
of pedestrian traffic. The effect of pedestrian traffic has not yet been included in any of the existing 
models for predicting actuated signal switching times. This can be mainly attributed to the fact that 
data regarding pedestrian actuations from push buttons and pedestrian phase timing and exit modes 
were not readily available. Finally, the modelling approach described in this report is highly data-
driven and can be extended from its current reliance on historical data to a live implementation 
that continuously uses data to improve predictions. 

The remainder of the paper is divided into three main parts followed by the conclusion. 
Part 1 describes the methodology and results for building the baseline models and assessing the 
performance of different loss functions and introducing a new proposed loss function. Part 2 covers 
optimizing the model look-back time window and looking at the effect for short- and long-term 
prediction performance. Part 3 covers comparing different model variants based on different 
regularization parameters and assessing the overall robustness of the models in terms of prediction 
performance after the COVID-19 pandemic.  

PART 1: BASE MODEL DEVELOPEMENT AND LOSS 
FUNCTION COMPARISON 

Methodology 

To be able to provide predictions for the traffic signal switching times, a four-step research 
methodology was undertaken. The first step was data collection which entailed gathering the data 
broadcasted on the website every second and saving it to the database. The second step was data 
validation and preparation which included formatting the data to generate 120 second sequences 
of data to be used by the LSTM network for prediction. This involved handling missing data due 
to connection losses and server downtime as well as extracting the relevant data features to enhance 
the prediction. The third step was designing, coding, and tuning the LSTM neural networks to 
improve the prediction accuracy using cross validation. The final step was validating and testing 
the trained network on out of sample data. 

Data Description 

Data was collected from Gallows Road, which is part of state route 650 in Fairfax County in 
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Northern Virginia. Gallows Road is a major commuter road connecting Tysons Corner, a census-
designated place which is a major shopping destination in Fairfax County, and Annandale, a 
census-designated place with multiple residential and commercial areas. The roadway has a high 
traffic volume; the average daily traffic is 39,000 users and the average annual weekday traffic is 
42,000 users. The land use of areas surrounding Gallows Road is mostly commercial despite the 
area having a few residential developments.  

Data gathering scripts have been deployed to obtain data from the intersection between 
Gallows Road and Gatehouse Drive (Figure 3). A database of historical data was created including 
83 days of data for each of the intersections. The obtained data spans the period from July 2019 
until December 2019. The data was obtained from the Virginia Smarterroads online portal. The 
online portal broadcasts data every one second, which is very descriptive of the traffic state.  

Key Data Elements 

The Smarterroads data are highly detailed in terms of coverage of the traffic conditions. Data are 
provided every second and are very fine grained. Data includes many elements pertaining to 
timing, controller settings, vehicles and pedestrians as shown in Table 1. Some of the advanced 
elements include the signal status, and whether it is in its minimum green time, in passage time 
allowing more time based on actuations, or terminating. Another advanced data element is the 
termination method, whether the controller reaches the maximum green (max out) or did not 
receive any actuations within the passage time (gap out).  

Table 1 Data Elements 

Data Elements 

Signal Timing Controller Settings Vehicles Pedestrians 

• Time of Day 
• Duration signal spent in 

current phase 
• Status (Minimum green/ 

Passage time/ 
Terminating) 

• Cycle Length 
• Offset from Upstream 

signal 
• Timing Plan ID 

• Current Phase 
• Speed 
• Volume 
• Occupancy 
• Actuations 
• Exit Mode (Max out/ Gap 

out) 

• Current Phase 
• Push Button Status 
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Figure 3: Intersection layout 

 

Figure 4: Lane configuration and detector placement 
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Figure 5: Ring Barrier diagram for National Electrical Manufacturing Association (NEMA) phasing 

 
Intersection Geometry and Signal Phasing  

As shown in Figures 1 and 2, the intersection has four approaches. The northbound and southbound 
approaches each have six lanes. The eastbound approach has two lanes with a right turn lane 
diverging from the right lane and the westbound approach has three lanes. Figure 2 shows the 
detailed lane configuration as well as the placement of 18 different detectors where there is a 
detector for each lane. Each detector provides data that includes traffic volumes, speeds, and 
occupancies as well as vehicle actuations measured by detectors for each separate lane. 

The data collected all spanned from 6 am until 10 pm when the signal was operated in 
actuated coordinated phase. This means that while the overall cycle length was predefined, there 
was what is called “floating green time” which could be allocated between the different signal 
phases. The overall cycle length was changing based on a predefined time schedule according to 
the time of day and day of the week.  

Figure 3 shows the NEMA phasing ring barrier diagram. Phases 1, 2, 3 and 4 are all on 
ring 1 whereas phases 5 and 6 are on ring 2. The barrier (indicated by thick lines) separates the 
movements in the north-south direction from the movements in the east-west direction. The signal 
timing plan starts with the left turns for the north-south directions followed by the through and 
right traffic. Overlap is allowed to occur between phases 1 and 6 and between phases 2 and 5. For 
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the east-west direction, split phasing is employed where the eastbound approach is allowed to 
discharge all through, left and right movements followed by the westbound approach discharging 
all of its movements. Three pedestrian phases occur simultaneously with vehicle phases 2, 4 and 
6. The timing of these phases walk and do not walk as well as the pedestrian actuations/calls and 
the pedestrian signal status are also reported as part of the input data. Not all these phases have to 
be served for each cycle, but phases can be skipped if there are no actuations occurring for the 
phase, which adds to the complexity of the signal state prediction. 

Data Preparation 

Once all historical data was gathered into the database, this step prepared the data to be used in the 
machine learning step. The data was queried from the database and converted to input files for the 
LSTM networks. Converting JSON data files into LSTM inputs was a multistep process that 
involved several data manipulation steps. 

