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Chapter 1: Introduction 

 

1.1 Background 

In the U.S., the expenditures for public student transportation keep increasing. 

According to the National Center for Education Statistics (2021), from 2010-11 to 

2017-18, the expenditures have increased from about $22 billion to $26 billion. The 

average spending per student transported in 2017-18 has risen to $1079. However, 

since the economic recession in 2008, most states have cut school funding. In 2015, 

there were still 29 states that didn’t restore their school funding to pre-recession levels 

(Leachman et al., 2017). In this case, public school districts are facing severe budget 

crises. Consequently, transportation spending, which mainly consists of bus-related 

costs and bus drivers’ salaries, is often reduced. 

 

Improving school transportation efficiency with only a limited transportation budget is 

crucial. Considering the very high cost of buying new buses (from $50,000 to $100,000 

per bus) and the annual maintenance cost for each bus, minimizing the total number of 

buses can be the number one choice to lessen the financial strain. Another way to 

improve the efficiency is to cut down on deadhead time, namely the total time buses 

run without students on board. By doing so, school districts can achieve significant 

savings in fuel and wear on the buses. To achieve those goals, mathematical models 

combined with optimization technologies should be utilized to construct efficient 

school bus routes to serve all the students cost-effectively. 
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Moreover, adjusting school bell times can also improve bus operation efficiency. In a 

particular school district, the demand for school buses is usually unbalanced since the 

bell times of most schools are around the same time. If we can change the bell time of 

some schools, more trips will become compatible so that more trips can be linked 

together and be served on the same bus. As a result, one single bus route becomes 

longer, thus reducing the total number of buses. 

 

 
Figure 1. Illustration of bus routes before bell time optimization 

 

A simple example illustrates this point. Two schools and two depots (i.e., Depot 1 and 

Depot 2) are in the hypothetical school bus system shown in Figure 1. Please note that 

we only show the starting depot for each bus, but each bus must start and end at the 

same depot. For example, Bus 1 starts from Depot 1, and it should return to Depot 1 

once finishing its journey. We consider the PM case where school buses transport 

students from schools to their homes. The dismissal time for School A and School B 

are 14:00 and 14:30, respectively. School A has two trips, Trip 1 with a travel duration 

of 20 minutes and Trip 3 with a travel duration of 35 minutes. Trip 2 and Trip 4 belong 

to School B, and their travel times are 20 minutes and 30 minutes, respectively.  
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Three buses are needed to serve those four trips. Bus 1 is a two-trip bus. It starts from 

Depot 1 and first arrives at School A to serve Trip 1. Then, it takes 10 minutes to drive 

from the last stop of Trip 1 to School B (the first stop of Trip 2). At 14:30, Bus 1 starts 

to serve Trip 2 and will go back to Depot 1 after finishing Trip 2. Bus 2 is a single-trip 

bus that starts from Depot 2 and arrives at School A to serve Trip 3. After finishing 

Trip 3, Bus 2 will go back to Depot 2. Similarly, Bus 3 starts from Depot 1, arrives at 

School B to serve Trip 4 and will return to Depot 1 at the end. 

 

 
Figure 2. Illustration of bus routes after bell time optimization 

 

If we change the dismissal time of School B from 14:30 to 14:35, as shown in Figure 

2, then the total number of buses in this system can be reduced to two. Because Trip 3 

and Trip 4 can be served on the same bus now (i.e., Bus 2), and thus Bus 3 is eliminated. 

Therefore, bell time optimization can reduce the number of buses needed overall. 

 

Given the trip information and school bell time plans, the School Bus Scheduling 

Problem (SBSP) aims to optimize the school bus schedules for a given school district. 

This research focuses on the SBSP with the objective to minimize the number of buses 
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needed overall and the total deadhead time. Besides, to potentially reduce the total 

number of buses, the school bell time optimization is incorporated into the SBSP. 

Therefore, the integrated model is used to optimize the school bell times and provide 

an efficient bus schedule to improve the efficiency of the school bus system. 

 

1.2 Motivation 

Most existing studies consider the school bus scheduling problem as a single-depot 

problem in which buses are required to start and end at the only depot (or garage). 

However, this cannot represent the real-world situations where the school buses usually 

start from multiple garages, serve several routes in the morning or afternoon, and return 

to the garages after finishing their work. Therefore, it is essential to formulate the 

school bus scheduling problem as a multi-depot problem.  

 

Besides, bell time optimization is also challenging for such a multi-depot multi-school 

system. On the one hand, the number of related studies is small, and those mainly work 

on single-depot bus systems. On the other hand, unlike the Multi-Depot Vehicle 

Routing Problem with Time Window (MDVRPTW), where the time window for each 

customer is independent of other customers, the time windows for schools are coupled 

with each other because multiple trips may be associated with each school. If the school 

bell times are changed, the trip starting times should be adjusted accordingly. And when 

the schools have multiple trips, to ensure that all the students can come to the school 

(or return home) on time, the starting times of the trips belonging to the same school 
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should be around the same time. Therefore, synchronizing the change in the starting 

time of the schools and trips is a major challenge.  

 

Though doing the school bus scheduling and bell time optimization are beneficial, we 

don’t want to solve them as two subproblems sequentially as they are highly related to 

each other. Therefore, we should incorporate the bell time optimization into the multi-

depot multi-school bus scheduling problem to simultaneously provide a good bus 

schedule and school bell times. However, the integrated model, which deals with more 

features, is much more complicated and can be very hard to solve, especially for large-

size problems. Therefore, solving the integrated model efficiently, especially for large 

MDSBSPTWs, is a critical task in this study. 

 

1.3 Research Contributions 

This study aims to solve the multi-depot multi-school bus scheduling problem with bell 

time optimization (MDSBSPTW) for improving the efficiency of the given school bus 

system. The solution to the problem is the best bus schedule that minimizes the total 

number of buses, the total deadhead duration, and the corresponding school bell time 

for each school. This study tries to fulfill several existing research gaps: 

1. Formulate a mathematical model for the MDSBSPTW. 

This study will develop an exact method, a Mixed-Integer Programming (MIP) model, 

to solve the MDSBSPTW. The proposed MIP model will also be able to solve the 

single-depot multi-school bus scheduling problems with bell time optimization 
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(SDSBSPTW) or the problems without bell time optimization regardless of the total 

number of depots in the system (i.e., MDSBSP and SDBSP). 

2. Develop heuristic methods for large-size MDSBSPTW. 

The proposed MIP model may lose its power when dealing with large-scale instances, 

and heuristic methods will become the methodology of choice. We will develop several 

heuristic methods from different perspectives to find suitable solutions within 

reasonable time for large-scale problems. All the proposed heuristic methods will be 

capable of solving SDSBSPTWs, SDSBSPs, and MDSBSPs as well. 

3. Test the performance of all the proposed methods. 

Real-world data will be collected for testing the performance of all the proposed 

methods. We will generate multiple test problems with different characteristics (e.g., 

different depot size, trip size, school size, and different sizes for the school bell time 

window) from the collected data. The performance of all proposed methods on each 

test problem will be presented, compared, and analyzed. We will also test the 

performance of all the proposed methods on the largest problem that uses the entire 

collected data. Their performances will be examined and compared. Finally, sensitivity 

analysis will be conducted on some key parameters of the MDSBSPTW. 

 

1.4 Report Structure 

The organization of the report is as follows: 

• Chapter 1 introduces the background and the motivation of this research. It also 

presents the problem statement and the contributions. 
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• Chapter 2 is the literature review. It first summarizes the current studies on the 

vehicle routing problem, multi-depot vehicle routing problem, and multi-depot 

vehicle routing problem with time windows. Then, it reviews the existing 

studies on the school bus scheduling problem and the school bell time 

optimization. Finally, the research gaps are discussed. 

• Chapter 3 presents the mathematical formulation for the multi-depot multi-

school bus scheduling problem with bell time optimization. The model 

assumptions are first introduced. Then, the mixed-integer programming model 

is presented. The objective function and the constraints are clearly stated. 

• Chapter 4 presents a two-phase heuristic method, the first-route second-

assignment method, for solving the multi-depot multi-school bus scheduling 

problem with bell time optimization through two phases sequentially. The first-

route phase converts the original problem into a single-depot multi-school bus 

scheduling problem with bell time optimization and is formulated as a mixed-

integer programming model. The second-assignment phase is a bus-depot 

assignment problem formulated as an integer programming model. Then, we 

propose the improved two-phase heuristic method. It keeps the second-

assignment phase unchanged while replacing the MIP model in the first-route 

phase with the Simulated Annealing-based Greedy Algorithm (SA-GDA) 

method. All the models and the SA-GDA method are presented in detail. 

• Chapter 5 presents the Tabu Search-based Ant Colony Optimization (TS-ACO) 

method for solving the MDSBSPTW without dividing it into different phases. 

The proposed ACO algorithm and the TS method are described in detail. 
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• Chapter 6 presents the performances of all proposed methods on fourteen test 

problems derived from real-world collected data. They all are applied to the 

largest test problem based on all collected data at the end. The performances of 

different methods on all test problems are examined and compared, followed 

by the sensitivity analysis results on two key model parameters. 

• Chapter 7 concludes this research and discusses the future research directions. 
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Chapter 2: Literature Review 

The multi-depot multi-school bus scheduling problem with the school bell time 

optimization problem (MDSBSPTW) can be considered a real-world application of the 

Multi-depot Vehicle Routing Problem with Time Windows (MDVRPTW), which is a 

variant of the classic Vehicle Routing Problem. Therefore, first, an overview of the 

classic Vehicle Routing Problem and the Multi-depot Vehicle Routing Problem is 

provided. Then, the Multi-depot Vehicle Routing Problem with Time Windows 

research is discussed. Finally, the School Bus Scheduling Problem and the School Bell 

Time Optimization studies are reviewed. 

 

2.1 Vehicle Routing Problem 

Given a set of customers, Vehicle Routing Problems (VRPs) aim to find a set of optimal 

routes that serve all the customers at minimum cost. It is one of the most important and 

studied optimization problems and has wide applications in real-world systems (Toth 

and Vigo, 2002). The basic configurations of the VRPs include a central depot, 

deterministic demand, and a homogeneous fleet of vehicles. However, real-world 

situations are often much more complicated. Therefore, different VRP variants are 

proposed to accommodate different situations. The VRP variants are the basic VRP 

with extra features such as heterogeneous vehicle capacity, customer time windows, 

and multiple depots. Some of them are shown in Figure 3. 

 



10 
 

 
Figure 3. Variants of VRP 

 

VRP variants can better describe the actual situation. For example, Dantzig and Ramser 

(1959) first introduced the CVRP for the gasoline delivery truck dispatching problem. 

They proposed a procedure based on a linear programming formulation to obtain a 

near-optimal solution. Later, Clarke and Wright (1964) came up with a heuristic 

method that is based on the “saving” concept to improve the solution. Since then, a 

large number of methods and algorithms have been proposed to solve the VRP and its 

variants. There are mainly three types of approaches, namely the exact methods, 

heuristic methods, and metaheuristic methods. 

 

Some popular exact methods include branch-and-bound, branch-and-cut, and branch-

and-cut-and-price. However, both the VRP and its variants are NP-hard such that the 

exact methods are only powerful when the problem size is small. In general, these small 

instances involve around 100 customers (Laporte et al., 2014). Otherwise, solving the 

problem with the exact methods will become super time-consuming. Take CVRP, for 

example. To the best of the author’s knowledge, the largest instance solved to 
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optimality with the exact method has 360 customers. The problem was solved with an 

improved branch-and-cut-and-price algorithm by Pecin et al. (2017). However, it took 

a very long time to reach optimality (162,405 seconds). 

