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INTRODUCTION 

Transportation technologies, primarily relating to autonomous vehicles (AV), have evolved 
rapidly during the last decade and promise to significantly impact how we commute daily. 
Automobile companies – including BMW, Tesla, Audi, GM, and Ford – plan to introduce 
autonomous vehicles to public roads in the United States by the middle or end of the next decade 
(1,2,3,4,5). To support the advancement of AV technologies, federal agencies have sponsored 
multiple pieces of legislation during the past five years (6,7). With the support from both the 
public and private sectors, it is inevitable that within the next decade AVs will constitute a 
significant percentage of traffic flows on U.S. highways.  

Current AV technologies such as ACC (Adaptive Cruise Control) and LKAS (Lane Keep 
Assist System) transfer control of the longitudinal behavior of the vehicle from the driver to the 
vehicle sensors. The International Organization for Standardization (ISO) recommends the 
manufacturers of ACC-equipped vehicles offer drivers a pre-defined desired time-gap setting 
ranging between 0.8 and 2.2 seconds (8). Drivers may choose to assign time-gap settings, 
depending on their driving preference, the freeway traffic conditions, and confidence in the 
automation system. In doing so, the driver may choose settings without the benefit of the entire 
highway system in mind. Conceivably, the prevalence and fast penetration of vehicles equipped 
with autonomous capabilities will significantly impact the dynamic properties of traffic flows 
and congestion patterns. Highway agencies will be challenged with how to minimize the 
potential negative impacts of such AV flows on the traffic conditions and ensure the best use of 
the available roadway capacity.  

Over the past few years, researchers have delved into understanding the impacts of different 
ACC control strategies and their interaction with human-driven vehicles at different penetration 
levels. For example, Kesting et al. simulated a one-lane highway (9) to test a proposed jam-
avoiding driving strategy based on the Intelligent Driver Model (IDM), and observed that at 10% 
ACC vehicle flow rate the cumulative delay reduced by 50%. Tientrakool et al. (10) showed that 
when all vehicles in the system have ACC capabilities, the capacity increased by 43%. Some 
other studies also report that the introduction of ACC vehicles to the traffic flow can avoid 
delays (11) in bottleneck areas and reduce congestion and jams (12). Kerner (13) found that ACC 
vehicles suppress long moving jam and thus promote stability. On the downside, however, he 
also found that in some cases ACC vehicles could induce congestion at bottlenecks.  

The impacts of ACC on multilane highways have also been investigated with simulation in 
the literature. For example, Marsden et al. (14) carried out detailed simulation-based tests using a 
FLOSIM microscopic model and demonstrated that the average journey time increased at higher 
levels of ACC vehicle flows. Similar outputs were observed in studies carried out by Arem et al. 
(15) and Minderhound (16). They attributed the increase in average travel time to the sharp 
deceleration, caused when non-ACC vehicles moved into the lane of ACC-equipped vehicles, 
thereby resulting in the manual takeover of the ACC vehicle’s controls. On the contrary, Kesting 
et al. (17) observed that ACC-equipped vehicles could significantly reduce travel time, even at 
lower market penetration levels. They used a microscopic modeling approach, based on the IDM 
model and lane-changing decisions with the MOBIL (Minimizing Overall Braking Induced by 
Lane Changes) algorithm (18). Simulation results showed that at the market penetration rate of 
25%, the traffic congestion in their simulated network was eliminated.   

https://arxiv.org/pdf/physics/0601096.pdf
https://people.cs.clemson.edu/~johnmc/courses/cpsc875/resources/acc/9.pdf
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To show the impacts of a mixed fleet containing both vehicles with CACC (Connected 
Adaptive Cruise Control) capabilities and human-driven ones, Arnaout and Bowling (19) 
simulated a four-lane highway using a microscopic traffic simulator and reported that the 
impacts of CACC on the flow rate were significantly different when the penetration levels were 
higher than 40%. Zhu and Ukkusuri (20) analyzed the mobility benefits of connected vehicles 
with different demand and penetration levels and showed a 20% reduction in travel time at 100% 
AV penetration rate. VanderWerf et al. (21) in their study of CACC systems observed that the 
roadway capacity increases quadratically with the increase in market penetration of vehicles 
equipped with CACC systems.   

Note that, despite the emergence of a large body of studies associated with AV properties, 
most of the work is focused on the impacts of the different car-following logic of AVs. Few 
studies have looked at the compounded impacts of different AV car-following and lane-changing 
parameter settings from the perspective of freeway operations efficiency; that is, how can the 
travel time and throughput on a freeway corridor under different volumes and AV penetration 
rates be improved with the optimal but dynamic behavioral mechanisms for AV flows? On 
freeway segments experiencing congestion, responsible highway agencies can convey such 
optimal time-varying behavioral mechanisms for AVs to convert their potential negative impacts, 
if adopting improper behavioral settings, to a state that benefits both AV and non-AV flows.   