Creating Data Frame from JSON Files 

JSON includes data in a hierarchical nested structure of variables. For example, the timing data 
would be separate from the detector or pedestrian data. The JSON file was a hierarchy of data 
structures that included different data. For each second of data, there was a JSON file that included 
all the data for this second in a hierarchical structure. The first step involved extracting all the 
relevant data from the JSON files and converting the hierarchical tree-like structure to a flat 
structure such that each second can be an entry in a table-like structure or a data frame. The second 
step was filtering the data since the JSON file format was unified for different intersections and 
therefore had some redundant, duplicated, or irrelevant data for our intersection which was 
omitted. It should be noted that some variables were present on some days but marked as missing 
on other days. Therefore, to be able to unify the data frame structure, all data had to be examined 
first before deciding on what variables to include. If a certain day had no value for the variable, 
then it had to be marked as missing. 

Preprocessing Numerical and Categorical Variables  

At this point data was converted from a large number of JSON files with one file per second to a 
more concise set of table-like data frames with one file for each day of data. The third step was to 
recode categorical variables into dummy variables. This involved recoding variables like “signal 
state” or “exit mode” or “detector actuation” into n-1 dummy binary variables where n is the 
number of possible states of the categorical variable. The fourth step was normalization of 
numerical variables to be between zero and one. This was achieved by subtracting the minimum 
value of the variable and dividing by the difference between the maximum and minimum values. 
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The maximum and minimum values for each variable were obtained from sampling several days 
of data throughout the study period and obtaining the absolute maximum and minimum values 
from these days. These maximum and minimum values were not only used for the training data, 
but also the same values were used for the validation and testing data. The reason this is important 
is that in a field implementation, the maximum and minimum values for the prediction will not be 
known. Therefore, the maximum and minimum values for the training data will have to be used 
for normalizing the variables of the field data to obtain the prediction. The only numerical variable 
that was handled differently was the time of day which is a cyclical variable that was coded into 
two variables which are sin( 2 πt/ n) and cos( 2 πt/ n) where t is the time of day in seconds and n 
is the total number of seconds per day. This mapped the time of day as a point on a circle which is 
common practice for deep learning data preparation. After this process each second of data was 
comprised of 187 variables which feed into the prediction.  

Re-indexing Time Steps and Output Variable Computation  

At this stage, all variables are in the correct format; however, some of the seconds in each day are 
missing and some are duplicated due to connection. This is rectified by re-indexing all the tables 
by using a unique id which is chosen to be UNIX time. UNIX time is the number of seconds 
elapsed since Jan. 1, 1970. By using the UNIX time as an index, all missing intermediate data 
could be filled in as missing data. The missing data was given a unique value “-1” as none of the 
variables had values below zero. This step is essential as the input to the LSTM network has to be 
time series equally spaced across time. The time step between subsequent data points had to be set 
to be exactly one second even if some of the data points in the time series are missing.  

The next step was computing the output variable which is the time until the signal state 
changes from green to red or vice versa. The data included the state of the traffic signal at each 
time step but not the time until it changes state, so this involved looking ahead at a time horizon 
of 200 seconds and defining the time until the signal state changes. This was done for each of the 
6 phases for the signal. It is one of the most computationally demanding data preparation tasks as 
it involves iterating up to 200 seconds in the future for every second where the time remaining 
cannot be deduced from the previous time step time remaining. In case the time remaining cannot 
be deduced from the next 200 data points either due to missing data or due to phase skips 
prolonging the switching time beyond 200 seconds, the switching time is marked as missing and 
is not used for training the model. The output variable is then normalized by dividing by 200 
seconds (the maximum value where the minimum value is zero). 

Generation of Sequences and Batch Processing 

Once all data was arranged with consecutive time steps in seconds, the next step was generating 
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input for the LSTM network. The LSTM network was trained in batches where each batch was a 
three-dimensional data structure containing 1000 sequences and 1000 predictions. Each sequence 
was a two-dimensional data structure or a matrix of values. The matrix consisted of vertically 
stacked data points describing all the input variables for the duration of the past two minutes until 
the second where prediction is taking place. Each time step in this sequence contains the 187 input 
variables obtained from the JSON files. For each of these sequence matrices, the prediction is a 6-
element vector which contains the time left for each of the 6 signal phases to change. The training 
data included a total of 2,164,000 sequences and their corresponding predictions, making 2164 
batches of training data. Handling these sequences was very memory intensive as the sequences 
were 387 gigabytes of data and therefore required a very memory efficient operation to be able to 
shuffle all sequences and load them to the model in varying order. 

 

Figure 6:  Sequences and Prediction Data Structures 

Machine Learning 
LSTM Networks 

Recurrent neural networks (RNN) were introduced as a deep learning framework which includes 
temporal dependencies between temporal sequences of hidden layers. Recurrent neural networks, 
however, did not perform very well training on data with long-term temporal dependencies. It was 
critiqued for the issue of vanishing and exploding gradients while training (34). 

LSTM model architecture was proposed as an alternative for typical RNN architecture 
because it is more capable of storage and access of long-term temporal dependencies. The 
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architecture, originally proposed in 1997, has been continuously improved and adapted into 
modern research paradigms (35). The architecture used in this paper is similar to that used by 
Graves in 2013 and depicted by the following equations(36). 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)       (1) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑓𝑓�       (2) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐)      (3) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)       (4) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑡𝑡)          (5) 

These five equations describe the LSTM cell basic architecture with input xt for time step 
t. i, o, and f describe the input, output and forget gates, respectively. c refers to the inner cell which 
stores the information. h refers to the hidden state. The given architecture provides 11 sets of 
weights and 4 biases connecting between the different gates and the cell. Furthermore, the cell 
values and hidden states from previous time steps are all fed into the cell, input, output and forget 
gates allowing the neural network to adjust the weights and store only the meaningful temporal 
dependencies between the different time steps.  