 

The heuristic or metaheuristic methods are proposed and widely used for large-scale 

instances in practice, considering the tradeoff between computational speed and 

solution quality. They are capable of quickly finding near-optimal solutions. Classical 

heuristic methods include construction heuristics and improvement heuristics (Laporte 

et al., 2014). As for metaheuristics, Simulated Annealing (SA), Tabu Search (TS), 

Genetic Algorithm (GA), and Ant Colony Optimization (ACO) are most commonly 

used. Those heuristics and metaheuristics can solve large-scale VRPs with nearly 500 

customers (Kytöjoki et al., 2007; Laporte et al., 2014). 

 

More recently, the interest in hybrid methods has grown rapidly due to their ability to 

combine the advantages of different algorithms or techniques together (Subramanian 

et al., 2013). Meta-meta hybridization is the commonly used one. For example, 

Kytöjoki et al. (2007) presented a Variable Neighborhood Search (VNS) method 

combined with a Guided Local Search (GLS) metaheuristic to prevent the local minima. 

They can efficiently solve very large-scale real-life VRPs in a reasonable time. The 

proposed hybrid method can solve the CVRP with up to 20,000 customers in about 144 

minutes. Another hybridization is the metaheuristic, which combines the exact method 

(i.e., the mathematical programming technique) and the heuristics (or the 

metaheuristics). For example, Subramanian (2013) proposed a hybrid method that 
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combines a set partitioning model with an Iterated Local Search (ILS) heuristic for 

solving a class of VRPs. The idea is to find and store sufficiently high-quality routes 

(i.e., the columns of the set-partitioning model) based on the ILS and then solve the set 

partitioning model with a MIP solver. Results showed that the solutions of some 

benchmark examples could be improved based on the proposed metaheuristic. Other 

best performing published methods include Knowledge-Guided Local Search (KGLS) 

(Arnold and Sörensen, 2019), Slack Induction by String Removals (SISRs) (Christiaens 

and Vanden Berghe, 2020), and the Partial Optimization Metaheuristic Under Special 

Intensification Conditions (POPMUSIC) (Queiroga et al., 2021). 

 

2.2 Multi-depot Vehicle Routing Problem 

The Multi-depot VRP (MDVRP) is an extension of the basic VRP. In the MDVRP, 

vehicles start from multiple depots to serve all the customers and are often required to 

return to the same depot from which they start (Renaud et al., 1996). It has important 

applications in the field of transportation, logistics, and distribution. For example, 

logistics companies often operate from more than one distribution center (commonly 

referred to as a depot) to efficiently transport goods to customers. 

 

Let 𝐺𝐺(𝑉𝑉,𝐴𝐴) be a complete graph. 𝑉𝑉 is the vertex set which consists of a depot set 𝑆𝑆 =

{𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑛𝑛} and a customer set 𝑊𝑊 = {𝑤𝑤𝑛𝑛+1,𝑤𝑤𝑛𝑛+2,⋯ ,𝑤𝑤𝑛𝑛+𝑚𝑚}. In this case, there is a 

total number of 𝑛𝑛 depots and 𝑚𝑚 customers. 𝐴𝐴 = {�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗�: 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} is the arc 

set and is associated with a travel time matrix (𝑐𝑐𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗). Based on this 

graph, The MDVRP aims to optimize the vehicle routes such that (1) each customer 
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must be visited exactly once by any vehicle in the fleet, and (2) each vehicle starts from 

a depot 𝑠𝑠𝑛𝑛 and is required to go back to 𝑠𝑠𝑛𝑛 after finishing its route. The objective can 

be a single objective, such as minimizing the total traveling cost (i.e., traveling time or 

distance) or minimizing the total number of vehicles. Or it can be a bi-objective 

function that minimizes the total number of buses and the total traveling cost. Figure 4 

is an example of a feasible solution for an MDVRP. There are 15 customers and three 

depots. Five routes (i.e., the solid blue lines) are built to serve all those 15 customers 

exactly once. And every vehicle starts and ends at the same depot. 

 

 
Figure 4. Illustration of the MDVRP 

 

As one variant of the VRP, the MDVRP is NP-hard. Thus, most studies worked on 

developing heuristic and metaheuristic methods to find good solutions for relatively 

large-scale instances in a short time. Despite this, some research studies focused on 

exact methods. Pioneer works would be two branch-and-bound algorithms for solving 

the symmetric version MDVRP (1894) and asymmetric version MDVRP (1988), 

respectively (Laporte et al., 1984, 1988). More recently, Baldacci and Mingozzi (2009) 
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presented a unified exact method for solving several different classes of the VRP, 

including MDVRP. The proposed method is based on the set partitioning formulation 

with new proposed tight lower bounds. It can solve the instance with 199 customers 

and four depots to optimality. Contardo and Martinelli (2014) also used the set-

partitioning formulation. Combined with a vehicle-flow formulation, the proposed 

exact method can solve the MDVRP with capacity and route length constraints. Results 

showed that it can provide stronger lower bounds and could solve some previously 

unsolved open instances with the exact method. The largest instance it could solve 

optimally had 240 customers and six depots. More recently, Ramos et al. (2020) 

proposed a two-commodity flow formulation for the MDVRP considering a 

heterogeneous vehicle fleet and maximum routing time. The proposed model was 

tested on some benchmark instances and achieved better performances. 

 

As for the heuristic methods, the cluster first-route second heuristic methods are widely 

used. Specifically, “Cluster first” refers to decomposing the MDVRP into multiple 

single-depot VRPs based on different customer allocation strategies, and then “route-

second” solves a VRP for each depot. The most straightforward customer allocation 

strategy would be the nearest-depot assignment approach, firstly proposed by Tillman 

(1969). It assigns the customers to their nearest depot and then adds refinements to 

improve the solution (Salhi and Sari, 1997). Later, researchers took the customer 

geographical distribution features into consideration and improved customer allocation 

with some clustering methods or some assignment algorithms. The clustering methods 

include the adaptive genetic clustering method (Salhi and Sari, 1997), the geometric 
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shape-based genetic clustering algorithm (Yücenur and Demirel, 2011), and the bi-

level Voronoi diagram (Tu et al., 2014). As for the assignment algorithms, Giosa et al. 

(2002) proposed several measures for assigning a customer to a depot, such as an 

assignment through urgencies, cyclic assignment, and assignment by clusters. 

 

Metaheuristics can be the method of choice for efficiently solving large-scale instances 

in a reasonable time and providing good solutions (Montoya-Torres et al., 2015). Two 

often-used metaheuristics for the MDVRPs are Tabu Search (TS) (Renaud et al., 1996; 

Escobar et al., 2014) and Genetic Algorithm (GA) (Ho et al., 2008; Vidal et al., 2012). 

The TS algorithm is a local search method designed to avoid a local optimum based on 

a flexible memory system. The GAs consist of several steps, such as mutation, 

crossover, and selection. They are robust and effective but may have a slow 

convergence speed. A nice review of the genetic algorithms for MDVRPs can be found 

in the paper written by Karakatič and Podgorelec (2015).  

 

Some bio-inspired metaheuristic methods are also very popular for solving the 

MDVRPs. Those methods include the Ant Colony Optimization algorithm (ACO) and 

the Antlion Optimization (ALO). The ACO is inspired by the ants’ foraging behavior, 

and the pheromone is the key parameter that affects the ants’ route selection (Yu et al., 

2011; Demirel and Yilmaz., 2012). While the ALO is based on the ant hunting 

mechanism of antlions which mainly consists of the random walk of the ants and the 

entrapment and catching behavior of the antlions (Barma et al., 2019). Besides, Bezerra 

et al. (2018) solved the MDVRP through a General Neighborhood Search (GVNS). 
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The GVNS has fewer parameters but can also achieve reasonable results. Sadati et al. 

(2021) also work on solving the MDVRP using the VNS. They combined it with the 

tabu shaking mechanism to improve both solution quality and mode running time. 

 

Researchers also extend the basic MDVRP with additional constraints. Some 

frequently used constraints are (1) depot (or vehicle) capacity; (2) fleet type 

(homogeneous or heterogeneous); (3) time windows for customers; (4) route length 

(i.e., traveling time or distance); (5) vehicles are not required to go back to the depots 

from which they start (i.e., open VRP); (6) pickup and delivery demand at each 

customer. A summary of some MDVRP variants is presented in Table 1. 

 



17 
 

Table 1. Summary of some MDVRP variants 

Authors and 

Year 
Type of Problem Main Constraints Method Type 

Method 

(Algorithm) 

Number of 

Depots 

Number of 

Customers 

Polacek et al. 

(2004) 
MDVRPTW Time windows for customers Heuristic Variable Neighborhood Search 4≤S≤6 48≤N≤288 

Nagy and Salhi 

(2005) 
MDVRPPD 

Vehicle capacity, minimum 

and maximum loads for a 

route 

Heuristic Integrated Heuristic 2≤S≤5 50≤N≤249 

Crevier et al. 

(2007) 
MDVRPI Inter-depot routes Heuristic Tabu Search 5≤S≤7 48≤N≤288 

Bettinelli et al. 

(2011) 
MDHVRPTW 

The time window for 

customers; Heterogeneous 

feet; route duration 

Exact Branch-and-Cut-and-Price 2≤S≤6 25≤N≤100 

Vidal et al. 

(2012) 
MDPVRP 

Multiple periods (4 or 6 

days), vehicle capacity, route 

length 

Heuristic Hybrid Genetic 4≤S≤6 48≤N≤288 

Narasimha et al. 

(2013) 
min–max 
MDVRP 

Maximum route length Heuristic Ant Colony Optimization 3≤S≤5 80≤N≤140 



18 
 

Salhi et al. 

(2014) MDHFVRP 

Multiple vehicle types (5 

types), vehicle capacity, route 

length 

Heuristic Variable Neighborhood Search 2≤S≤9 50≤N≤360 

Wang et al. 

(2016) 

min-max 
SDMDVRP-

MSTR 

A customer can be visited 

multiple times by different 

vehicles, and route duration 

Heuristic MD Heuristic 1≤S≤20 10≤N≤500 

Alinaghian et al. 

(2018) MDMCVRP 

The cargo space of each 

vehicle has multiple 

compartments with a limited 

capacity, vehicle route 

duration, depot capacity 

Heuristic 
Hybrid Adaptive Large 

Neighborhood Search 
1≤S≤6 30≤N≤360 

Zhou et al. 

(2018) MD-TEVRP-DO 

Two levels of routing 

problems: depots-satellites 

and satellites-customers. 

Customers have two delivery 

options (pick up/direct 

delivery), vehicle capacity, 

satellite capacity 

Heuristic 
Hybrid Multi-population 

Genetic Algorithm 

1≤S≤3 

(4~12 

satellites, 

10~30 pickup 

facilities) 

50≤N≤200 

Zhang et al. 

(2019) MDGVRP 

Refill the alternative fuel-

powered vehicles only at their 

original depots 

Heuristic Ant Colony System Algorithm 4≤S≤6 25≤N≤75 
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Brandão, J. 

(2020) MDOVRP 

Vehicles are not allowed to 

return to the depot, and 

vehicle capacity 

Heuristic 
Memory-based Iterated Local 

Search 
4≤S≤6 48≤N≤288 

Sadati et al. 

