Dr. Guoping Zhang

Title: 
Associate Professor of Mathematics
Office Location: 
Carnegie Hall 256
Phone: 
(443) 885-4338
Email: 
Guoping.Zhang@morgan.edu
Education:

Ph.D. University of Tokyo, Japan, 2002
M.S. Wuhan University, China, 1996
B.S. Wuhan University, China, 1993

Education:

Ph.D. University of Tokyo, Japan, 2002
M.S. Wuhan University, China, 1996
B.S. Wuhan University, China, 1993

Research Interests:

Mathematical physics and nonlinear partial differential equations, especially nonlinear evolution PDEs (e.g. Schrödinger, Camassa-Holm, Degasperis-Procesi, Navier-Stokes equations, Biot's poroelastic model), Continuous and discrete integrable systems, soliton theory, Inverse problem and its application to digital signal and image processing.

Selected Publications (Total: 28, Citations: 148):

  • G. Zhang, Multipeak traveling wave solutions of Camassa-Holm equation. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 23 (2016), no. 1, 59-67. 
  • G. Zhang, Weak multipeak traveling wave solutions of Camassa-Holm equation. Int. J. Evol. Equ. 10 (2015), no. 1, 25-41.
  • G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with sign changing nonlinearity, Journal of Mathematical Physics 52, 043516 (2011).
  • A. Pankov, G. Zhang, Standing wave solutions of the discrete nonlinear Schrödinger equations equations with unbounded potentials, II, Applicable Analysis, Vol. 89, No. 9, September 2010, 1541-1557.
  • G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, Journal of Mathematical Physics 50, 013505 (2009).
  • G. Zhang, Z. Qiao, Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition. Math Phys. Anal. Geom. (2007) 10:205-225.
  • G. Zhang, K. Yajima, Smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity. J Differential Equations 2004 (202):81-110.
  • K. Yajima, G. Zhang, Smoothing properties for Schrödinger equations with potentials superquadratic at infinity. Commun Math Phys 2001 (221): 573-90.