Model Formulation 

The LSTM neural networks were built using TensorFlow Keras, which is a high-level machine 
learning package in Python. All the tested models consisted of five fully connected layers (Figure 
7). The input layer had 187 nodes to process all data inputs. This was followed by an LSTM layer 
with N number of LSTM units where N is a value which was experimented with to find the best 
model. This was followed by a dense fully connected layer with rectified linear unit (ReLu) 
activation with N number of nodes. The model was set up as a regression output model where for 
each phase, the time remaining for the phase to change could be any value between zero and 200. 
This means that the output prediction was to be a linear combination of the outputs of the dense 
fully connected layer with ReLu activation and that the output layer was to have 6 nodes with 
linear activation. This allows the network to output the values of the time remaining for the state 
to change from red to green or vice versa for in each of the six signal phases. This means that the 
output is continuous variables which then have to be rescaled to 200 seconds and then 
approximated to the nearest second. The models all utilize an Adaptive Moment Estimation 
(Adam) optimizer, and different loss functions are experimented with including mean squared 
error, mean absolute error and mean absolute percentage error. The different models obtained are 
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compared against one another and prediction errors in the short term and long term of different 
models are used. More details of the different models used, and their performance, are discussed 
in the results and analysis section. 

 

Figure 7:  LSTM Network Architecture Used 

 

Results and Analysis 

Data Split 

Cross validation was used for every model to prevent overfitting. The data was divided to three 
subsets. Training data is used to train the model. Validation data is used to check the performance 
of the model regularly during training to avoid overfitting and tune hyperparameters. Testing data 
is used to evaluate the performance of the finalized model. Similar to what would happen in a field 
implementation, the model was trained using 81 days of data between July 26, 2019, and the Dec. 
10, 2019. The validation data used for tuning the hyperparameters of the models was used as a 
single day of data, which is Dec. 14, 2020. The testing data used for evaluating the performance 
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of the finalized models was Dec. 16,  2020. The validation and testing data were chosen to be for 
a date in the future outside the bounds of the training data. The reason for that is that the key 
interest lies in the ability of the models to generalize to future data rather than generalizing to 
historic data the model has not been exposed to. Furthermore, the use of a single day for validation 
and a single day for testing was done as a single day’s worth of data contains a representative 
amount of data to assess the entire model performance. The fact that each second of data is 
considered a data point means that a single day of data contains enough data points to allow a 
model to be thoroughly assessed.  

Exploratory Model Architecture Experiments 

Two key model hyper-parameters were to be identified for the best model. The first is the value of 
N, which is the number of neurons, and the second is the learning rate to be used for the Adam 
optimizer. An exploratory model fitting experiment was done on 37 days from July 26 until Oct. 
3, 2019.  The data from Oct. 4, 2019, were used for validation. The 37 days included 1.1 million 
data points. Due to the large computational time associated with the sequence generation, loading 
data and model training, these models were limited to going over the data twice while monitoring 
the loss function and the performance on the validation data every time the model finishes 
processing 250,000 datapoints. A grid search was utilized to explore the hyper-parameter space 
for different combinations of learning rates and number of neurons per layer.  

The choice of learning rates was on a logarithmic scale. For the choice of number of 
neurons, the value 187 is equal to the size of the input. It is then reduced twice by a factor of 4 to 
47 and 12, respectively, and then the size of the output layer 6 is used. Mean relative error was 
used as a loss function and performance metric to compare different models in this case for two 
reasons. The first is that the absolute value of the error is less important the more the prediction 
horizon; so, for example, an error of 5 seconds in a 10 second horizon is much more than an error 
of 5 seconds in a 50 second horizon. The second is that previous papers which employed LSTM 
to travel time and traffic flow forecasting, which are the most relevant areas to our application 
domain, utilized it as a key performance metric (29; 37; 38). Its performance against other loss 
functions would be tested in the following section. 
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Table 2: Mean absolute percentage error performance on Validation Data 

Learning Rate 

Number of Neurons 

6 12 47 187 

1*10^-2 22.61 21.03 17.57 20.00 

1*10^-3 28.56 33.00 20.18 27.36 

1*10^-4 73.38 52.51 41.73 39.16 

1*10^-5 223.27 269.53 196.74 108.81 

1*10^-6 364.86 425.77 382.64 369.63 

 

Table 2 shows the minimum reached mean absolute percentage error for different 
combinations of number of neurons per layer N and learning rate. One key insight that can be 
drawn from this analysis is that with the complexity and large computational time involved, 
choosing the correct learning rate is a key determinant of the quality of the model reached where 
the variation of the mean absolute percentage error over the varying learning rates is much larger 
than over varying number of neurons. Another observation is that the 47 neuron is better 
performing at both the 0.01 and 0.001 learning rates. Accordingly, the number of neurons would 
be set to 47 for further analysis.  

Performance of Different Loss Functions 
Model Description 

The maximum prediction horizon for the models used is 200 seconds. This is 3 minutes and 20 
seconds in the future and there are multiple uncertainties affecting predictions further ahead in the 
future. This property of having more certainty in predictions that are in the near future and less 
certainty in predictions in the distant future is common in many problem domains, and predicting 
traffic signal switching times is one of them. This necessitates the choice of a proper loss function 
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to reflect this property to be able to properly balance the prediction over short- and long-term 
prediction horizons. Three commonly used loss functions are examined which are mean squared 
error, mean absolute error and mean absolute percentage error, which is sometimes referred to as 
relative error. Another loss function is proposed by the authors, which is a modified version of the 
mean squared error which can be expressed as: 

𝐿𝐿 = �𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
2
∗ (1 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2 (6) 

This function modified the mean squared error function by scaling it to be smaller as the 
true value of y is greater. It should be noted in this case that the true value of y has to be scaled 
between zero and one. This both uses the squared value of the error as well as scaling down the 
loss as the ground truth value of the time remaining is further ahead in the future similar to relative 
error. However, it provides more flexibility than relative error as the value of relative error 
increases indefinitely as the ground truth approaches zero whereas the proposed loss function 
would be approaching the sum of squared error as the ground truth value approaches zero.  