This study attempts to address the following questions often raised by highway operating 
agencies: (1) The impacts of various behavior mechanisms governing AVs (car-following and 
lane-changing behavior) on a target highway segment under different penetration rates, and (2) 
How to identify the set of behavioral mechanisms for AVs that can avoid causing undesirable 
negative impacts, and further best interact with non-AV flows to maximize the operational 
efficiency of a target highway.  

Conceivably, precise answers to these two issues may vary among different highway 
corridors and different states due to the discrepancies in both the behaviors of driving 
populations and other environmental as well as geometric factors. Hence, this study has 
presented a methodology via a case study of MD-100 that allows the responsible agencies to 
assess the impacts of varying AV penetration rates on the traffic conditions of a target freeway. 
Based on the results, the study has also developed operational guidelines for interacting with the 
emerging AV flows when their impacts on the operational efficiency of a highway corridor 
emerge as a critical issue.  
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Modeling the behaviors of AV flows 
- Create a new AV vehicle class 
- Create a new driving behavior set 
- Modify the calibrated car-following and lane-

changing parameters to reflect the different 
AV driving settings 

Calibrate key parameters governing the driving 
population in simulation 

- Identify car-following and lane-changing calibration 
parameters  

- Select a calibration method  
- Carry out parameter calibration  

 

Output for analysis and guideline development 
- Determine the measure of effectiveness 
- Performance discrepancy between AV and non-AV flows 
- MOE performance at AV driving settings and penetration 

rates 
- Identify the best set of AV car-following and lane-

changing parameters  
 

Design of simulation experiment to cover all possible traffic 
scenarios 

- Divide the AV specific car-following and lane-changing 
parameters into multiple levels  

- Distribute the AV flows based on AV penetration level 
- Multiple runs  

 

Develop a reliable traffic simulator for the target 
highway system 

- Identify a target freeway 
- Select a preferred microsimulation platform 

METHODOLOGY FOR IMPACT ASSESSMENT AND GUIDELINE DEVELOPMENT 

Figure 1 illustrates the key steps involved in the methodology development and their outputs. 
Additional descriptions of primary activities to be done in each step are presented in sequence 
below:  

Step-1: Develop a reliable traffic simulator for the target highway system  

The first step is to develop a simulation platform for the target highway system that enables the 
responsible highway agency to explore the impacts of the AV flow’s driving behaviors on the 
traffic conditions and formation of congestion under different AV market penetration rates. Like 
platforms used in traffic system control, such a simulation platform shall be microscopic in 
nature in that it can faithfully reflect the key geometric features, environmental factors, and 
behavior of the driving population on the recurring traffic conditions.  

Step-2: Calibrate key parameters governing the driving population in simulation 

To ensure the fidelity of the developed simulator, one of the most critical steps is to calibrate the 
behavioral-related parameters embedded in the simulator’s car-following and lane-changing 
models with field data. There are a variety of calibration methods, such as genetic algorithm 
(GA), available in the literature (22,23). Only after the simulator-produced speed, flow rate, and 
occupancy on the target freeway system (including mainline, ramps, and weaving segment) are 
statistically indifferent from those measured from detectors, can one conclude that the behavior 

FIGURE 1: Methodology flowchart 
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of the driving populations are consistent with those performing daily commutes, and the 
simulator is ready for control and strategy development.  

Step-3: Modeling the behaviors of AV flows  

The focus of this step is to model the behavioral mechanisms governing AV flows, and use such 
mechanisms to simulate their interaction with non-AV flows under varying traffic scenarios. 
Note that AVs are expected to be able to maintain a range of time-gaps. This is observed in 
ACC-equipped vehicles being sold today, in which the driver can change the time-gap settings to 
reflect their preferences. Invariably the change in the time-gap settings is accommodated through 
pre-defined levels set by the vehicle manufacturer. This is reflected by a range of time-gaps that 
drivers select while driving ACC and CACC vehicles. Results from field tests (24) show that 
mean time-gap setting for ACC system is 1.54 (±0.41) seconds and for CACC equipped vehicles 
is 0.71 (±0.41) seconds. As this is an evolving technology, similar standards and ranges can also 
be expected for the lane-changing parameters of AVs. 

 To reflect these changes in a simulation platform, one can modify the parameters defining 
car-following and lane-changing, shown in Figure 2, to reflect aggressive, calibrated (the 
observed behavior for the target freeway) and moderate vehicle operation settings.  

  
Desired Safety Distance: Distance defined by standstill 
distance and headway maintained between the front bumper 
and the rear bumper of the preceding AV. Under aggressive 
settings, AVs will be able to accommodate shorter safety 
distances than their human counterparts.  

Following Variation: Distance beyond the desired safety 
distance before the AV moves closer to the preceding AV. Under 
aggressive settings, AVs will allow a shorter distance before it 
intentionally moves closer to the preceding vehicle to maintain 
the desired safety distance.  