(2021) 

MDVRPTW; 

MDOVRP 

Vehicle capacity, time 

window, tour duration 
Heuristic 

Variable Tabu Neighborhood 

Search 
4≤S≤6 48≤N≤288 

Note: 

• MDVRPTW: MDVRP with time windows 

• MDVRPPD: MDVRP with pickups and deliveries 

• MDVRPI: MDVRP with inter-depot routes 

• MDHVRPTW: Multi-depot heterogeneous vehicle routing problem with time window 

• MDPVRP: Multi-depot periodic VRP 

• min–max MDVRP: minimize the maximum distance traveled by any vehicle 

• MDHFVRP: Multi-depot heterogeneous vehicle routing problem 

• min-max SDMDVRP-MSTR: min-max split delivery multi-depot vehicle routing problem with minimum service time requirement 

• MDMCVRP: Multi-depot multi-compartment vehicle routing problem 

• MD-TEVRP-DO: Multi-depot two-echelon vehicle routing problem with delivery options for the last mile distribution 

• MDGVRP: Multi-depot green vehicle routing problem 

• MDOVRP: Multi-depot open vehicle routing problem 
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2.3 Multi-depot Vehicle Routing Problem with Time Windows 

The Multi-depot Vehicle Routing Problem with Time Windows (MDVRPTW) is one 

MDVRP variant. Besides the two basic constraints of the MDVRP, the additional 

constraint defines a time window [𝑒𝑒𝑚𝑚, 𝑙𝑙𝑚𝑚] for each customer 𝑚𝑚 where 𝑒𝑒𝑚𝑚 and 𝑙𝑙𝑚𝑚 are 

the earliest service time and latest service time, respectively. In this case, the customer 

𝑚𝑚 can be served at any time in the given time window. Some real-life applications of 

MDVRPTW are package delivery, school bus routing, and waste collection. 

 

The MDVRPTW is NP-hard, and thus metaheuristics are widely used. Luo and Chen 

(2014) proposed the Multi-Phase Modified Shuffled Frog Leaping Algorithm 

(MPMSFLA) framework for solving both MDVRP and MDVRPTW. Sadati et al. 

(2021) proposed an efficient Variable Tabu Neighborhood Search (VTNS) for solving 

a class of MDVRPs, including MDVRP itself, MDVRPTW, and MDOVRP.  

 

From another perspective, the MDVRPTW is also one variant of the VRPTW. 

Therefore, some researchers designated a unified metaheuristic method for solving a 

large class of VRPTWs and then applied it to MDVRPTW. For example, Cordeau et 

al. (2001) proposed a unified Tabu Search (TS) algorithm and applied it to the VRPTW, 

PVRPTW, and MDVRPTW. Later in 2004, they improved the TS for solving the 

MDVRPTW with route duration constraints. More recently, they proposed a parallel 

iterated Tabu Search heuristic for solving VRPTW, PVRPTW, MDVRPTW, and site-

dependent VRPTW. Experimental results showed that the proposed method could 
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improve the computational speed by fully using the multiple cores available on the 

computers and provide competitive solutions (Cordeau et al., 2012). 

 

Vidal et al. (2013) introduced a Hybrid Genetic Search with Advanced Diversity 

Control (HGSADC) for a large class of VRPTW, including the MDVRPTW. The 

proposed HGSADC can improve the solutions of some MDVRPTW benchmark 

instances. Besides, the HCSADC also performs well on some newly proposed larger 

instances with up to 960 customers, 12 depots, and two types of time windows. Besides, 

they concluded that the distribution and tightness of the time windows might strongly 

affect the performance of the methods and the quality of the solutions. 

 

As for studies solely focused on the MDVRPTW, Polacek et al. (2004, 2008) first 

applied the Variable Neighborhood Search (VNS) to the MDVRPTWs. Experiment 

results showed that the VNSs are also powerful in solving the MDVRPTWs. Bettinelli 

et al. (2011) worked on the MDVRPTW with a heterogeneous fleet, namely the 

MDHVRPTW. They presented an exact algorithm, the branch-and-cut-and-price 

algorithm, for solving the MDHVRPTW. The proposed exact method can solve the 

problems with three types of vehicles, 100 customers and two depots. Without vehicle 

type constraints, the largest instance it can solve has 96 customers and four depots. Li 

et al. (2016) studied the MDVRPTW under shared depot resources, which allow 

vehicles not to end at the depot from which they start. They solved the problem with a 

hybrid genetic algorithm with an adaptive local search algorithm. 
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2.4 School Bus Scheduling Problem 

In a school bus transportation system, bus stops are the essential elements to which 

students are assigned. A trip is a sequence of bus stops and their designated school. A 

bus route links several trips from different schools together and is assigned to a school 

bus. Given the trip information and the school bell times, the Bus Scheduling Problem 

(SBSP) aims to optimize bus schedules to serve all the trips. 

 

The SBSPs could be classified based on the characteristics of the school bus 

transportation system, such as (1) the total number of depots (single or multiple); (2) 

the total number of schools (single or multiple); (3) district locations (urban or rural) 

and (4) problem scope (morning or afternoon). Numerous works solve the single depot 

problems in which each bus is required to start and end at the only depot (Kim, 2012; 

Fügenschuh, 2009, 2011; Wang, 2019). Bektaş and Elmastaş (2007) also worked on a 

single depot problem but considered the problem as an open VRP in which buses can 

end their tours at any point other than the depot. Löbel (1998) worked on the multi-

depot vehicle scheduling problems in public transit. He formulated the problem as a 

multi-commodity flow problem and solved it by column generation. However, to the 

best of the authors' knowledge, no existing study is working on the multi-depot school 

bus scheduling problem. As for the school settings of the SBSPs, early studies are 

mainly on single-school problems (Park and Kim, 2010). As for the multi-school 

problems, some research decomposed the problem into several single depot 

subproblems (Chen et al., 2015). Others applied the metaheuristics (Braca et al., 1997). 
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Three nice reviews can be found in Park and Kim (2010), Wang et al. (2017), and 

Ellegood et al. (2020). 

The objective of the SBSPs could be set based on three criteria: efficiency, 

effectiveness, and equity (Savas, 1978). To be specific, efficiency is related to the cost 

of the school bus system. Numerous research studies have focused on efficiency. And 

the most commonly used objectives are (1) to minimize the total number of buses; (2) 

to minimize the total traveling cost (i.e., traveling distance or traveling time); or (3) to 

minimize the weighted sum of the number of buses and the total vehicle traveling cost 

(Wang, 2019). Effectiveness is evaluated by how well the demand is satisfied and thus 

is related to students (Park and Kim, 2010). For example, one objective considering 

effectiveness could be to minimize students’ walking distance. As for equity, it requires 

the system to be balanced relative to the busload route duration (or distance). For 

example, Shafahi et al. (2018) set the objective to minimize the total number of buses 

while minimizing the maximum route duration. 

 

A broad range of constraints can be added to the SBSP. One unique type of constraint 

used in the SBSP is called trip compatibility constraint. As mentioned in Wang (2019), 

the trip compatibility constraint ensures that only compatible trip pairs are considered 

in the problem and thus helps to reduce the problem size. Other constraints include 

vehicle capacity, time windows, and maximum bus route length (or duration). The time 

window constraints are usually associated with school bell times and could potentially 

reduce the total number of buses (Fügenschuh, 2009, 2011). 
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The SBSPs for homogeneous buses with fixed start and end times can be considered a 

modified assignment problem or modified transportation problem (Kim et al., 2012). 

However, it’s impossible to enumerate all possible routes for a large SBSP in a 

reasonable time. Therefore, the column generation method, which only generates the 

routes that have the potential to improve the objective function, becomes the 

methodology of choice (Fügenschuh, 2011; Wang, 2019). Besides, some metaheuristic 

methods are also used. For example, Chen et al. (2015) proposed a simulated annealing 

algorithm to minimize the number of buses and the total travel distance for a single-

depot multi-school bus scheduling problem. 

 

More recently, researchers have begun to consider the SBSP with stochasticity. Yan et 

al. (2015) formulated the inter-school bus routing and scheduling problem with 

stochastic travel time as a special multiple commodity network flow model. A heuristic 

algorithm based on a problem decomposition technique and variable fixing method is 

proposed and successfully solved a real-life problem with 400 passengers. Babaei and 

Rajabi-Bahaabadi (2019) formulated the simultaneous school bus scheduling and 

routing problem with stochastic time-dependent travel times as a bi-level problem and 

solved by a heuristic method that is a combination of ant colony optimization and a 

proposed route decomposition heuristic method. Wang et al. (2020) proposed a column 

generation-based stochastic school bell time and bus scheduling optimization, which 

also takes the stochastic travel time into account. Caceres et al. (2017) proposed a 

chance-constrained programming approach for a general multi-depot multi-school bus 

scheduling problem (MDSBSP) with the consideration of three types of uncertainty, 
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namely (1) the bus overcrowding condition; (2) the probability that a bus is late to 

school; (3) the expected maximum ride time of a student on any bus. The MDSBSP is 

first decomposed into several multi-depot single-school subproblems. And each 

subproblem is then solved with a column-generation-based algorithm.  

 

2.5 School Bell Time Optimization 

In a particular district, the demand for school buses is usually unbalanced since the bell 

times of most schools are around the same time. If we can change the bell time of some 

schools, more trips will become compatible so that more trips can be linked together to 

create a route for each bus. Therefore, the number of buses needed overall can be 

potentially reduced. Though school bell time optimization is beneficial, only a few 

studies have focused on school bell time optimization. All of them are under the single-

depot configuration to the best of the authors’ knowledge. Most of those studies 

incorporated the school bell time optimization into the school bus scheduling problem 

and formed the integrated model, namely SBSPTW. The SBSPTW is very difficult 

because the schools and trips interact with each other. If the school bell times are 

changed, then the trip starting times should be adjusted accordingly (Fügenschuh, 

2011). Besides, when the schools have multiple trips, to ensure that all the students can 

come to school (or go back home) on time, the starting times of the trips belonging to 

the same school should be around the same time (Wang, 2019).  

 

Fügenschuh (2009) formulated the integrated optimization of school starting times and 

bus route schedules as an integer programming problem and solved it with branch-and-
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cut techniques. The results showed that the integrated model could reduce the total 

number of buses by 10-25%. Besides, wider school starting time windows may 

potentially lower the number of buses needed overall but also make the problem more 

difficult to solve (i.e., longer solution time and larger optimal gap). Later in 2011, 

Fügenschuh presented a set partitioning relaxation formulation and a primal 

construction heuristic to improve the solutions to the same problem (Fügenschuh, 

2011). The largest real-world dataset used in both studies is collected in a German 

county which contains 191 trips and 82 schools.  

 

Kim et al. (2012) considered both SBSPTW with a homogeneous fleet and a 

heterogeneous fleet. They solved the problems with assignment problem-based exact 

method and heuristic method. Wang (2019) formulated an integrated deterministic 

model to solve school bus routing, bell time, and scheduling, considering the maximum 

ride time and vehicle time. Considering the stochasticity of the travel time, Wang and 

Haghani (2020) proposed a column generation-based stochastic school bell time and 

bus scheduling optimization. The proposed model has two stages in which the first 

stage optimizes the bus schedules, and the second stage optimizes the bell time. The 

model is tested on a real-world dataset from a public-school transportation system with 

286 trips and 93 schools. Results showed that, on average, 20% of buses could be saved 

with bell time optimization. Miranda et al. (2021) proposed three bell time strategies 

for improving the efficiency of the rural school bus system in Brazil. Results showed 

that the proposed bell time adjustment strategies could achieve up to 9% savings on the 

total cost, including the fixed cost of buses and the traveling cost. 
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Bertsimas et al. (2019) consider the school bell time optimization as a subproblem of 

their proposed bi-objective Routing Decomposition (BiRD) algorithm for optimizing 

schools’ start times and bus routes. They first constructed several routing scenarios for 

each school and then formulated the school bell time optimization as a multi-objective 

generalized quadratic assignment problem. The proposed algorithm has been 

implemented in Boston and has led to $5 million in yearly savings. 