All four loss functions are used to fit the entire dataset with the model discussed in Figure 
5 with N=47. According to the findings from the exploratory networks, the learning rate was set 
as 0.01. Despite the Adam optimizer having its own adaptive learning rates based in momentum, 
an additional learning rate decay is added which multiplies the learning rate by 0.3 for every epoch 
where there is no improvement in the validation loss. This allows the learning rate to go down an 
order of magnitude for 2 epochs with no improvement. All 2,164,000 data points are fitted using 
each of the four loss functions discussed over 10 epochs allowing the model to assess the 
performance on validation data each epoch. For every loss function, the model with the best loss 
over validation data is selected and then the best model over the 10 epochs for each loss function 
is compared against those of other loss functions. 

Model Performance Comparison 

After fitting the models and deciding the best model for each loss function in terms of validation 
loss, the final models are evaluated by applying them to the testing data. The testing data contains 
29578 sequences and predictions. In terms of overall model performance over the 200-second 
prediction horizon, the proposed model has the least absolute errors (Figure 8). Mean squared error 
and mean absolute error functions follow with mean square error having higher probability to be 
within 5 seconds from the ground truth but absolute error having higher probability to be within 
any error range bigger than 5 seconds. Mean absolute percentage error has the worst overall 
performance over the entire prediction horizon even though it has a higher probability than mean 
absolute error of being up to 2 seconds from ground truth.  
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Figure 8: Comparison of the model error cumulative distribution for different loss function 

If the performance at different prediction horizons is compared between the models, the 
role of the loss function in optimizing the predictions becomes more evident. Both mean squared 
and mean absolute errors do not value how far into the future the prediction is. This means that an 
error of 5 seconds results into the same mean squared error and mean absolute error whether the 
difference is between 10s prediction and 15s truth or whether it is between 100 seconds prediction 
and 105 seconds truth. This results in the performance of these two models being much better in 
the long-term predictions. Mean squared error has the lowest error for any prediction more than 
100 seconds into the future (Figures 9-12) (Table 3). Mean absolute error has slightly lower error 
than the mean square error in the 80 second horizon and slightly higher error after 80 seconds.  

The mean absolute percentage error (MAPE), on the other hand, heavily sacrifices long-
term predictions for short-term prediction. It has the lowest error in the 20 second horizon and 
outperforms mean squared error and mean absolute error up to the 60 second horizon. It’s also 
clear that it has much less distant outliers than other loss functions for values up to 40 seconds 
(Figure 10). This, however, comes at the expense of significant reduction in longer term prediction 
accuracy.  

The proposed model is a middle ground between the two extremes which provides an 
overall better fit for the data. Despite being slightly outperformed by the mean absolute percentage 
error for the 20 second prediction horizon, it outperforms it on every other horizon. Furthermore, 
it provides the lowest error for up to a 100 seconds prediction horizon and is slightly outperformed 
by the mean squared error in the 100 second to 120 second horizon.  
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Figure 9: Boxplots for absolute error distribution over different prediction horizons for mean absolute error function best model 

 

Figure 10: Boxplots for absolute error distribution over different prediction horizons for mean absolute percentage error function 
best model 
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Figure 11: Boxplots for absolute error distribution over different prediction horizons for mean squared error function best model 

 

Figure 12: Boxplots for absolute error distribution over different prediction horizons for proposed error function best model 
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Table 3:  Mean absolute error values over different prediction horizons for the best models using each loss function comparison 

Loss 
Function 

Prediction Horizon (s) 

0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160-180 180-200 

MSE 4.31 6.15 7.10 7.48 5.89 5.61 7.82 11.93 18.88 37.49 

MAE 3.61 5.94 6.52 6.18 6.10 7.20 9.63 11.97 22.51 46.26 

MAPE 1.96 4.20 6.08 8.09 10.03 13.46 26.17 35.49 52.40 89.45 

Proposed 2.13 3.38 4.20 4.68 4.71 5.74 13.27 23.22 40.59 89.35 

 

PART 2: EFFECT OF LOOK-BACK PERIOD 

Methodology 

The study relies on a three-step research methodology that includes: 

• Data gathering and preparation. 
• Training LSTM models on the same data using different look-back periods. 
• Testing on out of sample data and comparison of model performance 

Data Description 

The data used in part 2 is similar in format to that used in part 1. It expands on the previous 
part by using a total of 150 days of data as opposed to the 83 days of data in part 1. 

Data Split and Preparation 

The training dataset is composed of 120 days of data between July 2019 and January 2020. 
This includes a total of 1.8 million sequences of data learned by the model. A single day’s worth 
of sequences (15,000 sequences) on Feb. 17, 2020, is used for validation. The testing set is 
composed of 30 days out of the sample data for which the model has not seen during training 
within the same date range of the training set to be able to assess prediction performance in a way 
that mimics the model being deployed in the field. 
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To be able to compare the effect of the model look-back time window on the prediction 
performance, different look-back time windows are used for training and testing the same LSTM 
model. The time step used is one second, which is the same as the maximum level of detail offered 
by the data. For each second, the data provides a 187-element vector of the data elements described 
in Table 1. The sequence input to the LSTM neural network is provided as a matrix composed of 
the past 3, 10, 30 or 60 seconds of data. This means that for the 30-second look-back model, a 
single input data point is a matrix of size 187 x 30 and an output vector showing the time left for 
switching for each of the six phases of the traffic signal.  