(a) AV car-following parameters 
 

 

 

Safety Distance Reduction: Reduction in the safety distance 
when an AV attempts to change lanes. Under aggressive 
settings, AVs will allow a greater reduction in the safety 
distance during the lane changes.  

Deceleration Rate during Lane Change: Deceleration rate of 
the lane-changing AV and the trailing AV during a necessary 
lane change. Under aggressive settings, AVs will decelerate at a 
higher rate during the mandatory lane-changing behavior.  

(b) AV lane-changing parameters 
FIGURE 2: AV-specific car-following and lane-changing parameters 

                                                                               

 

Headway Standstill 
Distance 

Desired Safety Distance 

                                                                               

 

Desired Safety Distance 
Following 
Variation 
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Within the simulation platform the following tasks need to be carried out: 

- Create a new driving behavior set in the simulation platform that reflects the behavior of 
AVs (note: the new behavior set should reflect the calibrated car-following and lane-
changing parameters as human-driven vehicles). These parameters are later modified, 
independently from the parameters in the non-AV driving behavior set, to reflect 
different AV driving settings.  

- Create a new vehicle class to represent AVs and connect them to the AV driving behavior 
set.  

- Identify the range of values for the parameters described in Figure 2, and accordingly 
define upper bound and lower bound limits while maintaining the calibrated parameter 
value as the reference point (i.e., if the calibrated headway is two seconds, then the upper 
and lower bounds could be defined by a 50% increase or decrease).   

- Specify different levels of AV-specific driving parameters, (i.e., aggressive, calibrated, 
and moderate) by their upper and lower bound limits. 

With the above modeling work, the simulator can reflect the different possible behaviors of 
the AV flows defined through an AV occupant’s selection of the AV’s embedded car-following 
and lane-changing mechanisms. 

Step 4: Design of simulation experiments to cover all possible traffic scenarios  

The purpose of this step is to simulate those traffic scenarios most likely to be seen on the target 
freeway segment in the presence of AV flows, under different AV penetration rates. The 
simulation experiment will involve the following process:  

- Divide both the car-following and lane-changing parameters of the AV flows into 
multiple levels (i.e., Aggressive-2, Aggressive-1, calibrated, moderate-1, and moderate-
2), where the parameters for calibrated AV flows are the same as those for non-AV 
vehicles (i.e., calibrated settings).  

- Maintain the car-following and lane-changing parameter values of the human-driven 
vehicles constant at the calibrated values. 

- Distribute the volume between AV and non-AV vehicles for AV penetration rates 
ranging from 0% to 100% at 10% increments. 

- Simulate the sets of car-following and lane-changing behaviors of AVs, based on the 
number of levels defined for each parameter. 

- Replicate five times for each set of driving behaviors of AVs with different random seeds 
to account for randomness.  

-  
Step-5: Output for analysis and guideline development 

The experimental analysis of all simulated scenarios will focus on the following issues: 

- The performance discrepancy between AV and non-AV flows with respect to travel time 
on different highway segments. 

- MOE performance as a result of different AV driving settings at various AV market 
penetration rates and on different highway segments. 

- The set of car-following and lane-changing parameters that can yield the best 
performance with respect to each of the selected MOEs in each experimental traffic 
scenario.  
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Note that the MOEs for the above issues include: travel time, throughput and queue lengths, 
where travel time and throughput are computed separately for AV and non-AV flow. Also, the 
MOEs are determined by location (i.e., ramps, mainline segment, bottleneck area). With the 
above output, the traffic operators will have sufficient information to make decisions regarding 
the proper AV control mechanism and relay the recommended settings to the vehicles during the 
congested period. Similarly, when the detectors in the field indicate the occurrence of an 
incident, responsible agencies can summon the AVs upstream from the incident to re-program 
and operate using the prescribed driving settings.  

A CASE STUDY FOR ILLUSTRATING THE APPLICATION PROCESS 

This case study serves as an example to illustrate the potential applications of the methodology.  

The freeway selected for illustration and case study 

MD-100 is a two-lane highway in each direction with a speed limit of 55 mph, connecting Anne 
Arundel County in the east and Howard County to the west. Figure 3(a) describes the westbound 
segment of MD-100 between MD-170 and US-1 used in this study.   

The segment between MD-713 and US-1 experiences recurrent congestion between 3 pm 
and 5 pm and its average flow speed decreases from 60 mph to 20 mph within three miles. As 
shown in Figure 3(b), recurrent congestion at the on-ramp for Coca-Cola Drive usually extends 
over 1.75 miles to the MD-713 on-ramp, and even longer during inclement weather conditions.  