 

Changing school start times can also have some adverse effects on communities. For 

example, later school start times might negatively interfere with students’ after-school 

activities, and thus schools prefer schedules with lower absolute deviation in start times 

from the current schedule (Banerjee and Smilowitz, 2019). Therefore, they aimed to 

reduce the disutilities associated with changing school start times using a minimax 

model and solved the model using a lexicographic minimax approach. 

 

2.6 Research Gaps 

This Chapter presented a literature review on the studies related to the school bus 

scheduling problem and school bell time optimization, including the VRP, MDVRP, 

MDVRPTW, SBSP, and SBSPTW. The developments of the solution methods and 

algorithms for each of those problems are described. 

 

According to the literature review, most of the existing approaches to the SBSP 

formulate the problem as a single-depot problem to simplify the complicated real-world 
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situation. However, in reality, multiple depots may exist in the network, and vehicles 

are required to operate from different depots. 

 

Second, only a few studies work on school bell time optimization. One study solved it 

as a subproblem, and the others incorporated the school bell time optimization into the 

SBSP, which led to the SBSPTW. However, all the existing studies are based on the 

single-depot configuration and solved as an SDSBSPTW. Therefore, incorporating the 

school bell time optimization into the multi-depot multi-school bus scheduling problem 

is a major challenge in this study. Although the existing studies can provide some 

insights on how to optimize the school bell time, it is still a difficult task because (1) 

each school may have multiple trips, and (2) schools and trips are coupled with each 

other while the customers in the VRPTW are independent. How to synchronize the 

starting time of the school and trips is also challenging. 

 

Therefore, this research will try to address these problems. First, this study will focus 

on the multi-depot bus scheduling problem (MDSBSP). Then, the school bell time 

optimization will be incorporated into the multi-depot school bus scheduling problem 

and form the integrated model, namely, the MDSBSPTW. The mathematical 

formulation and the heuristic methods will be proposed to solve the MDSBSPTW. And 

the performance of the proposed methods will be tested on different test problems. 
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Chapter 3: Problem Description and Model Formulation 

This chapter proposes a mathematical formulation to solve the multi-depot multi-

school bus scheduling problem with school bell time optimization (MDSBSPTW). 

First, the problem is thoroughly described, and the model’s assumptions are listed. 

Then, the problem is formulated as a mixed-integer programming (MIP) problem. The 

mathematical model formulation is presented along with the explanations. Depending 

on the settings of the depot and the bell time window, the proposed MIP model can 

solve the multi-depot problems with or without bell time optimization (MDSBSPTW 

or MDSBSP) and the single-depot multi-school scheduling problems with or without 

school bell time optimization (SDSBSPTW or SDSBSP). 

 

3.1 Problem Description 

In a particular multi-depot multi-school system, a bus trip includes a sequence of bus 

stops and their designated school. For example, a bus trip in the afternoon starts from 

a school and then visits several stops sequentially, dropping off students at each stop 

until the bus becomes empty. A morning trip visits bus stops first and has school as the 

last stop. This study assumes the trips are fixed (i.e., the visiting sequence of bus stops 

on each trip is known). Based on the trip information, a bus route is a sequence of bus 

trips from different schools that are linked together to be served by one bus. Each bus 

route is then assigned to a single bus. Buses usually park at different depots. And each 

bus is required to start and end at the same depot. Therefore, after each bus departs 
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from the depot, it serves one bus route by visiting multiple trips from various schools 

in sequence, and after its journey, it will return to the same depot from which it starts. 

 

This study aims to minimize both the total number of buses and the total deadhead 

duration. The total deadhead duration is the total time buses run without students on 

board. Take the bus route in Figure 5, for example. This route serves two bus trips, 

namely Trip 𝐴𝐴 and Trip 𝐵𝐵. Specifically, Trip 𝐴𝐴 has five stops, and Trip 𝐵𝐵 has four 

stops. And Trip 𝐵𝐵 follows Trip 𝐴𝐴. The total deadhead time of this route consists of: 

(1) The total time traveling from the depot to the first stop of the first trip (Trip 𝐴𝐴); 

(2) The total time traveling from the last stop of Trip 𝐴𝐴 to the first stop of Trip 𝐵𝐵; 

(3) The total time traveling from the last stop of the last trip (Trip 𝐵𝐵) to the same 

depot from which the bust starts. 

 

 
Figure 5. Illustration of the total deadhead duration of a route 

 

For simplification, we call the sum of deadhead (1) and deadhead (3) the deadhead 

between trips and depots and call deadhead (2) the deadhead between trips. 
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We also incorporate the school bell time optimization into the school bus scheduling 

problem. Even small changes in the school bell times can make more trips compatible. 

Each bus route can become longer by serving more trips. Therefore, the overall number 

of buses can be reduced. This study aims to solve the multi-depot multi-school bus 

scheduling problem with bell time optimization (MDSBSPTW). The goal is to optimize 

the bus schedules to serve all the trips at minimum cost and find the best school bell 

time for each school within a given time window simultaneously. 

 

3.2 Model Assumptions 

Depots, schools, trips, and buses are the major components of this problem. The 

following assumptions are made regarding each of these components. 

1. Depots 

• The depot locations are known; 

• The capacity of each depot is known. 

2. Schools 

• Each school has a hard school bell time window; 

• All the trips belonging to the same school depart at the school bell time. 

3. Bus trips 

• The trip information is known, including the sequence of visiting stops on 

each trip and the location of the first stop and the last stop on each trip;  

• Each trip has its fixed service time duration, and that is known. 

By combining the location information of depots and trips (i.e., first stop and last stop), 

the deadhead between trips and depots and the deadhead between any pair of trips can 
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be calculated from Google Map Distance API. Considering the stochasticity of travel 

times, the option “travel time with traffic” is chosen. 

4. Buses 

• The fleet type is homogenous; 

• The bus capacity is larger than the maximum load of the trips; 

• All the buses arrive at schools on time; 

• Every bus should start and end at the same depot. 

5. Other assumptions 

• Idle time is not considered in this study; 

• Students have no special needs (homogeneous population). 

 

3.3 Mathematical Formulation 

3.3.1 Notation 

Table 2 is a summary of the notations used in this model. 

 
Table 2. Summary of the notations for the MIP model formulation 

Variable Description 

𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠  
Binary variable equals 1 if trip 𝑖𝑖 is served followed by trip 𝑗𝑗 on the same route 

starting from depot 𝑠𝑠 

𝑦𝑦𝑘𝑘  Integer variable, the school 𝑘𝑘’s bell time (or dismissal time) 

Parameter  Description 

𝑆𝑆𝑆𝑆𝑆𝑆 Set of schools 

𝑇𝑇 Set of bus trips 

𝑆𝑆 Set of depots 

𝑆𝑆𝑆𝑆 Set of start depot trip pairs 

𝐸𝐸𝐸𝐸 Set of end depot trip pairs 

𝐸𝐸 Set of possible compatible trip pairs when 𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 
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𝐸𝐸′ Set of all the possible compatible trip pairs (𝑆𝑆𝑆𝑆 ∪ 𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸) 

𝐴𝐴𝑘𝑘 Set of discrete school bell timestamps for school 𝑘𝑘 

𝑡𝑡𝑡𝑡𝑖𝑖 The travel time of the trip 𝑖𝑖 

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  The deadhead time from trip (or depot) 𝑖𝑖 to trip (or depot) 𝑗𝑗 

𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 The earliest allowable bell time for school 𝑘𝑘 

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 The latest allowable bell time for school 𝑘𝑘 

𝜆𝜆 The minimum time interval 

𝑂𝑂{𝑖𝑖} The school to which trip 𝑖𝑖 belongs 

𝑀𝑀𝑏𝑏 The large coefficient for prioritizing the “total number of buses” term 

𝑓𝑓𝑐𝑐 The operation cost per bus per day  

𝑅𝑅𝑐𝑐 The traveling cost per minute  

𝑀𝑀 A very large positive number (big-M) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠  The maximum capacity of each depot 𝑠𝑠 

 

The school bell time window is denoted by (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘,𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘), where 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 is the earliest 

allowable bell time and 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 is the latest allowable bell time. Each school must start 

(or dismiss) at some discrete timestamps in the given time window based on the 

minimum time interval 𝜆𝜆. The minimum time interval 𝜆𝜆 can be set to any positive value, 

such as one minute, five minutes, or 10 minutes. Once the minimum time interval 𝜆𝜆 is 

chosen, the continuous time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘,𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘) is discretized into a set of discrete 

timestamps as defined as 𝐴𝐴𝑘𝑘. And the elements in 𝐴𝐴𝑘𝑘 can be written as: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 + 𝑛𝑛 ∗ 𝜆𝜆 (3.1) 

where 𝑛𝑛 ∈ �0, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘
𝜆𝜆

�, and integer. 

For example, if the given bell time window of school 𝑘𝑘 is from 15:00 to 15:20, and the 

minimum time interval 𝜆𝜆 is set to be one minute, then we will have 21 one-minute 

discrete timestamps (e.g., 15:00, 15:01, and 15:02) that are just as well as continuous 

time. Those discrete timestamps are included in 𝐴𝐴𝑘𝑘 and School 𝑘𝑘 can only dismiss at 
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one of those timestamps. But if the minimum time interval 𝜆𝜆 is set to be five minutes, 

only five elements are in 𝐴𝐴𝑘𝑘, that is, 15:00, 15:05, 15:10, 15:15, and 15:20. School 𝑘𝑘 

can only dismiss at one of those five timestamps. In this study, the minimum time 

interval 𝜆𝜆 is set to be one minute. 

 

The set of all the possible compatible trip pairs 𝐸𝐸′(𝑆𝑆𝑆𝑆 ∪ 𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸) includes the trip pair 

(𝑖𝑖, 𝑗𝑗), which satisfies one of the following conditions: 

• (𝑠𝑠, 𝑗𝑗) and ∀s ∈ S, 𝑗𝑗 ∈ 𝑇𝑇. This is the start depot trip pair and stored in set 𝑆𝑆𝑆𝑆. 

• (i, 𝑠𝑠) and ∀𝑖𝑖 ∈ 𝑇𝑇, s ∈ S. This is the end depot trip pair and stored in set 𝐸𝐸𝐸𝐸. 

• Trip pair (𝑖𝑖, 𝑗𝑗) ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 is compatible if 1) 𝑖𝑖, 𝑗𝑗 are not the same trip; and 2) the 

departure time of trip 𝑖𝑖 plus the travel time of trip 𝑖𝑖 and the deadhead time from 

trip 𝑖𝑖  to trip 𝑗𝑗  is less than or equal to the departure time of trip 𝑗𝑗 . These 

compatible trip pairs are stored in set 𝐸𝐸. 

Mathematically, it can be written as: 

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑂𝑂{𝑖𝑖} + 𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑂𝑂{𝑗𝑗},∀𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 (3.2) 

Instead of enumerating all possible trip pairs, only compatible trip pairs in 𝐸𝐸′(𝑆𝑆𝑆𝑆 ∪

𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸) are used in the model. This can reduce the total number of variables. 

3.3.2 Model Formulation 

Based on the model assumptions, the mixed-integer programming (MIP) formulation 

for solving the multi-depot multi-school bus scheduling problem with school bell time 

optimization (MDSBSPTW) is presented below. 