The input data are arranged into small sequences in time followed by the prediction. The 
prediction includes the time left for each of the six phases to turn green if it is currently red or time 
for it to turn red if it is currently green. Switch times can range from zero to 200 seconds, but it is 
normalized to be between zero and one. This is a very long prediction horizon, so in assessing 
model performance, the next 20 seconds is focused on rather than long-term predictions for the 
entire 200-second prediction horizon. The length of the sequences (time window to look in the 
past) is altered between models, so models were developed that used a time window of 3, 10, 30 
and 120 seconds, respectively. A depiction of the sequence generation process is provided in figure 
13.  

 

Figure 13: Sequences and input time steps 
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Model Formulation 

The model architecture used is adapted from the optimal architecture used in part 1 based on the 
architecture proposed by Graves in 2013 (25; 36). The same architecture is trained using different 
look-back time windows to show the effect of the look-back time window on the prediction 
performance. 

The model architecture used is shown in figure 14. The input layer is followed by the 
LSTM recurrent layer, where the length of the input sequence affects the training time of the 
trainable parameters in the model shown in equations (1-5). LSTM layers have a tanh activation 
as this is the only activation which has a GPU implementation in Keras that is much more efficient 
than the CPU implementation. This is followed by a fully connected layer to take in the output 
from LSTM and aggregate it. This layer uses a sigmoid activation function to map the outputs 
from the LSTM layer to a value between zero and one. Finally, a fully connected linear output 
layer is used to linearly combine the outputs from the sigmoid layer to come up with the six 
switching times of the traffic signal.  

The loss function used is the mean absolute percentage error (MAPE) or the mean relative 
error (MRE), which was proven to achieve the best performance for a 20-second prediction horizon 
in part 1 (25). The purpose of using MAPE is prioritizing predictions in the short term and giving 
much less priority to predictions in the long term. Knowing the switching time with a good 
accuracy directly upstream of a signal allows eco-driving systems to better adapt the vehicle speed 
profile to navigate the intersection in a fuel-efficient manner. For this reason, more attention is 
given to the model performance in the short term (20 seconds and shorter) than in the long term.  
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Figure 14:  Model Architecture 

Results and Analysis 

Short-Term Prediction  

Four models with the same architecture described in figure 14 are built and then run on the training 
dataset until they converge after 14 epochs. The models’ performance on out of sample data is 
illustrated in the error distribution shown in figure 15.  

In terms of the short-term prediction horizon of less than 20 seconds, all models are similar 
to one another in terms of performance despite having a very slight advantage for the model using 
the 10-second look-back window. Even the 3-second model performs fairly well. This indicates 
that the trends repeating themselves in the data even within a period of 3 seconds can be sufficient 
to obtain a good estimate of what is happening over the next 20 seconds. 

The models perform well in predicting the switching time from red to green or vice versa. 
The models on average provide an exact prediction 62% of the time. On average, the model 
predictions are off by a maximum of only 1 second from the ground truth more than 80% of the 
time. The predictions are off by 2 seconds maximum from ground truth more than 89% of the time. 
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This shows a good reliability of the prediction which can be used for decision making for 
intelligent vehicles.  

When accounting for the total computational time required for all models, using a smaller 
look-back time window can be a good option. This is because the computational time and resources 
including memory and processing power required for the models with a small look-back interval 
are significantly smaller and these models tend to converge significantly faster.  

 

Figure 15:  Short-term prediction absolute error distribution 

Long-Term Prediction 

The use of the mean relative error loss function makes this model much better suited for short-
term prediction rather than long-term. In long-term prediction models, other functions such as 
mean squared error are much better suited and provide a better fit compared to the mean relative 
error.  

In this case, however, it is beneficial to see how well the different models perform in terms 
of long-term prediction to explore any correlations between the look-back period and the model 
performance in long-term predictions. The error distribution for the models for the entire 200-
second prediction horizon for the out of sample test is shown in figure 16. Unlike the short-term 
prediction where all models had a very similar performance, performance in long-term prediction 
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is better for the 60-second model followed by the 10-second model. The 30-second model produces 
a worse error compared to the 10-second model with a performance very close to that of the 3-
second look-back period model.  

The overall prediction performance in the long term is average, which is expected because 
of the use of the relative error loss function that focuses on the short-term and less on the long-
term reduction in error. Overall, for the 60-second look-back model, prediction is on average 
within 9 seconds of the ground truth 80% of the time. For the 30-second, 10-second and 3-second 
lookback models, predictions are within 14 seconds, 11 seconds, and 14 seconds, respectively, 
from the ground truth 80% of the time. Given that the prediction horizon is 200 seconds, these 
values are reasonable though not particularly good. 

It should also be noted that the models used provided a few unreasonable predictions (either 
less than zero or more than the 200-second prediction horizon). These distant outliers accounted 
for 0.8 percent of the total predictions and were filtered out as would be the case if they were in a 
field implementation of the model. One way to better deal with these outliers is to use model 
ensembles that obtain predictions from multiple models and take the average or use ML algorithms 
to weigh these predictions. This can help exclude one model when it comes up with an 
unreasonable prediction.   

 

Figure 16:  Long-term prediction absolute error distribution 
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Discussion 

Comparing the long-term and short-term model performances considering different look-back 
periods, it can be discerned that short-term predictions are much less demanding for the LSTM 
network. Regardless of the look-back time window, all models result in good reliable predictions. 
Long-term predictions, on the other hand, are less obvious and do not demonstrate a specific trend. 
Specifically, while the error for a 60-second look-back period is much lower than any other period, 
the model performance considering a 10-second look-back period is better than that of the 30-
second look-back period thus demonstrating that a longer look-back period is not necessarily 
better. The 3-second and 30-second look-back periods produce very similar errors; however, the 
30-second look-back model is much more computationally expensive.  

