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ABSTRACT 
 
This research study investigates the possible correlations between mobility, accessibility, and 
crime rate. A rich mobile device location dataset including detailed anonymized location traces of 
the mobile devices observed in the City of Baltimore was combined with the police arrest records 
to study how mobility and accessibility affect neighborhood safety. The research team first 
processed and analyzed the mobile device location dataset to obtain measures of mobility and 
accessibility. These measures differed from the traditional measures in that they were obtained 
based on the empirically observed location data. The research team then built statistical and 
machine learning tools to model crime rates at the census-tract levels, using the calculated mobility 
and accessibility measures, land-use variables, and socioeconomic-related variables as the 
covariates. Subsequently, the team focused on the correlation of the crime rates with the mobility 
and accessibility variables. Results indicated that the mobility and accessibility measures can help 
improve the performance of crime rate prediction. Also, non-motorized travel might be positively 
related to burglary. The study seeks to inform decision-makers about the transportation-related 
issues contributing to the lack of safety and offer transportation solutions to crime-related 
problems, especially in the neighborhoods suffering from high crime rates. 
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1. INTRODUCTION 
 
Crime has been one of the biggest social problems in the United States, with a sharp increase after 
the 1900s and decreasing since the early 1990s (Truman and Planty, 2012). In 2019, the Federal 
Bureau of Investigation (FBI) reported a total of 2,109.9 property crimes per 100,000 people and 
379.4 violent crimes per 100,000 people in the U.S. (Gramlich, 2020). To reduce or even 
potentially prevent crimes from happening, previous studies have analyzed the occurrence of crime 
with the support of routine activities theories, which include three essential elements: a motivated 
offender, an attractive target, and the absence of capable guardianship (Cohen and Felson, 1979). 
Though proven by empirical evidence, these approaches cannot differentiate between how local 
characteristics – such as land use and socio-demographics – and, more importantly, the population-
level human activities influence crime patterns (Caminha, 2017). With the technological 
advancement in mobile sensors and mobile networks, mobile device location data (MDLD) has 
been growing drastically in terms of data coverage and data size, which makes it possible for 
researchers to look at crime from another perspective. 
 
This report summarizes the study of analyzing how mobility and accessibility affect crime rates in 
Baltimore City. The mobility and accessibility are estimated from a large-scale MDLD dataset 
including detailed anonymized location traces of the mobile devices observed in Baltimore, 
including the multimodal mobility patterns and accessibility measures. These measures differ from 
the traditional measures in that they were obtained based on the empirically observed location data 
that is able to depict individual-level mobility. To estimate the crime rate, the open-source crime 
records data provided by the Baltimore Policy Department (BPD) were collected. The research 
team has built a data-driven modeling framework to model crime rates at the census-tract level, 
using the calculated mobility and accessibility measures, land-use variables, and economy-related 
variables as the covariates. The relationship between these covariates and the crime rate is 
discussed. Results indicated that the mobility and accessibility measures can help improve the 
performance of crime rate prediction. Also, non-motorized travel might be positively related to 
burglary. The final result can inform decision-makers about the transportation-related issues 
contributing to the lack of safety and offer transportation solutions to crime-related problems, 
especially in the neighborhoods suffering from high crime rates. The rest of the report is organized 
as follows. In section two, we review the literature on the application of mobile device location 
data in the realm of transportation and the relationship between crime rate and transportation-
related variables. In section three, we introduce the methodology of deriving mobility and 
accessibility measures from the mobile device location data, and the data-driven modeling 
framework of high-crime neighborhoods with Geographically Weighted Regression (GWR). In 
section four, we describe the data used in this study, including the MDLD and the mobility and 
accessibility measures derived from it, the Baltimore crime record, and the American Community 
Survey (ACS). In section five, we use the data-driven approach results to discuss how these 
variables affect the Burglary crime rate across different regions in the City of Baltimore. Section 
six offers concluding remarks and provides policy indications. 
 

2. LITERATURE REVIEW 
 
Previous research reveals that transportation-related variables have contributed to various types of 
crimes, such as rail stations (Cahill and Mulligan, 2007) and interstate highways (Marton, 1995). 
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By considering the location of these transportation components, the correlation of certain types of 
crimes (e.g., Burglary) and the transportation components can be quantified. In recent years, along 
with the technological advancements in the internet, mobile sensors, and mobile networks, the 
movement data has also been brought into the criminology domain to support crime rate analysis. 
For instance, Wang et al. 2016 leveraged the taxi flow and Point-Of-Interest (POI) data to infer 
the crime rate in the Chicago, Illinois, USA. The taxi trip records were aggregated at the 
community areas to capture the socio interactions among various community areas. The results 
suggested that by considering the POI and taxi flows, the crime rate inference error can be reduced 
by 17.6% (Wang et al., 2016). Zhao and Tang built a framework that captures temporal-spatial 
correlations for crime prediction (Zhao and Tang, 2017). They collected the check-ins from the 
POI dataset and pick-up and drop-off points from the taxi trajectories dataset to represent human 
mobility. Hanaoka (2018) examined the relationships between the occurrences of snatch-and-run 
offenses and hourly population estimated from approximately 500,000-700,000 mobile phone 
users. The time of day relationship between the snatch-and-run offenses and the population density 
was discussed. However, either the check-ins data or the taxi flow data are not able to capture the 
entire mobility patterns without an appropriate computational algorithm to expand these samples 
to population-level statistics. Caminha et al. (2017) estimated the floating population to represent 
human mobility for each census tract (number of people who pass through a census tract) and used 
the City Clustering Algorithm (CCA) to measure the relationship with crime rates. The result 
suggested that a disproportional number of property crimes occurs in regions where an increased 
flow of people occurs in the city of Fortaleza, Brazil (Caminha et al., 2017). Even though the 
floating population can represent the population-level human movement, it does not separate the 
movement by travel modes, such as vehicle, transit, and non-motorized travel, which each have 
distinct characteristics. 
 