 

Objective 
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Minimize 𝑀𝑀𝑏𝑏� � 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝑇𝑇𝑠𝑠∈𝑆𝑆

+ � � 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′𝑠𝑠∈𝑆𝑆

 (3.3) 

 
Or 

Minimize 𝑓𝑓𝑐𝑐� � 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝑇𝑇𝑠𝑠∈𝑆𝑆

+ 𝑅𝑅𝑐𝑐� � 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′𝑠𝑠∈𝑆𝑆

 (3.4) 

 

Subject to: 

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑖𝑖:(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (3.5) 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
′

= 0,∀𝑠𝑠 ∈ 𝑆𝑆; 𝑗𝑗 ∈ 𝑇𝑇; 𝑠𝑠′ ∈ 𝑆𝑆 ∖ {𝑠𝑠} (3.6) 

� � � 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑗𝑗∈𝑆𝑆𝑖𝑖∈𝑆𝑆

= 0 (3.7) 

� 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑗𝑗:(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′

= � 𝑥𝑥ℎ𝑖𝑖𝑠𝑠
ℎ:(ℎ,𝑖𝑖)∈𝐸𝐸′

,∀𝑖𝑖 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (3.8) 

� 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝑇𝑇

= � 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑖𝑖∈𝑇𝑇

,∀𝑠𝑠 ∈ 𝑆𝑆 (3.9) 

𝑦𝑦𝑂𝑂{𝑖𝑖} + 𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑀𝑀 × �1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 � ≤ 𝑦𝑦𝑂𝑂{𝑗𝑗} ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, 𝑠𝑠 ∈ 𝑆𝑆 (3.10) 

� 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠
𝑗𝑗∈𝑇𝑇

,∀𝑠𝑠 ∈ 𝑆𝑆 (3.11) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸′, 𝑠𝑠 ∈ 𝑆𝑆 (3.12) 

 𝐴𝐴𝑘𝑘 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 + 𝑛𝑛𝑛𝑛,𝑛𝑛 ∈ �0, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘
𝜆𝜆

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (3.13) 

𝑦𝑦𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘  𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (3.14) 

As for the objective function, we have two forms. Both are used to minimize the total 

number of buses and the total deadhead duration. Here the total deadhead duration 

includes the deadhead time between trip pairs and the deadhead time between trips and 
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depots. The first objective function (3.3) is suited for prioritizing minimizing the total 

number of buses by giving a very large coefficient 𝑀𝑀𝑏𝑏 to the “total number of buses” 

term. This means that a bus scheduling plan with a shorter total deadhead time is worse 

than the other plans with a higher total deadhead time but fewer buses. Because the 

annual fixed cost for each bus is between $50,000 and $100,000 in the state of 

Maryland (Shafahi et al., 2018), we choose 𝑀𝑀𝑏𝑏 as $ 80,000 in this study.  

 

While the second one (3.4) is a cost function that minimizes the total bus operation cost 

per day. Suppose the total school days of a certain year is 𝑑𝑑𝑠𝑠𝑠𝑠ℎ, then the operation cost 

of each bus per day 𝑓𝑓𝑐𝑐 is $ (𝑀𝑀𝑏𝑏 𝑑𝑑𝑠𝑠𝑠𝑠ℎ⁄ ). The traveling cost per minute 𝑅𝑅𝑐𝑐 is set to be $1 

per minute. More generally, 𝑓𝑓𝑐𝑐 and 𝑅𝑅𝑐𝑐 can also be considered as the weights of the two 

terms in the objective function, respectively. Therefore, they can be set to any value 

(even zero) for different research purposes (i.e., prioritizing either term). 

 

Constraints (3.5) ensure that each trip can only be visited once. Constraints (3.6) show 

the consistency of the depot index. Constraints (3.7) eliminate the traffic between 

depots, which means that we cannot dispatch vehicles between depots. Constraints (3.8) 

and (3.9) are the conservation of flow constraints for the trips and depots, respectively. 

 

Constraints (3.10), (3.13), and (3.14) relate to bell time optimization. To be specific, 

the school 𝑘𝑘’s bell time window is (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘), where 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 is the earliest allowable 

bell time, and 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 is the latest permissible bell time. Based on the minimum time 

interval 𝜆𝜆,  which is set to be one min in this study, the continuous time window 
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(𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘) is discretized into a set of discrete timestamps as defined as 𝐴𝐴𝑘𝑘. And 

Constraints (3.13) show the elements in 𝐴𝐴𝑘𝑘. Similar to Wang’s work (Wang, 2019), 

Constraints (3.10) are the trip compatibility constraints. They ensure that for every 

possible trip pair (𝑖𝑖, 𝑗𝑗), they are served on the same bus only if the finish time of Trip 𝑖𝑖 

(i.e., its departure time 𝑦𝑦𝑂𝑂{𝑖𝑖} , plus its travel time 𝑡𝑡𝑡𝑡𝑖𝑖) plus the deadhead time from Trip 

𝑖𝑖 to Trip 𝑗𝑗 (𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖) is less than or equal to the departure time of Trip 𝑗𝑗 (𝑦𝑦𝑂𝑂{𝑗𝑗}). Each school 

is required to dismiss at only one of the discrete timestamps in 𝐴𝐴𝑘𝑘. Constraints (3.11) 

are depot capacity constraints. The maximum capacity of each depot cannot be 

exceeded. Constraints (3.12)-(3.14) are domain constraints.  

 

The proposed MIP model can solve the SDSBSPTW if the depot set 𝑆𝑆 only has one 

element. It can also solve the multi-depot problems (or single-depot problems) without 

the bell time optimization if the bell time for each school is fixed at a particular 

timestamp. For solving the problems without bell time optimization, we need to make 

some changes in the formulation. Specifically, we don’t need the decision variable 𝑦𝑦𝑘𝑘 

and the constraints (3.13) and (3.14). For Constraints (3.10), the school bell times 𝑦𝑦𝑂𝑂{𝑖𝑖}  

and 𝑦𝑦𝑂𝑂{𝑗𝑗}  should change to the given bell times of the schools to which Trip 𝑖𝑖 and Trip 

𝑗𝑗 belong, respectively. Therefore, for the problems without bell time optimization, the 

goal is only to find the best bus schedule that minimizes the total number of buses and 

total deadhead duration under the given school bell time plan. 
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3.4 Summary 

This chapter proposed a mixed-integer programming formulation for solving the 

MDSBSPTWs. First, the problem was clearly stated. Then, the model assumptions 

were introduced. Finally, the mathematical model was presented with a detailed 

explanation of the objective function and the constraints. The objective function is to 

minimize the total number of buses and total deadhead duration and has two forms for 

different research purposes. One is used for prioritizing the total number of buses, and 

the other is a cost function that minimizes the total bus operation cost per day. The 

constraints mainly include the trip assignment constraints, conservation of flow 

constraints for both depots and trips, trip compatibility constraints, depot maximum 

capacity constraints, and the constraints for determining the best bell time for each 

school. The proposed MIP model can also solve single-depot problems with school bell 

time optimization and the problems without school bell time optimization. 

  



39 
 

Chapter 4: Two-Phase Heuristic Method 

This chapter presents a two-phase heuristic method, that is, the first-route second-

assignment method, for solving the multi-depot multi-school bus scheduling problem 

with school bell time optimization (MDSBSPTW). By adding a virtual depot and 

ignoring all the depot information, the MDSBSPTW is first converted into a single-

depot multi-school bus scheduling problem with bell time optimization (SDSBSPTW) 

formulated as a mixed-integer programming model in the first-route phase. The goal is 

to use the minimum number of bus routes to serve all the trips. Then, those bus routes 

are the input for the second-assignment phase that decides the best depot for each bus. 

It is formulated as an integer programming model. We then introduce a Simulated 

Annealing-based Greedy Algorithm method (SA-GDA) to solve large size 

SDSBSPTWs more efficiently in the first-route phase. The SA-GDA method combined 

with the assignment model proposed in the second-assignment phase is the improved 

two-phase heuristic method. This chapter includes introductions to the proposed two-

phase heuristic method, model assumptions, the mathematical model formulations for 

both phases, and detailed explanations of the SA-GDA framework. 

 

4.1 Problem Description 

The problem is the same as described in Section 3.1 in Chapter 3, which focuses on 

developing an efficient bus plan for a multi-depot multi-school system and optimizing 

the school bell times. The ultimate goal is to serve all the trips with a minimum number 

of buses and deadhead duration and find the best bell time for each school. 
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4.2 Two-Phase Heuristic Method 

We first present a two-phase heuristic method, the first-route second-assignment 

approach for solving the MDSBSPTW. The goal is to solve large-size MDSBSPTWs 

more efficiently than the MIP model proposed in Chapter 3. The general idea is to 

construct a minimum number of bus routes to serve all the trips in the first-route phase. 

And then, in the second-assignment phase, we decide on the best starting depot for each 

bus. The key is to add a virtual depot in the first phase. The following subsections show 

each phase’s input, constraints, objective, and output. 

4.2.1 First-route Phase 

By adding a virtual depot, the first-route phase is a single-depot multi-school bus 

scheduling problem with bell time optimization (SDSBSPTW). 

(1) Input: A virtual depot, bus trips, deadhead time between any pair of bus trips, 

schools, and the given school bell time window for each school. 

(2) Constraints: 

1) Every trip should be served exactly once; 

2) Each school bus is required to start its route from the virtual depot and 

return to the virtual depot after serving several bus trips in sequence; 

3) The bell time of each school is constrained within a given time window. 

(3) Objective:  

1) Minimize the total number of scheduled buses and the total deadhead 

time between trips; 

2) Find the best school bell time for each school. 
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(4) Output: School bus scheduling plan in which all the buses start from the virtual 

depot and return to the virtual depot, and the school bell time for each school. 

4.2.2 Second-assignment Phase 

(1) Input: School bus scheduling plan from the first phase, the deadhead duration 

matrix between trips and depots. 

(2) Constraints: 

1) Every bus should be assigned to only one depot; 

2) The maximum capacity of each depot cannot be exceeded. 

(3) Objective: Minimize the total deadheads between trips and depots. 

(4) Output: The starting depot for each bus. 

 

By combining the results from both phases, we can obtain the complete school bus 

scheduling plan and the best bell time for each school. Specifically, the total number of 

buses can be found from the outputs of the first-route phase. The total deadhead 

duration is the sum of the deadhead between trips (from the first-route phase) and the 

deadhead between trips and depots (from the second-assignment phase). 

 

An example is shown in Figure 6. There are eight trips and three depots in the original 

multi-depot problem. After adding a virtual depot and doing the first-route phase 

optimization, results show that three bus routes are needed to serve those eight trips. 

The first route (blue dot lines with arrow) serves three bus trips. The second route 

(orange dot lines with arrows) serves four trips, and the final route marked in green 

only serves one trip. Those three bus routes should start and end at the virtual depot in 
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the first phase. The second-assignment phase decides the starting depot for each bus 

without violating the depot capacities. The solid lines with an arrow show the final 

assignment. Those three buses are assigned to three different depots. 

 

 
Figure 6. Example of the two-phase heuristic method for MDSBSPTW 

 

When solving the MDSBSPTW with the proposed two-phase heuristic method, a 

Mixed-integer Programming (MIP) model is formulated for the first-route phase, which 

is an SDSBSPTW. It can also solve the problem without the bell time optimization (i.e., 

SDSBSP). And then, an Integer Programming (IP) model is proposed for the bus 

assignment problem in the second phase. The assumptions and formulations for both 

phases are provided in the following subsections. 