The overall recommendation for researchers using similar data is in case of conducting 
short-term predictions, start with shorter look-back periods and gradually increase the look-back 
and observe the effect on the overall model performance to achieve a model that has satisfactory 
performance and is computationally efficient. For long-term predictions, on the other hand, a more 
thorough grid search exploring different areas of the solution space can be examined.  

The results show that there is no monotonic relationship between the look-back period and 
the overall prediction performance. This means that while increasing the look-back period can 
potentially add useful information to the model that it could use to detect a temporal trend, it can 
also add information that is not essential that can make it more difficult for the LSTM model to 
detect the more fundamental short-term trends in the time series data. 

PART 3: EFFECTS OF REGULARIZATION AND 
GENERALIZATION PERFORMANCE 

Methodology 

This study methodology relies on the large reduction in travel demand created by COVID-19 to 
assess the short-term generalization of traffic signal switching time models (39). The study adopts 
a three-step research methodology: 

• Data preparation and splitting. 
• Development of different LSTM model variants. 
• Assessing and comparing the different LSTM model variant performance on test 
data prior to COVID-19 and after COVID-19. 
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Data Preparation and Splitting 

The data are split into three datasets. The training dataset covers 120 days of data that span the 
months from July 2019 to January 2020 similar to those used in part 2. For cross-validation during 
training, a single day including 15,000 data points is used and this corresponds to Feb. 17, also 
similar to part 2. The first testing dataset is meant to assess the performance of the model variants 
on test data before the occurrence of the COVID-19 pandemic and includes 30 days from the same 
period of the training data between July of 2019 and January of 2020. The second testing dataset, 
on the other hand, is new data and is meant to assess the temporal generalization of the model as 
well as generalization to lower traffic demand conditions due to the COVID-19 pandemic. It covers 
the 18 days between March 15 and April 1 shortly after COVID-19 was declared a national 
emergency on March 1. Figures 17 through 22 show the difference in traffic volume demand on a 
typical weekday (Tuesday) and a typical weekend day (Saturday) between the days before the 
pandemic and those right after COVID-19 was declared a national emergency.  

Figures 17 through 22 show the drastic decrease in travel demand for all six phases of the 
traffic signals after COVID-19 was declared as a national emergency. Note that the travel demand 
is recorded only for times of the day when the traffic signal operates in actuated-coordinated mode, 
which is 8:30 am to 9 pm on weekends and 6:30 am to 10 pm on weekdays. These are the same 
times on which all the models are trained. The reduction in demand is more pronounced on 
weekends than on weekdays. Moreover, during weekdays, it seems that demand is significantly 
reduced for travel before 5 pm, when rush hour traditionally occurs. On the other hand, demand 
after 5 pm is not significantly reduced showing that travel behavior during weekdays after work 
remains mostly unaffected. The travel demand reduction is also highest for the through movements 
for Gallows Road, which corresponds to phases 2 and 6 where the travel demand is almost halved. 
Figures 1 through  6 show that after COVID-19, demand drops to unprecedented levels, which is 
an unconventional circumstance in which the ability of the LSTM model variants to generalize is 
tested.  
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Figure 17:  Weekday and weekend traffic volumes for phase 1 before and after COVID-19 

 

Figure 18:  Weekday and weekend traffic volumes for phase 2 before and after COVID-19 

 

Figure 19: Weekday and weekend traffic volumes for phase 3 before and after COVID-19 
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Figure 20: Weekday and weekend traffic volumes for phase 4 before and after COVID-19 

 

Figure 21: Weekday and weekend traffic volumes for phase 5 before and after COVID-19 

 

Figure 22:  Weekday and weekend traffic volumes for phase 6 before and after COVID-19 

LSTM Model Variant Development 

The baseline model architecture used in this paper is similar to that optimized in part 1 (25). The 
two main differences in the model provided in this part are the prediction horizon and the use of 
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varying regularization techniques to create and assess model variants for generalization. The 
prediction horizon used for this study is 20 seconds, when the most gains in terms of fuel and 
energy efficiency from controlling the vehicle speed prior to reaching the intersection can be 
realized. It is also the prediction horizon where most previous studies achieved reasonable 
performance (15; 24). The loss function used is the mean absolute percentage error (MAPE) as it 
was found to provide the best results for short-term predictions (25). Similar to parts 1 and 2, the 
model was trained on a full 200-second prediction horizon; however, testing the model was limited 
to data points where the signal switching (from red to green or vice versa) was expected to happen 
within the next 20 seconds. This choice was made as training on long-term prediction was found 
to further improve the short-term prediction performance, so throwing away training data beyond 
the prediction horizon would be counterproductive for the model. The following section discusses 
the different regularization techniques used to create the model variants in further detail. 

 
L1 and L2 Regularization Techniques 

L1 and L2 penalty terms originated in statistical models where the L1 penalty is used for lasso 
regression and L2 penalty is used in ridge regression (40). The idea is that the L1 term is a term 
added to the loss function to penalize a percentage of the absolute value of the coefficients and L2 
is added to penalize a percentage of the square of the loss function. In deep learning models, L1 
and L2 can be used to penalize the weight and bias for each layer. Due to using the square of the 
weight, L2 penalizes weights less than 1 less than L1 and weights greater than 1 more than L1. 
Use of these regularization terms in the model loss function makes the model less likely to use 
very large weights and biases for a single input or activation. This makes models more stable and 
more likely to generalize better. The model variants using L1 and L2 use a ratio of 0.01 of the 
weights and biases absolute value for L1 and square value for L2.  