The literature review suggests that limited studies have been able to estimate the population-level 
human mobility in order to support crime rate analysis. This report is among the first to leverage 
the rich MDLD dataset and Location-based Service (LBS) data, including detailed anonymized 
location traces of the mobile devices observed in Baltimore, and combines that with the police 
arrest records to study how mobility and accessibility affect neighborhood safety. The Location-
based Service (LBS) data is generated when a mobile application updates the device’s location 
with its most accurate sources, based on the currently available location-providing technologies 
such as Wi-Fi, Bluetooth, cellular tower, and GPS (Gonzalez et al., 2008; Wang et al., 2019). The 
LBS data can reflect the exact location of the device, providing invaluable location information 
describing population-level mobility patterns. Lots of applications have been developed using the 
LBS data. For instance, the Maryland Transportation Institute (MTI) at the University of Maryland 
(UMD) developed the COVID-19 Impact Analysis Platform (https://data.covid.umd.edu/) to 
provide insight into COVID-19’s impact on mobility, health, economy, and society across the U.S. 
(Zhang et al., 2020; Zhang et al., 2020; Xiong et al., 2020; Xiong et al., 2020; Hu et al., 2021). 
 
The research team first processes and analyzes the mobile device location dataset to obtain 
measures of mobility and accessibility. These differ from the traditional measures in that they will 
be obtained based on the empirically observed location data. The research team then builds 
statistical and machine learning tools to model crime rates at the census-tract levels, using the 
calculated mobility and accessibility measures, land-use variables, and economy-related variables 
as the covariates. Subsequently, the team focuses on the correlation of the crime rates with the 
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mobility and accessibility variables. The study seeks to inform the decision-makers about the 
transportation-related issues contributing to the lack of safety and offer transportation solutions to 
crime-related problems, especially in the neighborhoods suffering from high crime rates. 
 

3. METHODOLOGY 
 

3.1. Deriving Multimodal Mobility Pattern and Accessibility Measures 
from Mobile Device Location Data 

 
In this section, we briefly discuss the methodologies to derive multimodal mobility patterns and 
accessibility measures with MDLD. A suite of computation algorithms that includes home and 
work location imputation, weighting, trip identification, and travel mode identification is 
introduced (Zhang et al., 2020). 
 

3.1.1. Home and Work Location Identification and Weighting 
 
Identiying the home and work locations is crucial to understand the travel pattern of each sample 
in the MDLD and a necessary step to expand the sample to population-level statistics. In this 
project, we use the Density-based spatial clustering of applications with noise (DBSCAN) to 
identify the location of residence and destinations for employment (if exists) for all individuals 
included in the MDLD (Ester et al., 1996), as shown in Figure 1. For home identification, we use 
every day of the study period, from 7 PM to 7 AM the next day. For work location identification, 
we use every working day in the study period, from 11 AM to 5 PM. For home location, among 
all the clusters obtained from the DBSCAN algorithm for each device ID, the center of the cluster 
with the most observation points is identified as its home location. If a device does not have any 
cluster, the device is entirely removed from the sample. For the work location, the cluster with the 
most observation points during the assumed work hours may still be the home location, as some 
people might work with a different schedule or just work from home. Therefore, in order to identify 
a fixed location, we first identify if the device has one or more clusters during the daytime which 
are at least 500 meters away from its identified home location. Among them, the center of the 
cluster with the most observation points is identified as the device’s work location (Alexander et 
al., 2015). 
 

 
Figure 1. Illustration of DBSCAN algorithm. 

 
After identifying the home locations from the MDLD, the spatial join is performed to match each 
device’s home location to a census tract. Then, the weight of each mobile device can be calculated 
with the census tract population, as shown below: 
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𝑤𝑤𝑖𝑖 =

𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
𝑛𝑛𝑖𝑖

 

 
where 𝑤𝑤𝑖𝑖 represents the weight for devices with home location at census tract i, 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 represents 
the population at census tract i, and the 𝑛𝑛𝑖𝑖 represents the number of mobile devices with home 
location at census tract i. With the weight of each mobile device generated, the sample can be 
expanded to the population by multiplying the measures with the weight. 
 

3.1.2. Trip Identification 
 
Trips are the unit of analysis in our study. Mobile device location data does not include trip 
information. Location observations are continuously being generated while the device moves, 
stops, stays static, or starts a new trip. As a result, we developed a trip identification algorithm that 
can detect which location observations form a trip together. We take the following steps to identify 
trips. The algorithm runs on the observations of each device separately. 
 