 

4.3 Model Assumptions 

Depots, schools, trips, and buses are the major components of this problem. The model 

assumptions are the same in Section 3.2 in Chapter 3. A brief summary is provided 
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here. As for each depot, the location and the capacity are known. As for each school, 

its bell time is constrained within a given time window. We set the minimum time 

interval to be one minute, and then the bell time must be in discrete time slots of one 

minute. Besides, each school may have multiple trips, and all the trips belonging to the 

same school depart at the school bell time.  

 

As for each trip, its travel time is fixed and known. And the trip information is known 

as well, including the sequence of visiting the stops on each trip and the location of the 

first stop and last stop on each trip. Based on the location of depots and trips, the 

deadhead duration between trips and depots and the deadhead duration between trips 

are queried from Google API. Specifically, the “travel time with traffic” in Google API 

is chosen and used. As for buses, each bus has the same capacity (a homogeneous fleet) 

and must return to the same depot from which it starts. 

 

4.4 Mathematical Formulation 

We first introduce the notations used in both phases (Table 3). Then, the MIP model 

formulation for the first-route phase and the IP model formulation for the second-

assignment phase are provided. 

4.4.1 Notation 

Table 3 summarizes the notations used in this two-phase heuristic method. For the first-

route phase, we have two sets of decision variables, including 𝑥𝑥𝑖𝑖𝑖𝑖 for determining the 

trip connection on each bus route and 𝑦𝑦𝑘𝑘 for determining the best bell time for each 
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school. While for the second-assignment phase, we only have one set of decision 

variables called 𝑧𝑧𝑏𝑏𝑏𝑏 for assigning each bus 𝑏𝑏 to the best depot 𝑠𝑠. 

 

Table 3. Summary of the notations for the two-phase model formulation 
Variable Description 

𝑥𝑥𝑖𝑖𝑖𝑖  Binary variable equals 1 if trip 𝑖𝑖 is served followed by trip 𝑗𝑗 

𝑦𝑦𝑘𝑘  Integer variable, the school 𝑘𝑘’s bell time (or dismissal time) 

𝑧𝑧𝑏𝑏𝑏𝑏 Binary variable equals 1 if bus 𝑏𝑏 is assigned to depot 𝑠𝑠 

Parameter Description 

𝑆𝑆𝑆𝑆𝑆𝑆 Set of schools 

𝑇𝑇 Set of bus trips 

𝑆𝑆 Set of depots 

𝐵𝐵 Set of possible buses 

𝑆𝑆′ The virtual depot 

𝑆𝑆𝑆𝑆 Set of start depot trip pairs 

𝐸𝐸𝐸𝐸 Set of end depot trip pairs 

𝐸𝐸 Set of possible compatible trip pairs when 𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 

𝐸𝐸′ Set of all the possible compatible trip pairs (𝑆𝑆𝑆𝑆 ∪ 𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸) 

𝐴𝐴𝑘𝑘 Set of discrete school bell timestamps for school 𝑘𝑘 

𝑡𝑡𝑡𝑡𝑖𝑖 The travel time of the trip 𝑖𝑖 

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  The deadhead time from trip 𝑖𝑖 (or depot) to trip 𝑗𝑗 (or depot) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 The earliest allowable bell time for school 𝑘𝑘 

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 The latest allowable bell time for school 𝑘𝑘 

𝜆𝜆 The minimum time interval 

𝑂𝑂{𝑖𝑖} The school to which trip 𝑖𝑖 belongs 

𝑀𝑀𝑏𝑏 The large coefficient for prioritizing the “total number of buses” term 

𝑓𝑓𝑐𝑐 The operation cost per bus per day  

𝑅𝑅𝑐𝑐 The traveling cost per minute  

𝑀𝑀 A large positive value (big-M) 

𝑐𝑐𝑏𝑏𝑏𝑏 
The sum of the deadhead from the last stop of the last trip on bus route 𝑏𝑏 to depot 𝑠𝑠 

and the deadhead from depot 𝑠𝑠 to the first stop of the first trip on bus route 𝑏𝑏 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠  The maximum capacity of each depot 𝑠𝑠 
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4.4.2 Model Formulation for First-route Phase 

Objective 

Minimize 𝑀𝑀𝑏𝑏� 𝑥𝑥𝑆𝑆′𝑗𝑗
𝑗𝑗∈𝑇𝑇

+ � 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 (4.1) 

 
Or 

Minimize 𝑓𝑓𝑐𝑐� 𝑥𝑥𝑆𝑆′𝑗𝑗
𝑗𝑗∈𝑇𝑇

+ 𝑅𝑅𝑐𝑐� 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 (4.2) 

 

Subject to: 

� 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑇𝑇∪𝑆𝑆′

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (4.3) 

� 𝑥𝑥𝑗𝑗𝑗𝑗
𝑖𝑖∈𝑇𝑇∪𝑆𝑆′

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (4.4) 

� 𝑥𝑥𝑖𝑖𝑆𝑆′
𝑖𝑖∈𝑇𝑇

= � 𝑥𝑥𝑆𝑆′𝑗𝑗
𝑗𝑗∈𝑇𝑇

 (4.5) 

𝑦𝑦𝑂𝑂{𝑖𝑖} + 𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑀𝑀 × �1 − 𝑥𝑥𝑖𝑖𝑖𝑖� ≤ 𝑦𝑦𝑂𝑂{𝑗𝑗} ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 (4.6) 

𝐴𝐴𝑘𝑘 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 + 𝑛𝑛𝑛𝑛,𝑛𝑛 ∈ �0,
𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘

𝜆𝜆
�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (4.7) 

𝑦𝑦𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (4.8) 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 ∪ 𝑆𝑆′ (4.9) 

 

For multi-depot problems, we first introduce a virtual depot, and the objective is to 

minimize the total number of buses and the total deadhead duration only between trips. 

Similar to the MIP model presented in Chapter 3, we have two forms for the objective 

function here as well. The first one (4.1) is suitable for prioritizing minimizing the total 
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number of buses by using the very large coefficient 𝑀𝑀𝑏𝑏. The second one (4.2) is a cost 

function by adding the coefficient 𝑓𝑓𝑐𝑐 and 𝑅𝑅𝑐𝑐 for the “total number of buses” term and 

the “total deadhead duration between trips” term, respectively. It is used to minimize 

the total operation cost, including the bus cost and the deadhead travel per day. 

 

But if the problem is a single-depot problem, the virtual depot is set to be the only 

actual depot. Besides, instead of only minimizing the deadhead duration between trips, 

we change the second term of the objective function (Eq.4.1 or Eq.4.2) to 

∑ 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′  so that the total deadhead duration, including the deadhead between 

trips and the deadhead duration between trips and depots, is minimized. Therefore, we 

can directly get the final solution to the single-depot problems in the first-route route 

without going into the second-assignment phase. 

 

Constraints (4.3) ensure that each trip can only have one preceding trip. Constraint (4.4) 

ensure that each trip can only have one succeeding trip. Constraints (4.5) show the 

conservation of flow; that is, the total number of buses departing from the virtual depot 

should be equal to those arriving at the depot. Based on the minimum time interval 𝜆𝜆, 

which is set to be one minute in this study, the continuous time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘) 

is discretized into a set of discrete timestamps stored in 𝐴𝐴𝑘𝑘. And Constraints (4.7) show 

the elements in 𝐴𝐴𝑘𝑘. Constraints (4.6) are the trip compatibility constraints. They state 

that for every possible trip pair (𝑖𝑖, 𝑗𝑗), They can be served on the same bus only if the 

finish time of trip  𝑖𝑖  (i.e., its departure time 𝑦𝑦𝑂𝑂{𝑖𝑖} , plus its travel time 𝑡𝑡𝑡𝑡𝑖𝑖 ) plus the 

deadhead time from trip 𝑖𝑖 to trip 𝑗𝑗 (𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖) is less than or equal to the departure time of 
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the trip 𝑗𝑗 (𝑦𝑦𝑂𝑂{𝑗𝑗}). And each school 𝑘𝑘 can only dismiss at one of the discrete timestamps 

in 𝐴𝐴𝑘𝑘. Constraints (4.8)-(4.9) are domain constraints.  

 

The proposed MIP model can also solve the problems without the bell time 

optimization if the bell time for each school is known and fixed. The goal is to find the 

best bus schedule that minimizes the total number of buses and the deadhead duration 

between trips under the given school bell times. Therefore, we don’t need the decision 

variable 𝑦𝑦𝑘𝑘 and the constraints (4.7) and (4.8). For Constraints (4.6), the school bell 

times 𝑦𝑦𝑂𝑂{𝑖𝑖}  and 𝑦𝑦𝑂𝑂{𝑗𝑗}  should change to the given bell times of the schools to which Trip 

𝑖𝑖 and Trip 𝑗𝑗 belong, respectively. 

4.4.3 Model Formulation for Second-assignment Phase 

Objective 

Minimize � � 𝑐𝑐𝑏𝑏𝑏𝑏𝑧𝑧𝑏𝑏𝑏𝑏
𝑠𝑠∈𝑆𝑆𝑏𝑏∈𝐵𝐵

 (4.10) 

 

Subject to: 

� 𝑧𝑧𝑏𝑏𝑏𝑏
𝑠𝑠∈𝑆𝑆

= 1,∀𝑏𝑏 ∈ 𝐵𝐵 (4.11) 

� 𝑧𝑧𝑏𝑏𝑏𝑏
𝑏𝑏∈𝐵𝐵

≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠,∀𝑠𝑠 ∈ 𝑆𝑆 (4.12) 

𝑧𝑧𝑏𝑏𝑏𝑏 ∈ {0,1},∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆 (4.13) 
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The inputs for the second-assignment phase are the bus routes generated in the first-

route phase. Each bus route can only be assigned to one single bus. And the goal of this 

phase is to determine the best depot for each bus without violating depot capacities. 

 

The objective function of the second-assignment phase (4.10) minimizes the total 

deadhead time between trips and depots. For each bus route 𝑏𝑏, it is the sum of the 

deadhead duration from the first stop of the first trip on the bus route 𝑏𝑏 to the depot 𝑠𝑠 

and the deadhead duration from the depot 𝑠𝑠 to the last stop of the last trip on the bus 

route 𝑏𝑏. And Eq. 4.10 minimizes the deadhead duration for all the buses. Constraints 

(4.11) ensure that each bus can only be assigned to one depot. Constraints (4.12) are 

depot capacity constraints. Different buses can be assigned to the same depot, but the 

total number of buses assigned to the depot can’t exceed the depot’s maximum capacity. 

Constraints (4.13) are the domain constraints. 

 

After finishing both phases, we can have the complete solution (i.e., the bus schedule 

and the best bell time for each school). For multi-depot problems, the total number of 

buses can be found from the first-route phase. The total deadhead duration is the sum 

of the deadhead duration between trips (from the first phase) and the deadhead duration 

between trips and depots (from the second phase). For single-depot problems, we can 

directly get the complete solution after finishing the first-route phase. 
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4.5 Improved Two-Phase Heuristic Method 

The first-route phase is an SDSBSPTW. Due to its NP-hard nature, it may not be 

efficiently solved by the exact method when the problem size is relatively large or has 

a large bell time window. Since the final goal of the first-route phase is to find the best 

combination of school bell times such that the total number of buses and the deadhead 

duration between trips are minimized, some local search strategies can be applied to 

speed up the solution searching process. Therefore, we propose a hybrid heuristic 

method, namely, the Simulated Annealing-based Greedy Algorithm (SA-GDA) 

method, to replace the MIP model in the first-route phase for efficiently solving 

complicated SDSBSPTWs. Since the SA-GDA is designed for the single-depot 

problems, we still introduce a virtual depot for the multi-depot problems so that they 

can be converted into a single-depot problem in the first-route phase. We keep the 

assignment model in the second-assignment unchanged for determining the best depot 

for each bus route. Therefore, the SA-GDA method combined with the assignment 

model produces the improved two-phase heuristic method. 