Batch Normalization 

Batch normalization is a technique in which the inputs to each layer (activations from previous 
layers) are normalized to reduce the changes in the distribution of the inputs to each layer during 
training (41). It is proven to accelerate the model training, reduce the sensitivity to model 
initialization state, and enhance generalization (41; 42).  

Dropout 

Random dropout of nodes within the deep learning model refers to omitting a random subset of 
nodes while training, as illustrated in figure 23. This subset that is omitted is continuously changed 
while training. This reduces the model chances of overfitting the training data or context-specific 
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adaptations within the network relying on a specific subset of features (43). In this study the 
dropout percentage is varied between 5%, 10% and 20%.  

 

Figure 23:  Dropout illustration 

Model Variant Comparison 

Based on the baseline model, nine other model variants are created using the discussed 
regularization techniques and compared to one another. The 10 model variants are created and 
assessed based on their prediction performance as well as generalization performance. The nine 
additional model variants use 5% dropout, 10% dropout, 20% dropout, batch normalization, L1, 
L2, combined L1 and L2, combined L1 and L2 with batch normalization and combined L1 and L2 
with batch normalization and 10% dropout. Each model is trained on the training dataset and then 
used to predict using out of sample data from the duration of time before COVID-19 as well as 
after COVID-19 occurred.  

Results and Analysis 

Results 

Each model is trained on the training dataset and then used to predict using out of sample data 
from the duration of time before COVID-19 as well as after COVID-19 occurred. Figures 24 
through 27 provide a summary of the prediction performance of the nine different models with the 
baseline model performance provided in all figures as a reference. The graphs show a step function 
with the absolute error on the x axis and the cumulative probability of having this value of absolute 
error or less. The more the graph is shifted to the left-hand side the better the overall prediction 



35 
 

performance of the model. The graph is provided as a step function as both predictions and true 
values are discrete variables to the nearest second. Table 4 provides a comparison of the overall 
mean absolute error (MAE) of the different model variants prior to and after the lockdowns 
associated with the COVID-19 pandemic. 

 

 

Figure 24:  Absolute error distribution on test data before COVID-19 (Part 1) 
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Figure 25: Absolute error distribution on test data before COVID-19 (Part 2) 

 

Figure 26:  Absolute error distribution on test data after COVID-19 (Part 1) 
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Figure 27: Absolute error distribution on test data after COVID-19 (Part 2) 
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Table 4:  Model Mean Absolute Error prior to and after COVID-19 

Model 
MAE before 
COVID-19 

MAE after 
COVID-19 

Change (%) 

5 Percent Dropout 3.61 2.88 -20.05 

10 Percent Dropout 3.34 3.10 -7.08 

20 Percent Dropout 3.56 2.60 -26.94 

Batch Normalization 2.49 2.67 7.27 

L1 L2 2.32 2.18 -6.02 

L1 L2 Batch Normalization 2.36 2.46 4.06 

L1 L2 Dropout Batch Normalization 2.97 3.08 3.77 

L2 1.94 1.99 2.18 

L1 2.06 2.05 -0.50 

Baseline 2.78 2.34 -15.68 

 

Analysis 
Overall Model Performance 

The model variants utilizing the L1 and L2 regularization parameters in the loss function provide 
the best overall model performance in both the test sets before COVID-19 and after COVID-19 
with respect to MAE. The model using L2 regularization provides the lowest MAE of 1.94 seconds 
on the data prior to COVID-19 and 1.99 seconds on data after COVID-19. This is closely followed 
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by the model using L1 regularization with an MAE of 2.06 seconds on data before COVID-19 and 
2.05 seconds on data after COVID-19. This is followed by the model variants using both L1 and 
L2 regularization, which have an MAE of 2.32 on data before COVID-19 and 1.18 on data after 
COVID-19. These are the only model variants that achieve a performance higher than the baseline 
performance even though the model employing batch normalization performance is very close to 
that of the baseline model.  

Despite the L2 regularization model variant having a lower overall MAE compared to the 
L1 model, it should be noted that the L1 variant has a slightly more favorable error distribution 
where the L1 variant is within 2 seconds of the true value 83.5% of the time as opposed to 83.3% 
of the time on the test data before COVID-19. This is consistent with the performance on the data 
after COVID-19 as well where the L1 variant is within 2 seconds from the true value 81.8% of the 
time as opposed to 80.6 of the time for the L2 variant. This shows that the use of L1 and L2 
regularization for stabilizing the weights and biases has a significant positive impact on the overall 
model performance. The L1 and L2 regularization significantly reduced the out of sample test error 
for both the test set before COVID-19 and that after COVID-19. 

All model variants employing dropout layers have a significantly reduced performance 
compared to the baseline model. The dropout technique is meant to reduce dependency on a small 
proportion of the data or certain combinations of inputs to reduce overfitting. However, in the case 
of this training dataset, the overfitting is unlikely due to the huge size of the training dataset (1.8 
million data points). This makes the model performance on out of sample data consistent with its 
performance on the training data and reduces the likelihood of overfitting even for the baseline 
model. This means that the use of dropout only makes the training process more complex without 
adding value in terms of generalization, leading to the reduction in performance seen in the results. 

Complex model variants combining multiple regularization techniques seem to be 
outperformed by their simpler counterparts except for the case of the model variant combining L1 
and L2 regularization with batch normalization, which outperforms the batch normalization only 
variant as L1 and L2 regularization improves the overall performance of the model. 

Model Generalization Performance. 