 
(a) Spatial distribution of traffic-flow speeds 
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(b) Congestion pattern on a typical weekday 

 

 
(c) Freeway network segmentation 

FIGURE 3: Geometric features and spatial distribution of speeds on MD-100 WB  

Simulation software 

VISSIM 5.40, a microscopic traffic simulator, was used in this study as there still does not exist a 
commonly available AV traffic simulator. The parameter calibration was carried out using a total 
of four hours of data, including volume and speed data collected during a previous field 
demonstration (25). To accurately replicate the observed traffic conditions, the human driving 
car-following and lane-changing parameters are calibrated from field data using Genetic 
Algorithm (GA). The calibrated car-following and lane-changing parameters in VISSIM are 
shown in Table 1(a). The calibrated values obtained from the target freeway with 100% human-
driven vehicles are used as the baseline driving settings for both AVs and human-driven 
vehicles. 
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TABLE 1: Car-following and lane-changing parameter values 

(a) Calibrated VISSIM car-following and lane-changing parameters  

Class Parameter Value 

Car-Following 

CC0 (Standstill Distance) (ft.) 5 
CC1 (Headway Time) (s) 1.20 
CC2 (Following Variation) (ft.) 13.12 
CC7 (Oscillation Acceleration) (ft./s2) 2.98 
CC8 (Standstill Acceleration) (ft./s2) 13.62 

Lane change 

Own: Maximum deceleration (ft./s2) -14.43 
Own: -1 m/s2 per distance (ft)  220 
Trailing: Maximum deceleration (ft./s2) -10.82 
Trailing: -1 m/s2 per distance (ft)  220 

(b) AV Car-following and lane-changing parameter bounds 

  Aggressive 2 Aggressive 1 Calibrated Moderate 1 Moderate 2 

Car-Following 
Parameters 

(CC0) Standstill Distance (ft.) 4 4.5 5 5.5 6 
(CC1) Headway Time (s) 0.6 0.9 1.2 1.5 1.8 
(CC2) Following Variation (ft.) - 6.6 13.1 19.7 - 

 

  Aggressive Calibrated Moderate 

Lane-
Changing 

Parameters 

Safety Distance Reduction Factor 0.3 0.6 0.9 
Necessary Lane Change Deceleration Own Trailing Vehicle Own Trailing Vehicle Own Trailing Vehicle 

Maximum deceleration (ft./s2) -11.55 -8.66 -14.43 -10.82 -17.32 -12.99 
-1 feet/sec2 per distance (ft.) 176  176 220 220  264 264 

Accepted deceleration (ft./s2) -2.89 -1.44 -3.61 -1.80 -4.33 -2.16 

The AV flows’ car-following parameters and their sensitivity thresholds are defined using 
three Wiedemann 99 car-following calibration parameters (26), i.e., CC0 (standstill distance), 
CC1 (headway time) and CC2 (car-following variation). CC0 and CC1 together describe the 
specified safety distance maintained between two AVs while CC2 defines the car-following 
variation distance. Two VISSIM lane-changing parameters, safety distance reduction factor and 
deceleration rate during a lane change, are selected to describe both mandatory and non-
mandatory lane changes undertaken by AVs. 

Table 1(b) provides the range of aggressive and moderate car-following and lane-changing 
parameters for AV flows used in this study. The aggressive and moderate behaviors of 
autonomous vehicles have been referenced to the parameters calibrated using field and detector 
data. During the simulation process, CC0 and CC1 are combined to reflect the safety distance to 
the preceding vehicle. Given the possible range of variation, CC0 and CC1 are divided into five 
different levels (i.e., Aggressive 2, Aggressive 1, Calibrated, Moderate 1, Moderate 2), while the 
remaining parameters are analyzed at three levels (i.e., Aggressive, Calibrated and Moderate). 
Therefore, at each penetration level, there are 135 different driving settings for AV operations.  

 To replicate the autonomous behavior with VISSIM, a new vehicle class is created and 
connected to the autonomous vehicle driver behavior set, i.e., car-following and lane-changing 
parameters. To evaluate the 135 possible driving settings, the VISSIM COM application 
programming interface (API) is employed. A MATLAB application program is also developed 
to load the network and start the simulation through the VISSIM API.  
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Design of Simulation Experiments  

The freeway segment is modified and extended upstream of MD-170 to include a 10-mile 
segment to capture the traffic evolution from moderate to congested conditions. With this 
addition, the simulated MD-100 network is separated into a 10-mile mainline segment and a 
3.72-mile merging segment as shown in Figure 3(c).  

The simulation analysis is carried out at different penetration levels of AVs, ranging from 0% 
to 100% at increments of 10%. The simulation process at each penetration follows the following 
steps: 

- Distribute the 2015 evening peak-hour volume between autonomous and human-driven 
vehicles, based on the specified AV penetration rate.  

- Simulate the 135 sets of car-following and lane-changing behaviors for the AVs with a 
30-minute warm-up, followed by one hour of traffic input based on 2015 volume data. 
The car-following and lane-changing parameters of the human-driven vehicles are held 
constant at the calibrated values.  