 

The SA-GDA method can solve the multi-depot bus scheduling problems with or 

without bell time optimization and the single-depot bus scheduling problems with or 

without bell time optimization. For problems with bell time optimization, the simulated 

annealing algorithm tries out different school bell time plans. Under each fixed bell 

time plan, the proposed greedy algorithm is used to find the best bus schedule. For 

multi-depot problems with bell time optimization (i.e., MDSBSPTWs), the best bus 

schedule is the one that minimizes the total number of buses and the deadhead duration 
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between trips (Eq.4.1 or Eq.4.2). But for single-depot problems (i.e., SDSBSPTWs), 

there is only one depot in the system, and there is no need for doing the bus-depot 

assignment later. Therefore, the virtual depot is set to be the actual depot, and the total 

deadhead duration, including the deadhead duration between trips and the deadhead 

duration between trips and depots, is calculated. So, for SDSBSPTWs, the results from 

the SA-GDA method are the final solution. But for the MDSBSPTWs, the buses 

obtained from the SA-GDA method should be assigned to different depots to minimize 

the deadhead duration between trips and depots in the second phase. Then, the complete 

solution to the MDSBSPTWs is obtained. For both MDSBSPTWs and SDSBPTWs, 

after embedding the greedy algorithm into the simulated annealing algorithm 

framework, the overall SA-GDA method compares different bus schedules and returns 

the best one and its corresponding school bell time plan. 

 

For problems without the bell time optimization (i.e., MDSBSP or SDSBSP), the 

simulated annealing algorithm is not used as school bell times are given and fixed. Only 

the greedy algorithm is used in the first-route phase. For MDSBSPs, the greedy 

algorithm finds the best bus schedule that minimizes the total number of buses and the 

deadhead duration between trips under the given school bell times. We then pass the 

bus routes from the greedy algorithm to the assignment model in the second phase to 

get the deadhead duration between trips and depots to obtain the final solution. But for 

SDSBSPs, since there is only one depot, the virtual depot is set to be the only depot. 

Without doing the extra depot assignment, we can directly use the greedy algorithm to 

calculate the total deadhead duration, including the deadhead duration between trips 
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and the deadhead duration between trips and depots. Therefore, only using the greedy 

algorithm in the first-route phase can obtain the final solution that minimizes the total 

number of buses and the total deadhead duration for SDSBSPs. 

4.5.1 Greedy Algorithm 

The proposed Greedy Algorithm (GDA) is used to come up with the best bus schedule 

that minimizes the total number of buses and the deadhead duration between trips (Eq. 

4.1 or Eq. 4.2) for multi-depot problems. For single-depot problems, the goal is to 

minimize the total number of buses and the total deadhead duration. The flow chart of 

the proposed GDA method is shown in Figure 7. 

 

If the total number of unique bell times in the school bus system is 𝑁𝑁, we then divide 

the trips into 𝑁𝑁 different groups based on the bell time so that the trips in the same 

group 𝑔𝑔𝑛𝑛 (𝑛𝑛 = 1,⋯ ,𝑁𝑁)  have the same bell time. Those trip groups are saved in 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in ascending order of the bell time. Since the mixed load is not allowed, the 

trips in the same group can’t be served on the same bus. In other words, 𝑁𝑁 is the 

maximum length of a bus route. Figure 8 shows an example of an afternoon school bus 

scheduling problem. We have four schools but only have three unique dismissal times. 

Therefore, the total number of trips that each bus can serve cannot exceed three. For a 

random trip 𝑖𝑖, its bell time, which is 𝐷𝐷𝐷𝐷𝑖𝑖, is in the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝑖𝑖)𝑡𝑡ℎ position among all the 

bell times. Because the trip groups are ordered, the group to which trip 𝑖𝑖 belongs is 

𝑔𝑔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝑖𝑖). Besides, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 are used to store the used trips and the 

built routes, respectively. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is returned after the GDA is finished. 
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Figure 7. Flow chart of the proposed GDA method



53 
 

To minimize the total number of buses, we try to connect as many trips from different 

trip groups as possible on a single bus. And the earlier bell time the first trip has, the 

more trips the bus is more likely to serve. Therefore, after the bus 𝑤𝑤 leaving the depot, 

the first trip 𝑡𝑡1 it serves is first randomly chosen from the group 𝑔𝑔1 in which trips have 

the earliest bell time. Then, we check if any unused trips are compatible with trip 𝑡𝑡1. If 

not, it is a single-trip bus (e.g., Bus 1 in Figure 8). We return it and start a new bus 

route. As for the new route, if there are some unused trips in 𝑔𝑔1, the new bus route still 

first serves the trip from 𝑔𝑔1 (e.g., Bus 2 and Bus 3). If all the trips in 𝑔𝑔1 have been used 

and there are still trips unvisited, we start to build the bus route whose first trip is from 

the next trip group 𝑔𝑔2 and so on. For example, the first trip on Bus 4 is from the group 

𝑔𝑔2, while the first trip on Bus 5 is from the group 𝑔𝑔3. 

 

 
Figure 8. Example of the proposed GDA method 

 

If there are trips compatible with the first trip 𝑡𝑡1, we continue checking if any of those 

trips are in the next group 𝑔𝑔2. If yes, we choose the one (trip 𝑡𝑡2) which minimizes the 

deadhead duration 𝑑𝑑𝑑𝑑𝑡𝑡1,𝑡𝑡2. Otherwise, we move to the next group 𝑔𝑔3, do the same 
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check, and so on. By doing so, we connect more trips on a single bus and minimize the 

total deadhead duration. Once trip 𝑡𝑡2 is determined, we seek the succeeding trip of the 

trip 𝑡𝑡2 based on the same process. Once no more trips can be added to the bus route 𝑤𝑤, 

we return it and start a new bus route. The set 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and all the trip groups keep 

updating to ensure that each trip can only be visited once. The whole process is repeated 

until all the trips are visited. And the set 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, which includes all the constructed 

bus routes, is returned.  

 

The size of the set 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  is the final total number of buses. Then, the total 

deadhead duration between trips is calculated for the multi-depot problems. While the 

total deadhead duration, including the deadhead between trips and the deadhead 

between trips and depots, is calculated for the single-depot problems. We can combine 

the total number of buses and the total deadhead duration between trips (or the total 

deadhead duration) into one value 𝑍𝑍 based on Equation (4.1) or Equation (4.2) for 

solution comparisons. The solution with a smaller 𝑍𝑍 is better. 

4.5.2 Simulated Annealing Algorithm 

The Simulated Annealing (SA) Algorithm is an iterative improvement algorithm that 

imitates the annealing process in metallurgy (Kirkpatrick et al., 1983). Its strength is 

that it can jump out of the local minima by accepting solutions that are worse than the 

current solution with some probability. The original SA has been famous for its good 

performance in solving some combinatorial problems such as Vehicle Routing Problem 

(VRP), Travelling Salesman Problems (TSP), etc.  
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The temperature 𝑇𝑇 is the key parameter in the SA algorithm. The initial temperature 𝑇𝑇0 

is usually set to a very high value and is cooled down very slowly until reaching the 

frozen temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  according to a specific cooling schedule. At the initial 

temperature 𝑇𝑇0 an initial state is randomly selected, and the resulting initial solution is 

calculated. The state and the corresponding solution, take the TSP, for example, is a 

permutation of the cities to be visited and the corresponding total traveling cost. The 

neighboring states of the current state are the set of permutations produced based on 

operations like swapping or reversing.  

 

But the SA here is used to try out different bell time plans. Each state here refers to a 

bell time vector 𝐷𝐷𝐷𝐷0 = {𝑎𝑎𝑘𝑘|𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆}, where 𝑎𝑎𝑘𝑘 is a randomly selected bell time for 

school 𝑘𝑘 from the given bell time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘,𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘). The solution to each state 

(i.e., each bell time plan) is the bus schedule that minimizes the total number of buses 

and the total deadhead duration between trips (or the total deadhead duration for single-

depot problems) calculated based on the bell time vector 𝐷𝐷𝐷𝐷0 using the proposed GDA 

method. Given the current state, we can create multiple new bell time vectors. Each 

new bell time vector 𝐷𝐷𝐷𝐷 is called a neighboring state of the current state. For creating 

a new bell time vector 𝐷𝐷𝐷𝐷, each school randomly chooses a new bell time from the 

neighborhood of its current bell time. The neighborhood for each school is set to be 

within ±5 min of its current bell time in this study. If the resulting 𝐷𝐷𝐷𝐷 is infeasible 

(i.e., some schools’ new bell times violate the given bell time window), another random 

bell time vector will be generated until feasibility is satisfied. Under the new feasible 

bell time vector, the best bus schedule is also calculated using the GDA method. 
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Figure 9 shows an example of an afternoon school bus scheduling problem with 

dismissal time optimization.  There are three schools, and their original dismissal time 

(in minutes) are 800, 830, and 900, respectively. The earliest dismissal time 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 and 

the latest dismissal time 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 for each school are also given, which are ±30 min of the 

original dismissal time. If we generate a neighborhood dismissal time vector as 803, 

825, and 905, it is an acceptable neighborhood because (1) they all fall in the 

corresponding dismissal time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘) , and (2) each school has its 

dismissal time changed within ±5 min of the current dismissal time. However, if the 

neighborhood is generated as 806, 827, and 903, though they all fall in the given time 

window, it is not acceptable as the change that school A made is beyond 5 min. A new 

dismissal time vector must be generated until all requirements are satisfied. 

 

 
Figure 9. Examples of the neighboring bell time vectors of a given bell time vector 

 

A predetermined number of iterations are performed at each temperature of the SA 

algorithm to determine the current best solution. At each iteration, the algorithm 

randomly chooses one neighboring state (i.e., a new bell time plan) of the current state 

(i.e., the current bell time plan) to generate a new solution (i.e., the bus schedule under 
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the new bell time plan) based on the proposed GDA method. If the new solution is 

better than the current best solution, it replaces the current best solution. Otherwise, it 

is accepted with some probability. The temperature will decrease, and the same process 

will repeat at each temperature until the frozen temperature is reached. Then, the best 

school bus schedule and the associated school bell time plan are returned. 

4.5.3 Overall SA-GDA method 

Figure 10 shows the pseudo-code of the proposed SA-GDA method. It is built based 

on the framework of the SA algorithm. The GDA method is embedded into it to find 

the best bus schedule under each bell time plan created by the SA method. 