1. Pre-Processing: We first sort device observations by time. The algorithm assigns a random 
ID to each trip it identifies. Many location points in the dataset may not belong to trips. 
The algorithm assigns “0” to the trip ID of these locations to tag them as static points. For 
every location point, we calculate distance, time, and speed between the point and its 
immediate previous and next points, if they exist. Three hyperparameters need to be set for 
the algorithm: distance threshold (300 meters), time threshold (5 minutes), and speed 
threshold (1.4 meters per second). The speed threshold is used to identify if a location point 
is recorded on the move. The distance and time thresholds are used to identify stay locations 
and trip ends. At this step, the algorithm identifies the device’s first observation with 
𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓 ≥ 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑝𝑝𝑜𝑜𝑠𝑠. This identified location point is recorded on the move, 
so a hashed trip ID is generated and assigned to this point. All points recorded before this 
point, if they exist, are set to have “0” as their trip ID. Next, a recursive algorithm identifies 
if the next points are on the same trip and should have the same trip ID. 

 
2. Iterative Algorithm. This algorithm checks every point to identify whether they belong to 

the same trip as their previous point (Figure 2). If they do, they are assigned the same trip 
ID. If they do not, they are either assigned a new hashed trip id (when their 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓 ≥
𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑝𝑝𝑜𝑜𝑠𝑠 ) or their trip ID is set to “0” (when their 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓 <
𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑝𝑝𝑜𝑜𝑠𝑠). Identifying whether a point belongs to the same trip as its previous 
point is based on the point’s “speed to,” “distance to” and “time to” attributes. If a device 
is seen in a point with 𝑠𝑠𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑𝑛𝑛𝑑𝑑𝑠𝑠 𝑡𝑡𝑝𝑝 ≥ 𝑠𝑠𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑𝑛𝑛𝑑𝑑𝑠𝑠 𝑡𝑡ℎ𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑝𝑝𝑜𝑜𝑠𝑠 but is not observed to move 
there (𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑝𝑝 < 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑝𝑝𝑜𝑜𝑠𝑠), the point does not belong to the same trip as its 
previous point. When the device is on the move at a point (𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑝𝑝 ≥ 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑝𝑝𝑜𝑜𝑠𝑠), 
the point belongs to the same trip as its previous point, but when the device stops, the 
algorithm checks the radius and dwell time to identify if the previous trip has ended. If the 
device stays at the stop (points should be closer than the distance threshold) for a period of 
time shorter than the time threshold, the points still belong to the previous trip. When the 
dwell time reaches above the time threshold, the trip ends, and the next points no longer 
belong to the same trip. The algorithm does this by updating “time from” to be measured 
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from the first observation in the stop, not the point’s previous point. The algorithm may 
identify a local movement as a trip if the device moves within a stay location. To filter out 
such trips, all trips that are shorter than 300 meters are removed.  

 

 
Figure 2. Recursive algorithm for trip identification. 

 
3.1.3. Travel Mode Imputation 

 
Machine learning models are used to impute five travel modes (drive, bus, rail, bike and walk) 
from trips identified from the previous step. The five modes are further combined into three modes: 
vehicle (drive), transit (bus and rail), and non-motorized (walk and bike). Five machine learning 
models are examined in terms of prediction accuracy, including K-Nearest Neighbors (KNN), 
Support Vector Classifier (SVC), eXtreme Gradient Boosting (XGB), Random Forest (RF), and 
Deep Neural Network (DNN). Feature set construction directly affects the model performances. 
Three types of features – sample rate, trip, and multimodal transportation network – are 
constructed from the MDLD, as shown in Table 1. The sample rate feature, represented by the 
average number of records per minute, indicates the location service usage during a trip. The trip 
features can show the characteristics of each trip, including trip distance, origin-destination 
distance, trip time, average speed, minimum speed, maximum speed, median speed, and 5th, 25th, 
75th, 95th percentile speeds. The multimodal transportation network features are important to 
distinguish between different travel modes (Bohte and Maat, 2009; Gong et al., 2018). The 
multimodal transportation network data is collected including drive, bus, rail networks, and bus 
stop locations to construct network-related features. The drive network is collected from the 
Highway Performance Monitoring System (HPMS) that includes national freeway and arterial 
roads in the U.S. The national bus and rail network and the bus stops data are collected from the 
United States Department of Transportation (U.S. DOT) Bureau of Transportation Statistics (BTS) 
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National Transit Map (NTM). Figure 3 illustrates the multimodal transportation networks used in 
this study. Here, the min-max, median, and 5th, 25th, 75th, 95th percentile distances to the rail and 
bus network are calculated. A 50-meter buffer is generated for all bus stops to obtain the percentage 
of location points for each trip that falls within the buffer respectively. 
 

 
Figure 3. Multimodal transportation networks: drive (grey), rail (green), bus (blue). 

 
Table 1. Features constructed from mobile device location data. 