- Replicate each AV car-following and lane-changing combination five times with 
different random seeds value to account for randomness.  

- Analyze the resulting impacts with different MOEs, including travel time, throughput, 
and ramp and freeway queue lengths.  

Additionally, as shown in Figure 3(c), this study has also modeled an incident in the mainline 
segment between the A2 on and off ramps. This incidence involves a single lane closure for 30 
minutes. The lane drop scenario involves the same simulation process as the non-lane drop 
scenario. 

Analysis of Simulation Output  

The outputs of the extensive experiments are used to analyzed the following three issues: (1) 
Whether the prevalence of AV flow has a negative impact on the performance of non-AVs or on 
the freeway at the system level; (2) What are the impacts of AV flows on the traffic conditions 
under different car-following and lane-changing behavior of parameters; and (3) What set of 
behavioral parameters for the AV flows can best benefit the traffic conditions of the entire 
freeway segment. 

AV vs. Non-AV performance 

Table 2 summarizes the performance, in terms of the time taken to travel across the mainline and 
the merging segment, for both AV and non-AV flows. Comparisons are made at low (10%-
30%), medium (40%-60%), and high (70%-90%) AV flow rates by comparing the average travel 
times obtained by simulating the 135 sets of car-following and lane-changing behaviors for the 
AVs. The t-test results indicate that no significant differences exist between average travel times 
for AV and non-AV flows under different penetration rates at both mainline and merging 
segments. This reflects that the change in AV driving settings does not have a disproportionately 
negative or positive influence on the traffic performance of the non-AV flows. Therefore, it can 
be concluded that both AV and non-AV flows are equally influenced by the introduction of AVs 
to the network, and no performance discrepancy exists. Hence, AV operational guidelines can be 
developed by focusing on the collective performance, instead of analyzing the output by vehicle 
type.    
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TABLE 2: Performance discrepancy (MOE: Travel time) between AV and non-AV flows 

   Travel Time (seconds) 
   Mainline Segment  Merging Segment 

AV Penetration  AV Non-AV  AV Non-AV 

Low 
Market 

Penetration 

10% AV Mean (sec) 951 949  756 753 
P value 0.264  0.358 

20% AV Mean (sec) 960.55 958.09  757.44 754.78 
P value 0.333  0.416 

30% AV Mean (sec) 972.96 971.13  757.50 755.28 
P value 0.419  0.451 

Medium 
Market 

Penetration 

40% AV Mean (sec) 981.21 979.45  743.55 741.17 
P value 0.439  0.459 

50% AV Mean (sec) 986.78 985.65  745.62 743.23 
P value 0.469  0.466 

60% AV Mean (sec) 1004.54 1003.77  747.59 745.32 
P value 0.482  0.472 

High 
Market 

Penetration 
 

70% AV Mean (sec) 1020.28 1019.47  768.28 766.28 
P value 0.484  0.478 

80% AV Mean (sec) 1043.56 1043.22  781.68 779.43 
P value 0.494  0.478 

90% AV Mean (sec) 1058.64 1058.19  793.55 786.39 
P value 0.493  0.435 

MOE Performance  

Travel time and Throughput: Figure 4(a) and 4(b) shows the travel time and throughput as a 
function of the AV penetration rate, at both the merging and the mainline segment. Each box plot 
describes the distribution of the 135 different AV driving settings at each penetration level.  

When AVs are programmed to reflect the baseline settings (i.e., all parameters are set to 
calibrated values), the average time for both AV and non-AV flows to travel across the merging 
segment and mainline segment is 747 seconds and 940 seconds. The segment’s average 
throughputs are 3,520 vehicles/hour and 3,242 vehicles/hour, respectively, for merging and 
mainline segments. 

The impacts of different AV driving settings on throughput and travel time are observed 
even at the 10% AV market penetration rate. Depending on the selected AV driving setting, the 
travel time on the merging segment can either increase to 879 seconds or reduce to 619 seconds. 
Similarly, the throughput either increases to 3,690 vehicles/hour or drops to 3,392 vehicles/hour.   

Note that the impacts of different driving settings are significant both within a specific 
AV penetration level (e.g., at 10% penetration level) and between different AV penetration levels 
(e.g., between 10% and 100% market penetration levels). This can be viewed by comparing the 
travel time and throughput results between 10% and 50% AV penetration rates in the merging 
segment. With appropriate AV driving settings, the lowest merging segment travel time 
decreases from 619 seconds to 338 seconds and the throughput increases from 3,690 
vehicles/hour to 4,127 vehicles/hour. In contrast, if appropriate AV settings are not assigned, 
then the system’s performance can deteriorate significantly. For instance, at 50% AV flow rates, 
the travel time increases to 1,217 seconds while the throughput drops to 3,101 vehicles/hour, 
compared with 747 seconds and 3,520 vehicles/hour in the base case scenario.   
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 At the current demand levels, as vehicles move from the mainline segment to the merging 
segment, the traffic flow moves from a region of moderate to congested conditions. As the 
mainline segment is uncongested, significant improvements in travel time and throughput are not 
observed beyond 10% AV flow rates. However, the performance of traffic flow is impeded 
significantly when AVs are prescribed incorrect driving settings. The travel time and throughput 
in the mainline segment, as shown in Figure 4(a) and 4(b), highlight the negative impact of 
incorrect AV driving settings as AVs gain 100% market share, resulting in increasing the travel 
time to 1,584 seconds and decreasing the throughput to 1,783 vehicles/hour. 