In terms of overall model generalization performance, the baseline model generalizes very well. 
The overall mean absolute error of the out of sample test data taken from after the COVID-19 time 
frame is 15.68% lower than the out of sample test data before COVID-19. The baseline simple 
model could achieve a prediction performance that does not reduce despite having a two-month 
lag between the training of the model and using it for prediction, which proves that the model is 
very robust to temporal variations. Moreover, the reduction in demand due to the COVID-19 
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pandemic did not affect the overall model performance which also proves that the model is robust 
to reductions in traffic demand. This result is counterintuitive as the lower the demand, the more 
difficult it becomes to predict vehicle arrivals and the more left turn phases and side road phases 
are likely to be skipped, which introduces error to the model. 

Other model variants also perform very well in terms of generalization where the model 
performance before the COVID-19 pandemic seems to be consistent with that after the COVID-
19 pandemic both in terms of MAE and error distributions. The worst performing model variant 
in terms of generalization was that employing batch normalization, and the MAE of this model 
increased by only 7.27% compared to its MAE before the pandemic. This model variant was within 
2 seconds from the true value 71.9% of the time prior to COVID-19 and this was reduced to 69.1% 
after COVID-19. While this is one of the largest reductions in model performance among the tested 
model variants, the reduction in performance is still small. The second-worst model in terms of 
MAE is the one that uses all regularization methods combined, which increases its MAE by 3.77% 
after the COVID-19 pandemic. For this model, the model is within 2% of the true value only 63.1% 
of the time prior to the COVID-19 pandemic and 61.6% after the pandemic. This reduction is again 
very small. This shows that even the two worst generalizing model variants are still very consistent 
in terms of their performance after the traffic demand reductions during the COVID-19 pandemic. 
This result highlights the consistency and robustness of the model variants despite the two-month 
lag between training and testing as well as the reduced demand due to the COVID-19 pandemic. 

CONCLUSIONS AND RECOMMENDATIONS 

The use of LSTM neural networks allowed for a holistic data-driven modeling framework which 
takes into account controller logic, time of day, and vehicle and pedestrian actuation data. The 
presented framework is robust to missing data and provides useful insights into signal switching 
times whether it is time to green or time to red.  

The report presented a step-by-step detailed methodology for data gathering, data 
preparation, training and tuning the LSTM models and testing and comparing different model 
architectures. The model was applied to the four-way traffic intersection between Gallows Road 
and Gatehouse Drive and provided predictions of up to 200 seconds in the future relying on the 
past two minutes of data. A comparison between different loss functions for training the LSTM 
network on our problem domain was conducted. In addition to the mean squared error, mean 
absolute error, and mean absolute percentage error, a new loss function was proposed. The overall 
performance of the proposed loss function was better than that of the conventional loss functions. 
The comparison between loss functions indicated the importance of the choice of loss function 
according to the desired results. For our data, if the priority is a very short-term prediction horizon 
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of less than 20 seconds, then the mean absolute percentage error is the best option. If the priority 
is prediction up to 100 seconds, then the proposed model is the best option. For long-term 
predictions of more than 200 seconds in the future, the mean square error is the best option. This 
study highlights the importance of choice of loss function to suit the usage of the prediction. 

The report provides an evaluation of the effect of the look-back period on the overall model 
performance when using LSTM to compute traffic signal switch times. The results show that short-
term accurate predictions less than 20 seconds can be obtained with a look-back time window as 
small as 3 seconds in duration. Long-term predictions, on the other hand, are more sensitive to 
changes in the look-back period and require a thorough search in the solution space to identify the 
best look-back period to enhance the model fit. The study also shows that the look-back period 
does not have to be larger than the prediction horizon or directly related to it. Instead, it depends 
more on the most important trends repeating themselves in the data with regard to the prediction. 
Given the results of part 2, the presented modeling framework is capable of being within 1 second 
from ground truth more than 80% of the time within a 20-second prediction horizon.  

Finally, this project investigated the prediction and temporal generalization performance 
of LSTM neural networks with varying regularization parameters. Model variants for LSTM 
neural networks including dropout, batch normalization, L1 and L2 Regularization were used to 
train the model using 120 days of data, and their performance was evaluated on out of sample data 
prior to and after COVID-19 pandemic lockdowns. All model variants showed very consistent 
prediction behavior with very slight to no reductions in prediction performance between the testing 
on the data prior to the COVID-19 pandemic and the data after the COVID-19 pandemic 
lockdowns. This behavior suggests that the use of the 120 days of data was sufficient to avoid 
overfitting and produce a model with comprehensive understanding of the different traffic 
conditions and temporal changes.  

The results of part 3 showed that L1 or L2 regularization parameters being added to the 
loss function significantly improved the model’s overall prediction performance. Dropout layers 
significantly reduced prediction performance, and batch normalization did not affect the prediction 
performance. Generally, the simpler model variants outperformed the complex model variants 
combining several regularization parameters. This implies that researchers should be careful when 
using regularization parameters with traffic signal switching time predictions where adding more 
regularization parameters could be counterproductive. In the case of not having sufficient time for 
running an exhaustive search for the optimal model parameter setup, it would be best to train the 
model variants in a stepwise manner starting with the simplest model variants and adding to that. 

While the proposed work is a good first step to testing the generality of the model, further 
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testing of the algorithm is needed on other intersections. Part 3 is intended to serve as a guideline 
for other researchers utilizing similar methods given the large cost associated with data gathering 
and high computational power needed to experiment with deep learning models. This effort can 
be indicative of the temporal generalization behavior expected when applying LSTM model 
variants at similar intersections to address questions about sufficiency of data and model 
performance under varying demand conditions. 

This project provides a performance benchmark for future researchers using LSTM to 
predict traffic signal switch times. The results of this study are highly practical as the data collected 
are already being broadcast by the existing infrastructure without any extra investment in sensors 
or data collection devices. The modeling framework introduced in this paper can be deployed in 
the field and used to create models for any intersection. With the information provided by these 
models and the aid of stochastic control to account for prediction errors, automated and connected 
vehicles will be much more informed while navigating through traffic signals. 
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