Features  Unit 
Sample Rate Feature 
      Average # of records per minutes number / minute 
Trip Features 
      Trip distance meters 
      Origin-destination distance meters 
      Trip time minutes 
      Min, max, median, 5th, 25th, 75th, 95th percentile speeds meters / second 
Multimodal Transportation Network Features 
     Min, max, median, 5th, 25th, 75th, 95th percentile distances to the rail network meters 
     Min, max, median, 5th, 25th, 75th, 95th percentile distances to the bus network meters 
     Percentage of records within 50-meter of bus stops meters 

 
3.1.4. Accessibility Measures 

 
For each census tract, we calculate the average observed travel time for all “home-based work” 
trips of the census tract residents as our data-driven measure of accessibility to jobs. Similarly, we 
calculate the average observed travel time for all “home-based food” and “home-based healthcare” 
trips of the census tract residents as the data-driven measures of accessibility to food and healthcare. 
Therefore, we take the following steps: 

1. For each device, find the average trip duration of home-based trips for job/food/healthcare, 
as its representative travel time to job/food/healthcare. 

2. For each census tract, find the average travel time to job/food/healthcare of all the devices 
that are imputed to reside there as the census tract’s accessibility to job/food/healthcare. 
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3.2. Data-Driven Modeling Framework of High-Crime Neighborhoods 
 
In this section, we introduce the data-driving modeling framework of high-crime neighborhoods. 
This framework will apply the Geographically Weighted Regression (GWR) to estimate the 
burglary crime rates with the calculated mobility and accessibility measures, land-use variables, 
and economy-related variables as the covariates. 
 

3.2.1. Multicollinearity 
 
Before we estimate the model, the multicollinearity of all the explanatory variables needs to be 
examined. Multicollinearity refers to the situation in which the explanatory variables are highly 
correlated with each other, which might cause biased estimates of the regression model (Farrar and 
Glauber, 1967). To solve the multicollinearity issue, we calculated the Variable Inflation Factor 
(VIF) for each explanatory variable (Neter and Kutner, 1989). VIF can effectively quantify the 
multicollinearity by estimating the linear relationship between one explanatory variable and the 
others. For each explanatory variable, the VIF can be calculated with the following equation: 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 =
1

1 − 𝑅𝑅𝑖𝑖2
 

 
where 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖  represent the VIF value for explanatory variable i, 𝑅𝑅𝑖𝑖2 represents the coefficient of 
determination for explanatory variable i. If the VIF value is greater than 10, the variable is assumed 
to be a multicollinear variable and should be removed from the regression model. 
 

3.2.2. Geographically Weighted Regression 
 
The Geographically Weighted Regression (GWR) extends the generalized linear regression by 
incorporating the spatial heterogeneity when modeling the relationship between the response 
variable and the explanatory variables. In the generalized linear regression model, the estimated 
coefficients of variables are constant across the whole sample dataset, while the GWR model 
allows different relationships to exist at different locations over space (Brunsdon & Fortheringham, 
1996; Brunsdon & Fortheringham, 1998). The GWR model can be generally represented by the 
following equation: 
 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) + �𝛽𝛽𝑖𝑖𝑖𝑖(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝜀𝜀𝑖𝑖 

 
where the vector representing the weight for location i, �̂�𝛽(𝑑𝑑) = (𝛽𝛽𝑖𝑖0,𝛽𝛽𝑖𝑖1, … ,𝛽𝛽𝑖𝑖𝑛𝑛)𝑇𝑇, can be estimated 
with: 
 

�̂�𝛽(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) = [𝑋𝑋𝑇𝑇𝑊𝑊(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)𝑋𝑋]−1𝑋𝑋𝑇𝑇𝑊𝑊(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝑌𝑌 
 
where X represents the n × n+1 matrix of explanatory variables, Y represents the n × 1 matrix of 
response variable, 𝑊𝑊(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) is an n × n matrix whose diagonal elements denote the geographical 
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weighting of data at location i. In GWR, 𝑊𝑊(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) can be interpreted as a distance decay function, 
where 𝑤𝑤𝑗𝑗(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)  represents the weighted distance between location j and i. There are two 
commonly used kernel functions for the distance decay function, namely Gaussian and the bi-
square kernel: 
 

𝐺𝐺𝑑𝑑𝑢𝑢𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑𝑛𝑛: 𝑤𝑤𝑗𝑗(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)  = 𝑠𝑠𝑥𝑥𝑝𝑝 �−�
𝑠𝑠𝑖𝑖𝑗𝑗
𝑏𝑏
�
2

� 

𝐵𝐵𝑑𝑑 − 𝑆𝑆𝑆𝑆𝑢𝑢𝑑𝑑𝑓𝑓𝑠𝑠: 𝑤𝑤𝑗𝑗(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)  = �
�1 − �

𝑠𝑠𝑖𝑖𝑗𝑗
𝑏𝑏
�
2

� , 𝑑𝑑𝑓𝑓 𝑠𝑠𝑖𝑖𝑗𝑗  ≤ 𝑏𝑏

0, 𝑑𝑑𝑓𝑓 𝑠𝑠𝑖𝑖𝑗𝑗  > 𝑏𝑏 
, 𝑗𝑗 = 1,2, … ,𝑛𝑛 

 
where 𝑠𝑠𝑖𝑖𝑗𝑗 represents the distance between location i to location j, and b is the bandwidth. In this 
study, the adaptive bi-square is selected as the kernel function for the GWR model. The adaptive 
bi-square kernel function considers the bandwidth as the number of nearest-neighbors at which 
data is weighed to exactly zero and further observations do not influence each local regression 
(Oshan et al., 2020). The optimal bandwidth was selected by minimizing the corrected Akaike 
Information Criterion (AICc) in order to balance between model variance and bias (Sakamoto et 
al., 1986; Yu et al., 2020). 
 