Table 3 shows the percent change, in comparison with the average travel time, for the 
longest and the shortest travel time taken to cover the MD-100 segments and the adopted AV 
behavior mechanisms (Note: These are not the recommended settings) at low (10%), medium 
(40%) and high penetration rates (70%). As highlighted in Table 3, at the medium level of AV 
penetration (i.e., 40%), depending on the AV driving settings the travel time either increases by 
47% or decreases by 52%. Such results not only demonstrate the potential negative and positive 
impacts of AV flows on the overall traffic conditions, but also justify the need to guide AV flows 
to adopt the proper behavior mechanisms to benefit both AV and non-AV flows in the entire 
system.     

TABLE 3: Positive and negative impact on travel time due to AV behavioral mechanisms 
(a) Merging Segment 

  Lane-Changing  Car-Following  
Travel Time1,2 

(seconds) 
AV Penetration 

Rate  Deceleration SD Reduction 
Factor  Safety Distance Following 

Variation  Change 

Low (10%) Shortest Calibrated Aggressive  Aggressive-2 Aggressive  -17.27% 
Longest Moderate Aggressive  Moderate -2 Moderate  25.84% 

Medium (40%) Shortest Moderate Aggressive  Aggressive-2 Aggressive  -52.07% 
Longest Moderate Moderate  Moderate-2 Moderate  46.85% 

High (70%) Shortest Aggressive Aggressive  Aggressive-2 Aggressive  -57.30% 
Longest Aggressive Moderate  Moderate-2 Moderate  85.94% 

(b) Mainline Segment 

Low (10%) Shortest Calibrated Aggressive  Aggressive-2 Aggressive  -4.26% 
Longest Calibrated Moderate  Moderate -2 Moderate  7.02% 

Medium (40%) Shortest Moderate Calibrated  Aggressive-2 Aggressive  -8.19% 
Longest Aggressive Moderate  Moderate-2 Moderate  28.94% 

High (70%) Shortest Aggressive Aggressive  Aggressive-2 Aggressive  -10.42% 
Longest Moderate Moderate  Moderate-2 Moderate  53.40% 

1Average travel time Merging area: 747 seconds, 2Average travel time Mainline segment: 940 seconds 

Queue Length: At the baseline settings, queue lengths do not propagate on the mainline 
segment or its on/off-ramps. However, queue lengths in the range of 4,500 feet are observed in 
the bottleneck area between the Coca-Cola Drive on-ramp and Dorsey Drive off-ramp, and 
extend upstream. Also, the changes in vehicle speed and merging behavior due to high on-and-
off-ramp volumes cause significant queues in the vicinity of the I-295 off-ramp. Figure 4(c) 
shows how the queue length evolves with the change in the AV driving settings. The figure 
shows that at 50% penetration rate the queue length at both locations reduces significantly, 
concurrently reaching below 50 feet in comparison to 4,606 feet at the Coca-Cola Drive/Dorsey 
Drive merging area and 2,967 feet before I-295 off-ramp if the vehicles had been programmed to 
operate at the calibrated settings. 
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(a) Travel time at Merging and Mainline segment under 
the 135 different AV driving settings 

 
 

(b) Throughput at Merging and Mainline segment 
under the 135 different AV driving settings 

 
 

(c) Queue length variation in the merging segment under 
the 135 different AV driving settings 

NOTE: Each plot defines the upper and lower limit of the MOE. The shaded region defines the lower quartile, median value and the upper quartile.  1 
FIGURE 4: The upper and lower bounds of travel time, throughput, and queue lengths under different AV driving settings and penetration rates 2 

                      AV Market Penetration (%)                       AV Market Penetration (%)                       AV Market Penetration (%) 
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Note that the three MOEs shown in Figure 4 clearly indicate that incorrectly programmed 
AVs could result in a situation where traffic breakdowns become more prevalent and severe. 
Therefore, proper control with adequate knowledge of the resulting impact of a particular driving 
setting is essential for the operational agency to effectively manage traffic conditions.  

Optimal AV Driving Settings 

Table 4 shows the most appropriate AV driving settings for the merging and mainline 
segments (with/without lane-drop) with respect to the improvement in travel time, throughput, 
and queue lengths as a result of administering the suggested driving settings. The choice set was 
filtered down by using the K-mean clustering method while considering all three MOEs. 

On the mainline segment, the lane-changing setting at all AV market penetration levels is 
recommended to be set at the moderate levels. The car-following settings should both be set to 
aggressive levels. With such behavioral settings for AV flows, all vehicles traversing through the 
mainline segment observe about a 3% drop in travel time and 2% increase in throughput at 10% 
AV market penetration. As shown in Figure 4(a) and 4(b), at 50% penetration levels and above,  
the travel time and throughput do not improve, and at these levels a 10% decrease in travel time 
and an almost 5% increase in throughput is achieved.  

 The improvements in the merging area, which sees a daily bottleneck due to high on/off-
ramp volume, are more considerable. The recommended car-following setting is aggressive for 
both safety distance and the car-following variation at all AV market penetration levels. 
However, between 10% and 60% AV market penetration, the lane-changing behavior should be 
set at the calibrated settings (i.e., same as non-AV driving population) for the deceleration 
parameter and aggressive settings for the safety distance reduction parameter. At the penetration 
levels of 70% and above the lane-changing behavior should be set to calibrated settings.  

The magnitude of improvement is considerable even at lower AV market penetration 
levels. As shown in Table 4(b), at 10% levels throughput is increased by over 4% and travel time 
decreases by upwards of 17%. The traffic performance continues to improve until 50% 
penetration levels, beyond which the improvements level off. At the 60% and above AV market 
penetration levels, the queue lengths in the merging area are eliminated, the travel time is 
improved by over 50%, along with the throughput increase of 19%, compared to when no control 
is administered. Table 4(c) shows the recommended car-following and lane-changing behaviors 
for AVs traversing through the mainline segment under a single-lane closure. It is observed that 
the change in the lane-changing behavior of AVs does not have a significant impact on traffic 
improvement at all penetration levels. Also, at 10% AV penetration levels, change in the car-
following behavior does not result in significant traffic improvements; therefore AVs are 
recommended to operate under calibrated car-following settings. At penetration levels greater 
than 10%, AVs are recommended to operate under aggressive car-following settings in order to 
yield maximum benefit from AV flows. As highlighted in Table 4(c) when 40% AV flows 
operate with aggressive car-following settings, traffic flows experience up to 10% reduction in 
travel time and up to 32% reduction in queue lengths.  

The selection of the AV driving settings for both the mainline and merging segments of MD-
100 are discussed below: 
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- For both the merging and mainline segments the suggested car-following behavior is 
aggressive, i.e., AVs follow a shorter headway and respond to the following vehicle at 
shorter distances. The resulting positive impact on travel time and throughput are 
consistent with what has been reported in the literature (9,10,11,12).  

- The lane-changing behavior in the mainline segment is recommended to be moderate 
(i.e., AVs will decelerate at a lower rate and will accept non-mandatory lane changes at a 
smaller reduction to their safety distance than their human counterparts). The specified 
lane-changing behavior will result in fewer non-mandatory lane changes, thereby 
requiring the vehicles to minimize their lane changes and limiting them only to 
mandatory lane changes.  

- The prescribed lane-changing behavior in the merging segment is different for market 
penetration levels between 10%-60% and 70%-100%. At 10%-60% penetration levels 
AVs are recommended to set the calibrated setting (i.e., the same as the non-AV driving 
populations) for their deceleration behavior during the mandatory lane change and 
aggressive settings for a reduction in their safety distance. The behavior is changed to 
calibrated for both parameters at 70%-100% penetration levels. The change in the 
settings for the lane-changing parameters is the result of a higher proportion of AVs in 
comparison to human-driven vehicles. Therefore, the added benefits of having aggressive 
lane-changing behavior along with aggressive car-following behavior becomes 
insignificant once AVs constitute 70% or higher of the traffic flows.  
 

TABLE 4: AV parameter settings and resulting improvements (with reference to the baseline settings, i.e., 
MD-100 calibrated settings) at each penetration level  

 (a) Mainline Segment 

 Lane-Changing   Car-Following  Improvement 

AV Penetration 
Rate Deceleration  

SD 
Reduction 

Factor  
Safety 

Distance 
Following 
Variation  

Travel 
Time  Throughput Queue 

Length 

10% Moderate Moderate  Aggressive-2 Aggressive  2.93% 1.98% no queue 
20% Moderate Moderate  Aggressive-2 Aggressive  4.56% 3.27% no queue 
30% Moderate Moderate  Aggressive-2 Aggressive  4.86% 2.17% no queue 
40% Moderate Moderate  Aggressive-2 Aggressive  6.27% 4.27% no queue 
50% Moderate Moderate  Aggressive-2 Aggressive  9.40% 4.75% no queue 
60% Moderate Moderate  Aggressive-2 Aggressive  8.82% 3.85% no queue 
70% Moderate Moderate  Aggressive-2 Aggressive  9.25% 4.46% no queue 
80% Moderate Moderate  Aggressive-2 Aggressive  8.85% 4.79% no queue 
90% Moderate Moderate  Aggressive-2 Aggressive  9.74% 4.30% no queue 