4. DATA 
 

4.1. Response Variable: Burglary Crime Rate 
 
The response variable used in this project is the Burglary crime rate of 2019 for each census tract 
in Baltimore City. The crime record data is obtained from the Open Baltimore website “BPD Part 
1 Victim Based Crime Data” (https://data.baltimorecity.gov/datasets/part1-crime-
data?geometry=-89.408%2C37.108%2C-68.479%2C40.112). The data is collected and updated 
by the Baltimore Policy Department (BPD) every Monday with a nine-day time lag, including the 
geocoded to the approximate latitude/longitude location of the incident and excluding those 
records for which an address could not be geocoded.  
 
Figure 4 (a) summarizes the overall data quality and the trends of the data. This project will focus 
on Burglary crime. We further calculate the burglary crime rate: 
 

𝐶𝐶𝑅𝑅𝑖𝑖 =
100,000 ⸱ 𝐶𝐶𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
 

 
where 𝐶𝐶𝑅𝑅𝑖𝑖  represents the burglary crime rate at census tract i, the 𝐶𝐶𝑖𝑖  represents the number of 
burglaries at census tract i, and 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 represents the population at census tract i. 
 

https://data.baltimorecity.gov/datasets/part1-crime-data?geometry=-89.408%2C37.108%2C-68.479%2C40.112
https://data.baltimorecity.gov/datasets/part1-crime-data?geometry=-89.408%2C37.108%2C-68.479%2C40.112
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Figure 4. Baltimore police department victim-based crime data: burglary crime rate per 

100k population. 
 

4.2. Explanatory Variables 
 

4.2.1. Multimodal Mobility Patterns  
 
We used one month of mobile device location data for January 2019 covering the Baltimore 
Metropolitan Area. The data is obtained from different leading data vendors that collect 
anonymized mobile device location data with over 100 million monthly active samples. For this 
study, only the national samples with imputed home locations that have been observed in 
Baltimore City in January 2019 have been used, which includes a total of around 350,000 unique 
monthly samples. The raw mobile device location data includes an anonymized device ID, latitude, 
longitude, and timestamp for each location sighting at a high level of location accuracy (less than 
30 feet). Sample rows of the data are shown in Table 2. We then applied the computation 
algorithms to identify home and work locations, generate weights, identify trips, and impute the 
travel mode in order to derive the multimodal travel patterns. 
 

Table 2. Sample rows of the mobile device location data. 
Device ID Latitude Longitude Timestamp Accuracy 
12dsu85dbxxx 39.65441 -76.51234 1548438483 50 
12dsu85dbxxx 39.65432 -76.51278 1548438682 69 
2as6axf12123y 39.32136 -76.71222 1548425142 13 
2as6axf12123y 39.32162 -76.70684 1548427307 5 

 
Figure 5 shows the home location identification result. The overall pattern of the number of 
identified homes shows a distribution similar to the population distribution. A relatively higher 
penetration ratio (number of imputed homes/population) can be observed around the Inner Harbor 
area. Figure 6 shows the multimodal mobility patterns by visualizing the location traces of 
different travel modes. The vehicle travel (in orange) covers the entire region of Baltimore City, 
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where all the major arterials and the Baltimore Beltway can be observed. The non-motorized travel 
(in green) is concentrated mainly in the Inner Harbor region and drops in the suburbs. The transit 
travel (in blue), including bus and rail, is highly aligned with the light rail and bus lines. To 
incorporate these multimodal mobility patterns into the census tract-level characteristics, we did 
the spatial join for the origins and destinations of the multimodal trip rosters and then aggregated 
them by the destination: 
 

𝐴𝐴𝑖𝑖,𝑚𝑚 =
∑ 𝑤𝑤𝑗𝑗𝑉𝑉𝑗𝑗,𝑚𝑚
𝑁𝑁𝑖𝑖
𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
 

 
where 𝐴𝐴𝑖𝑖,𝑚𝑚 represents the total weighted trips attracted per person to census tract i for travel mode 
m, N represents the total number of trips observed ended in census tract i, 𝑤𝑤𝑗𝑗 is the weight for each 
trip j (for trips conducted by the same person, they have the same weight), and  𝑉𝑉𝑗𝑗,𝑚𝑚 is the indicator 
function to check whether the travel mode of this trip j is m. Figure 7 shows the aggregation 
results. 
 

 
(a)      (b)       (c) 

Figure 5. Home imputation results. (a) number of imputed home location; (b) population; 
(c) number of imputed homes / population (in percentage). 

 
 

 
(a)      (b)       (c) 

Figure 6. Multimodal mobility patterns in Baltimore City: (a) vehicle; (2) non-motorized 
(walk and bike); (3) transit (bus and rail). 



15 
 

 

 
(a)      (b)       (c) 

Figure 7. Daily average number of person trips attracted to census tracts in Baltimore 
City: (a) vehicle; (2) non-motorized (walk and bike); (3) transit (bus and rail). 

 
4.2.2. Accessibility Measures  

         

 
(a)      (b)       (c) 

Figure 8. Accessibility measures in Baltimore City. (a) job; (b) food; (c) healthcare. 
 
Figure 8 shows the accessibility measures calculated from the MDLD. As shown in Figure 8 (a), 
the job accessibility varies across the region and no significant clusters are observed. A low value 
of job accessibility does not mean the corresponding census tract is more affluent. In contrast, the 
high-income population might be able to access more jobs that are far from their home locations, 
while the low-income population has limited choices. Figure 8 (b) and (c) show the food and 
healthcare accessibility, respectively. It can be clearly observed that north Baltimore has a lower 
value of food and healthcare accessibility, as compared to west Baltimore. This corresponds to the 
fact that north Baltimore has a much larger high-income population than west Baltimore, and the 
high-income population has better access to food and job resources. 
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4.2.3. American Community Survey 
 
The land-use variables and economy-related variables are collected from the 2014-2018 5-year 
American Community Survey (ACS) published by the U.S. Census Bureau. The description of all 
variables used in this project is summarized in Table 3. The descriptive statistics of all variables 
are summarized in Table 4. 
 

Table 3. Description of all variables used in this study. 
Variables Description 
Response Variables 

Burglary Number of Burglary per 100k population of the given census tract in 2019. 
Multimodal mobility patterns 

Vehicle Daily number of vehicle trips attracted divided by census tract population. 
NonMotor Daily number of non-motorized trips attracted divided by census tract population 
Transit Daily number of transit trips attracted divided by census tract population 

Accessibility Measures 
avgt2work Average travel time to work for the given census tract. 
avgt2food Average travel time to food for the given census tract. 
avgt2healthcare Average travel time to healthcare service for the given census tract. 

American Community Survey 
med_age Median age of the given census tract. 
med_inc Median household annual income (in dollar) of the given census tract. 
1524_perc Percentage of population with age between 15 and 24 of the given census tract. 
unemployed_perc Percentage of unemployed population of the given census tract. 
mvd5yr_perc Percentage of the population moved within 5 years of the given census tract. 
gpq_perc Percentage of group quarter population of the given census tract. 
black_perc Percentage of African American population of the given census tract. 
hisp_perc Percentage of Hispanic population of the given census tract. 
college_perc Percentage of population with bachelor or higher degree of the given census tract. 
hschool_perc Percentage of population with high school degree of the given census tract. 
huvac_perc Percentage of vacant housing units of the given census tract. 
avg_veh Average number of vehicles per household of the given census tract. 
sphh_perc Percentage of single-parent households of the given census tract. 
pov_perc Percentage of population under 100% of the poverty level of the given census tract. 
snap_perc Percentage of households receiving food stamps of the given census tract. 

 
Table 4. Descriptive statistics of all variables used in this study.  

Variables Obs. Mean Std.Dev. Min. Q1 Med. Q3 Max. 
Response Variables 

Burglary 198 962.650 553.490 117.647 608.076 883.227 1211.964 3504.673 
Multimodal mobility patterns 

Vehicle 198 0.819 1.037 0.112 0.335 0.458 0.794 7.592 
NonMotor 198 0.429 0.392 0.084 0.226 0.299 0.461 3.048 
Transit 198 0.059 0.140 0.001 0.004 0.014 0.048 1.439 

Accessibility Measures 
avgt2work 198 29.557 7.717 10.383 24.953 28.835 34.017 54.376 
avgt2food 198 32.008 4.615 21.520 28.781 32.219 35.072 45.920 
avgt2healthcare 198 35.707 6.493 23.537 31.142 35.626 39.652 66.471 

American Community Survey 
med_age 198 36.321 6.563 17.800 31.900 35.500 40.275 64.000 
med_inc 198 51646 29545 13074 33763 42251 60437 213200 
1524_perc 198 0.126 0.085 0.013 0.089 0.115 0.141 0.741 
unemployed_perc 198 0.550 0.132 0.145 0.489 0.571 0.643 0.796 
mvd5yr_perc 198 0.184 0.090 0.012 0.118 0.173 0.236 0.494 
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gpq_perc 198 0.029 0.090 0.000 0.000 0.003 0.017 0.743 
black_perc 198 0.627 0.337 0.004 0.330 0.764 0.930 0.994 
hisp_perc 198 0.050 0.073 0.000 0.011 0.029 0.059 0.449 
college_perc 198 0.217 0.189 0.010 0.070 0.147 0.298 0.726 
hschool_perc 198 0.586 0.124 0.206 0.503 0.581 0.671 0.951 
huvac_perc 198 0.201 0.120 0.031 0.110 0.166 0.274 0.608 
avg_veh 198 1.061 0.360 0.229 0.783 1.044 1.346 2.034 
sphh_perc 198 0.134 0.095 0.000 0.062 0.128 0.187 0.560 
pov_perc 198 0.226 0.130 0.008 0.115 0.201 0.323 0.601 
snap_perc 198 0.272 0.165 0.000 0.140 0.261 0.394 0.702 

 
5. Results 

 
5.1. Multicollinearity 

 
The left column in Table 5 shows the VIF values for all explanatory variables. It can be seen that 
some of the variables have high VIF values that should be considered as multicollinear variables. 
After carefully removing these variables, as shown in the right column in Table 5, the VIF values 
for all the variables are below 10, indicating the multicollinearity problem is resolved. These 
variables include NonMotor, Transit, avgt2work, mvd5yr_perc, gpq_perc, hisp_perc, 
college_perc, huvac_perc, sphh_perc and pop_dens. 
 