100% Moderate Moderate   Aggressive-2 Aggressive   10.24% 4.93% no queue 
 
 (b) Merging Segment 

 
Lane-Changing   Car-Following 

 
Improvement 

AV 
Penetration 

Rate 
Deceleration  

SD 
Reduction 

Factor  
Safety 

Distance 
Following 
Variation 

 

Travel 
Time  Throughput Queue 

Length 

10% Calibrated Aggressive  Aggressive-2 Aggressive 
 

17.72% 4.28% 11.45% 
20% Calibrated Aggressive  Aggressive-2 Aggressive 

 
32.30% 7.79% 27.80% 

30% Calibrated Aggressive  Aggressive-2 Aggressive 
 

39.70% 9.73% 54.21% 
40% Calibrated Aggressive  Aggressive-2 Aggressive 

 
48.59% 14.84% 87.93% 

50% Calibrated Aggressive   Aggressive-2 Aggressive 
 

52.53% 16.15% 89.05% 
60% Calibrated Aggressive   Aggressive-2 Aggressive 

 
54.74% 16.83% 99.67% 

70% Calibrated Calibrated  Aggressive-2 Aggressive 
 

52.49% 19.09% 98.27% 
80% Calibrated Calibrated  Aggressive-2 Aggressive 

 
49.80% 19.12% 98.66% 

90% Calibrated Calibrated  Aggressive-2 Aggressive 
 

54.05% 19.51% 99.27% 
100% Calibrated Calibrated   Aggressive-2 Aggressive   51.55% 20.04% 100% 
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(c) Mainline Segment – Single Lane Drop 

 
Lane-Changing   Car-Following 

 
Improvement 

AV 
Penetration 

Rate 
Deceleration  

SD 
Reduction 

Factor  
Safety 

Distance 
Following 
Variation 

 

Travel 
Time  Throughput Queue 

Length 

10% Calibrated Calibrated  Calibrated Calibrated 
 

- - - 
20% Calibrated Calibrated  Aggressive-1 Aggressive 

 
3.08% 4.79% 5.34% 

30% Calibrated Calibrated  Aggressive-1 Aggressive 
 

3.76% 4.96% 14.26% 
40% Calibrated Calibrated  Aggressive-2 Aggressive 

 
10.43% 15.44% 31.73% 

50% Calibrated Calibrated   Aggressive-2 Aggressive 
 

13.55% 19.52% 26.53% 
60% Calibrated Calibrated   Aggressive-2 Aggressive 

 
10.56% 13.54% 23.05% 

70% Calibrated Calibrated  Aggressive-2 Aggressive 
 

15.66% 25.40% 47.25% 
80% Calibrated Calibrated  Aggressive-2 Aggressive 

 
16.46% 23.27% 43.73% 

90% Calibrated Calibrated  Aggressive-2 Aggressive 
 

17.08% 20.98% 37.59% 
100% Calibrated Calibrated   Aggressive-2 Aggressive   16.57% 21.09% 44.74% 

CONCLUSIONS AND REMARKS 

This study has addressed an issue often overlooked when the topic of AVs is discussed in the 
literature. Instead of focusing on different AV-specific car-following and lane-changing models 
alone, this study has focused on the role of an operational agency in coordinating with the AV 
traffic flows. In this effort, a methodology has been presented to analyze the impacts of different 
AV flows on a highway network using microsimulation.  

        The methodology was applied to a two-lane congested highway in Maryland, and the results 
of different AVs settings show that improper AV behavioral mechanisms can severely impede 
the traffic operations at all AV penetration levels. Under appropriate settings administered by the 
external traffic controller, the experimental analysis shows that the introduction of AVs even at 
the 10% penetration rate can result in a reduction of average travel time, increase in throughput 
and decrease in queue lengths on the merging and mainline segments. These improvements due 
to the exercise of optimal behavioral mechanisms for AV flows have yielded the same benefits to 
both AV and non-AV flows. The experimental results, tested in the study, highlight the existence 
of an optimal set of behavioral mechanisms for AV flows that are required to be executed over 
different segments of the commuting freeway under the given traffic volume to maintain and 
improve traffic flow. A responsible highway agency can follow our proposed method to develop 
operational guidelines that will enable the traffic operators to properly coordinate with AV flows 
to make the best use of the roadway capacity and avoid any potential negative impacts of AVs. 

Other ongoing research tasks associated with AV traffic flow include: developing models 
that take into account lower reaction time of the automated system, evaluating the impact of 
different AV behavior compliance rates and the need for enforcement, the V2V communication 
component, and the use of AVs to implement VSL (variable speed limit) strategies on 
recurrently congested freeway segments.  
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