Table 5. Variable inflation factor of explanatory variables.  
Before After 

Variables Variable Inflation Factor Variables Variable Inflation Factor 
Vehicle 11.93072 NonMotor 5.62210 
NonMotor 26.5437 Transit 2.65959 
Transit 3.46095 avgt2work 8.25586 
avgt2work 18.86203 mvd5yr_perc 8.66353 
avgt2food 105.4974 gpq_perc 1.24776 
avgt2healthcare 52.98927 hisp_perc 1.63469 
med_age 130.3267 college_perc 4.79397 
med_inc 25.20029 huvac_perc 4.87947 
1524_perc 14.58747 sphh_perc 4.82582 
unemployed_perc 114.9077 pop_dens 5.54659 
mvd5yr_perc 10.48979   
gpq_perc 5.15734   
black_perc 40.4317   
hisp_perc 3.29156   
college_perc 40.39105   
hschool_perc 241.1167   
huvac_perc 7.43132   
avg_veh 61.463   
sphh_perc 11.92838   
pov_perc 23.0304   
snap_perc 35.16363   
pop_dens 7.59319   
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5.2. Ordinary Least Squares Regression Results 
 
After removing the multicollinear variables, we ran the OLS model to examine the global 
relationship between the explanatory variables and the response variable. Table 6 shows the OLS 
model estimation result. Five out of 10 variables are considered to have a significant impact on the 
burglary crime rate, where NonMotor, hisp_perc, and huvac_perc show a positive relationship and 
gpq_perc and college_perc show a negative relationship. These relationships are relatively 
stationary, indicating that these variables are contributing to the burglary crime rate across all of 
Baltimore City. 
 

Table 6. OLS result for burglary crime rate. 
Variables Coefficient Std.Dev. Z-value P-value 
Intercept 0.000 0.052 0.000 1.000 
NonMotor 0.196 0.085 2.314 0.021 ** 
Transit 0.156 0.081 1.939 0.053 
avgt2work 0.005 0.053 0.086 0.932 
mvd5yr_perc 0.110 0.067 1.638 0.102 
gpq_perc -0.170 0.056 -3.043 0.002 *** 
hisp_perc 0.251 0.055 4.592 0.000 *** 
college_perc -0.200 0.085 -2.339 0.019 ** 
huvac_perc 0.468 0.063 7.490 0.000 *** 
sphh_perc -0.100 0.073 -1.376 0.169 
pop_dens 0.043 0.062 0.704 0.481 

 
 

5.3. GWR Results 
 
The variables used in the OLS are also used in the GWR model to analyze the spatial heterogeneity 
of these variables. In this study, we utilized the open-source Python Spatial Analysis Library 
(PySAL) (Ray and Anselin, 2010) and mgwr (Oshan et al., 2019) to estimate the GWR model. 
Table 7 shows the model estimation results. Figure 9 shows the R-Square, prediction results, and 
the residuals of the GWR model.  
 

 
(a)      (b)       (c) 

Figure 9. GWR model estimation result. (a) R-Square; (b) prediction; (c) residual. 
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Table 7. GWR result for burglary crime rate. 

Variables Mean Std.Dev. Min. Median Max. 
Intercept 0.058 0.066 -0.109 0.049 0.182 
NonMotor 0.260 0.061 0.130 0.245 0.408 
Transit 0.101 0.056 -0.029 0.107 0.236 
avgt2work 0.027 0.036 -0.062 0.039 0.081 
mvd5yr_perc 0.092 0.019 0.066 0.087 0.151 
gpq_perc -0.189 0.044 -0.249 -0.203 -0.086 
hisp_perc 0.422 0.194 0.184 0.351 0.802 
college_perc -0.191 0.078 -0.310 -0.208 -0.035 
huvac_perc 0.473 0.069 0.366 0.471 0.563 
sphh_perc -0.097 0.057 -0.209 -0.094 0.022 
pop_dens 0.010 0.089 -0.141 0.017 0.155 

 
It can be seen that the R-Squared for each local model is larger than 0.51, indicating that these 
explanatory variables are able to explain more than 50 percent of the burglary crime rate. The 
model performs better in north and northwest Baltimore as compared to south Baltimore. In 
addition, as shown in Figure 9 (b) and Figure 9 (c), the residuals of the model estimates present 
a random pattern. We further compare the GWR model with the OLS model. As shown in Table 
8, It can be seen that both AICc and AIC are significantly smaller in the GWR model, indicating 
the GWR model can better explain the relationship between the variables and burglary crime rate. 
 

Table 8. Comparisons. 
Criterion OLS GWR 
AICc 450.126 442.822 
AIC 446.440 435.570 

 
5.4. Discussion 

 
The impact of explanatory variables on the burglary crime rate can be examined by the parameter 
surface which shows the coefficient value distribution across the region and the corresponding 
significance level. Figure 10 shows the parameter surface for each explanatory variable for each 
census tract. The red color represents a significant positive relationship between the variable and 
the burglary crime rate; the blue color represents a significant negative relationship between the 
variable and the burglary crime rate; and the gray color represents the coefficient variable is not 
significantly different from zero. It can be observed that the estimated coefficient of each variable 
varies greatly across the census tracts in Baltimore City. The main reason is that each census tract 
has its local characteristics, and the determinants of the burglary crime rate change. 
 



20 
 

 
Figure 10. GWR model parameter surface. 

 

 
(a)      (b)       (c) 

Figure 11. Variables interface. (a) huvac_perc; (b) med_inc; (c) college_perc.  
 
The intercept coefficient estimates are positively significant in the west Baltimore region, which 
means that this region has a significantly higher burglary crime rate compared to other parts of the 
city, which might be caused by other unobserved variables. This is consistent with common sense 
since west Baltimore is a high-crime neighborhood, and not just for burglary. It is interesting 
because that intercept coefficient is not statistically different from zero in the OLS regression 
estimates, which means that the GWR model captures the local characteristics of each census tract. 
Similarly, the hisp_perc coefficient estimates are positively significant in most parts of Baltimore 
City, where the correlation is stronger in the west Baltimore region. The huvac_perc coefficient 
estimates are positively significant for the entire Baltimore City. However, the correlation is less 
strong in the west Baltimore region. A main reason is that west Baltimore has a huge percentage 
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of vacant housing units as compared to other regions (i.e., northeast Baltimore), thus playing a less 
important role in the west Baltimore burglaries (Figure 11 (a)). The impact of vacant housing 
units increases heading toward the more affluent northeast Baltimore region (Figure 11 (b)), 
where the percentage of vacant housing units presents as a strong indicator of burglary crime. 
These findings indicate that the government should enhance the living conditions of the minority 
community (i.e., Hispanic community) to keep the community from suffering frequent burglaries. 
In addition, the government should also deal with the vacant housing units, either  by investments 
or providing incentives for future residents, to reduce the burglary crime rate not only in west 
Baltimore, but also in northeast Baltimore, even though the percentage of vacant housing units is 
low there.  
 
Significant negative correlations can be found from the gpq_perc and the college perc. As for the 
gpq_perc, a higher percentage of the population lives in group quarters, indicating fewer housing 
units and households and more concentrated living conditions, where the chances for criminals to 
conduct burglary is low. For example, if 100% of the population lives in group quarters, it will be 
very unlikely to have burglaries since all people will live within the same building. Also, the 
negative parameter estimates for college_perc can be observed in both west and south Baltimore, 
where the percentage of the population with a college or higher degree is also lower than 25% on 
average (Figure 11 (c)). In light of this, to reduce the burglary crime rates in these regions, the 
government should provide more educational opportunities and improve the overall education 
level of the residents.  
 
For the mobility and accessibility variables, we can observe a positive significant estimate for the 
NonMotor variable, and less or no significant estimates for Transit and avgt2work. The positive 
significant correlation between NonMotor and burglary crime rates can be observed in central, 
west, north, and northeast Baltimore. In central and west Baltimore, where the median household 
income is low (Figure 11 (b)), walking or biking tends to be the major travel mode for the 
residents. More non-motorized travel might include more criminals that search for targets on the 
streets. More importantly, we can observe that the non-motorized travel shows an even higher 
positive significant relationship with the burglary crime rate in the more affluent north and 
northeast Baltimore, where the major travel mode for the residents is driving. This finding 
indicates that too much non-motorized travel, which is usually conducted by non-residents, might 
not be a good indicator in the affluent neighborhood. The Transit coefficient estimates are not 
significant except for southwest Baltimore. Southwest Baltimore includes the big warehouses and 
port of Baltimore that have numerous freight movements, which makes them a potential target for 
burglaries. Though not significant, public transit might still be considered as an important factor 
in analyzing burglaries, and also other crimes. Public transit usually provides a cheap 
transportation service for people that reduces their travel cost and at the same time improves their 
accessibility to jobs, which will potentially lead to less poverty. Since poverty is usually positively 
related with crime, increasing public transit services might have a positive impact that leads to a 
better quality of life for people in the region. Therefore, decision-makers might consider 
decreasing the number of poor by providing them an improved public transit service, reducing 
their travel costs, improving their accessibility to opportunities, and eventually decreasing the 
crime rate. 
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6. CONCLUSION 
 
In this project, we presented the methodology for deriving multimodal mobility patterns and 
accessibility measures from the mobile device location data (MDLD), and the data-driven 
modeling framework of high-crime neighborhoods with Geographically Weighted Regression 
(GWR). The crime of burglary in Baltimore City is studied using our proposed approach to show 
how the mobility and accessibility variables can give a different perception to understand the 
burglary crime rate. The results suggested that in the more affluent neighborhoods like north and 
northeast Baltimore, too much non-motorized travel might not be a good indicator and might 
increase the burglary crime rate. Though not significant, public transit might still be considered as 
an important factor in fighting againts burglaries, and also other crimes. Decision-makers might 
consider improving or expanding the public transit service in those regions suffering from poverty 
in order to provide the residents a cheaper transportation solution and at the same time reduce 
poverty and eventually decrease the crime rate. The job accessibility is not significant over the 
entire Baltimore region, which should be further analyzed and discussed in future research. 
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