 

1 Initialize 𝑇𝑇0,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝛼𝛼,𝐾𝐾,𝑇𝑇 = 𝑇𝑇0, 𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  

2 Construct an initial bell time 𝐷𝐷𝐷𝐷0 

3 Calculate 𝑍𝑍0 based on the initial bell time 𝐷𝐷𝐷𝐷0 using the GDA method 

4 while 𝑇𝑇 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 

5         for 𝑖𝑖𝑖𝑖 = 0 to 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 

6              Generate a neighbor bell time D𝑇𝑇 

7              Calculate 𝑍𝑍 based on the bell time D𝑇𝑇 using the GDA method 

8              if 𝑍𝑍 < 𝑍𝑍0 

9                    𝑍𝑍0 = 𝑍𝑍 

10                    B𝑇𝑇0 = 𝐵𝐵𝐵𝐵 

11              else 

12                    Calculate probability 𝑝𝑝, 𝑝𝑝 = exp (𝑍𝑍0−𝑍𝑍
𝑇𝑇

) 

13                    if 𝑝𝑝 > 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[0, 1] 

14                          𝑍𝑍0 = 𝑍𝑍 

15                          𝐷𝐷𝑇𝑇0 = 𝐷𝐷𝐷𝐷 

16         𝑇𝑇 = 𝛼𝛼𝛼𝛼 
Figure 10. Pseudocode of SA-GDA method 
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We first initialize the initial temperature 𝑇𝑇0, the frozen temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, the constant 

𝐾𝐾 (𝐾𝐾 = 1  in this study. In nature, it is Boltzmann’s constant), and the maximum 

iterations 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  performed at each temperature. Based on previous studies and 

preliminary experiments, 𝑇𝑇0  is set such that a solution 20% worse than the initial 

solution has a 50% chance to be accepted and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is set such that a solution that is 

inferior by 1% relative to the current solution is accepted with a probability of 0.1% 

(Wei et al., 2018). The geometric cooling schedule (𝑡𝑡 = 𝑡𝑡 ∗ 𝛼𝛼) is chosen to decrease 

the temperature gradually, and the cooling rate 𝛼𝛼 is set to be 0.95. 

 

The SA algorithm starts with a random initial bell time vector 𝐷𝐷𝐷𝐷0 = {𝑎𝑎𝑘𝑘|𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆}, 

where 𝑎𝑎𝑘𝑘 is a randomly selected bell time for school 𝑘𝑘 from the given bell time window 

(𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘). The initial solution 𝑍𝑍0, which is the best initial bus schedule, is obtained 

by the proposed GDA method. Starting at the initial temperature 𝑇𝑇0, we conduct 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 

attempts and then decrease the temperature according to the geometric cooling schedule. 

At each attempt, we randomly generate a new bell time vector 𝐷𝐷𝐷𝐷 in a neighborhood 

of the current bell time vector. The neighborhood refers to being within ±5 min of the 

current bell time for each school. If the resulting 𝐷𝐷𝐷𝐷 is infeasible (i.e., the resulting bell 

time of some schools violates the given bell time window), another random bell time 

vector 𝐷𝐷𝐷𝐷 will be generated until feasibility is satisfied. Then, we compute the new 

solution 𝑍𝑍  based on 𝐷𝐷𝐷𝐷 . If 𝑍𝑍 < 𝑍𝑍0  the new solution is unconditionally accepted. 

Otherwise, the worse solution is accepted with the probability 𝑝𝑝 = exp ((𝑍𝑍0 − 𝑍𝑍) 𝑇𝑇⁄ ). 

The algorithm is terminated once the frozen temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is reached. And the best 

school bell time plan and its corresponding school bus schedule are returned. 
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For the single-depot problems, the result from the SA-GDA method is the final solution 

that minimizes the total number of buses and the total deadhead duration. But for the 

multi-depot problems, we still need to move on to the second-assignment phase to do 

the bus-depot assignment. The buses from the SA-GDA method are the input for the 

assignment model in the second-assignment phase. The output is the depot-bus 

assignment that minimizes the total deadhead duration between trips and depots. 

Combining the results from both phases gives us the final solution. 

 

4.6 Summary 

This chapter proposed a two-phase heuristic method, the first-route second-assignment 

heuristic, to solve the MDSBSPTWs. The first-route phase is an SDSBSPTW and is 

formulated as a mixed-integer programming model. The second-assignment phase is a 

bus assignment problem that assigns the buses to the depots and is formulated as an 

integer programming model. The developed mathematical models were presented with 

a detailed explanation of the objective function and constraints.  

 

Then, we proposed a Simulated Annealing-based Greedy Algorithm method (SA-GDA) 

to solve large size SDSBSPTWs efficiently in the first phase. The greedy algorithm, 

simulated annealing algorithm, and SA-GDA method were explained in detail. 

Combined with the second-assignment phase, we have the improved two-phase 

heuristic method. Both the two-phase heuristic method and the improved two-phase 

heuristic method can also solve SDSBSPTWs or the problems without the bell time 

optimization with some modifications.  
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Chapter 5: Tabu Search-based Ant Colony Optimization 

This Chapter presents a solution for the MDSBSPTWs without dividing the problem 

into different phases. It is the Tabu Search-based Ant Colony Optimization (TS-ACO) 

method. The TS-ACO method is under the Tabu Search framework, in which the Tabu 

Search (TS) method is used to examine different school bell time plans. Under each 

school bell time plan, the ACO method is used to find the best bus schedule that 

provides the minimum number of buses and total deadhead duration. 

 

5.1 Ant Colony Optimization 

Ant Colony Optimization (ACO) was first introduced by Dorigo and colleagues (1996). 

It is a population-based metaheuristic that efficiently uses probabilistic techniques to 

find approximate solutions to complex optimization problems. ACO mimics the 

foraging behavior of real ants for seeking the shortest path between their colony and 

the food. Ants start from the nest and initially explore the environment randomly. For 

ants that have found the food, they will deposit the chemicals called pheromone on the 

ground for guiding other ants in finding food. And ants are more likely to follow the 

paths with higher pheromone levels. It turns out that the ant that has discovered a 

shorter or more efficient path between the food source and nest can commute between 

the food source and nest more frequently than another that uses a longer route. This 

makes the shorter path has a higher pheromone level which is more attractive to the 

other ants. And as more ants use a path, the pheromone level of that path grows stronger. 
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Therefore, the solution (i.e., the path from the nest to the food source) can be gradually 

improved, and the shortest path can be identified eventually. 

 

For solving the MDSBSPs using ACO, we assume that there are several ants in the nest, 

and each ant represents a solution. A solution includes the bus routes that visit all the 

trips without violating the depot capacity constraints and the trip compatibility 

constraints. Because all the trips are visited, it is also called a complete tour of the ant. 

For building such a tour, we first transform the school bus scheduling problem into a 

Time-dependent Directed Scheduling Graph where each node is a trip, and the directed 

edges are the compatible trip pairs (Haghani and Banihashemi, 2002). This guarantees 

trip compatibility. In the constructed graph, the nodes (i.e., the bus trips) are the food 

sources, and each ant should visit all of them in its tour. As there is more than one 

depot in the MDSBSP, we consider the multiple depots as the nest’s different entrances 

(or exits), and ants can randomly choose a depot to start their journey.  

 

Since each node in the graph (i.e., each bus trip) should be visited exactly once without 

violating the trip compatibilities, the ant may need to build several routes to visit all the 

trips. The ant can randomly choose a depot to start for each route without violating the 

depot capacity constraints. Besides, it should start and end at the same depot. 

Determining the trips visited on each route is based on trip compatibility and the 

probability related to the pheromone level and visibility level. This will be introduced 

in detail in the following subsections. A complete tour for a two-depot seven-trip 

problem is shown in Figure 11. We assume the depot capacity for each depot is two. 
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Figure 11. An example of the ant's complete tour 

 

If we have 𝑛𝑛 trips and 𝑚𝑚 depots in a particular school bus system, we use numbers 1 to 

𝑛𝑛 to represent trips and 𝑛𝑛 + 1 to 𝑛𝑛 + 𝑚𝑚 to represent depots. In the example shown in 

Figure 11, the ant first chooses to start from Depot 1 (i.e., the first element of the first 

route, 8 − 7) and serves Trip 1, Trip 4, and Trip 6 in sequence without violating trip 

compatibility constraints. Since every trip can only be visited once, the succeeding trip 

𝑗𝑗 should be labeled as visited when the ant moves from Trip 𝑖𝑖 to Trip 𝑗𝑗 and should 

never be revisited. Once no more trips can be added to the route, the ant must return to 

the same depot where it starts, namely Depot 1. And the capacity of Depot 1 should 

decrease by one. Since each depot still has some capacity, the ant can randomly choose 

a depot to continue its journey. It starts from Depot 2 for its second route, covering 

another two trips. The capacity of Depot 2 should be updated to one. The final route 

starts and ends at Depot 1 and includes the remaining two trips. Overall, the ant needs 

three routes to visit all the trips. And the depot capacities are 0 and 1 at the end, 

respectively. Because we build the routes based on trip compatibility constraints, 

ensure that each trip can be only visited once, and keep updating depot capacity, the 

feasibility of the complete tour is guaranteed. After having the complete tour, the 

corresponding total deadhead duration is also calculated and saved.  
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It should be noticed that Figure 11 only illustrates one complete tour created by one 

ant. Since we assume multiple ants are in the nest, each ant will build such a tour. Their 

solutions will be compared, and the best one will be returned. The detailed process of 

the proposed ACO method is described in the following subsections. 

5.1.1 Initialization 

For using the proposed ACO method to solve the MDSBSPs, we should first initialize 

some parameters shown in Table 4. 

 
Table 4. Parameters of the ACO 

Parameter Description Value 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  Maximum number of iterations 100 

𝐴𝐴𝑛𝑛 Number of ants 20~30 

𝛼𝛼 The magnitude of the pheromone intensity 10 

𝛽𝛽 The magnitude of visibility 2 

𝜌𝜌 Evaporation rate of the pheromone 0.1 

 

We perform the ACO for at most 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 Iterations to gradually improve the solution. 

The algorithm may stop earlier if there is no significant improvement after a 

predetermined maximum number of iterations. Specifically, if the improvement is less 

than 1% after five consecutive iterations, the whole procedure of the proposed ACO 

will stop. A total number of 𝐴𝐴𝑛𝑛 ants are required to build their own complete tour at 

each iteration. The tour construction process can be broken down into a series of node-

to-node movements for each ant. Given the current node 𝑖𝑖, the next node 𝑗𝑗 is chosen 

based on some probability related to the pheromone intensities and the visibility 

intensities. The parameters 𝛼𝛼 and 𝛽𝛽 are the magnitudes for the pheromone intensities 

and the visibility intensities in the probability function, respectively. 
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We also consider pheromone evaporation in the proposed ACO. Based on the 

pheromone evaporation rate 𝜌𝜌 (0 < 𝜌𝜌 < 1), the pheromone intensities of each arc will 

evaporate gradually based on some rules described in subsection 5.1.4. It can help to 

reduce the probability of early convergence to a locally optimal solution. After a series 

of tests on the value of those parameters, we chose the final values that gave the best 

results and listed them in Table 4. 

5.1.2 Solution Construction 

A total number of 𝐴𝐴𝑛𝑛 ants are used to create ant solutions at each iteration. Each ant is 

required to build a complete tour (i.e., visit all the trips) without violating the depot 

capacity constraints and the trip compatibility constraints. For each ant 𝑘𝑘, Figure 12 

shows the solution construction process. 

 

For each ant 𝑘𝑘, the tour construction process can be broken down into a series of node-

to-node movements. It first starts from a randomly chosen depot 𝑠𝑠. Then, it determines 

the subsequent trips to visit. Generally, the visiting sequence of the trips on each route 

is determined based on the probability function given in Eq. 5.1, where 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘  (or 𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘 ) is 

the probability of the ant 𝑘𝑘 determining the next trip 𝑗𝑗 at the current trip 𝑖𝑖 (or depot 𝑠𝑠). 

Since all the bus routes are required to start and end at the same depot, we assume that 

the ant will directly return to its starting depot if no more trips can be added to the 

existing route. Therefore, we don’t calculate the pheromone intensity and the visibility 

level between the last trip 𝑖𝑖 of a route and the depot 𝑠𝑠, and the corresponding  𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 . 
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𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 = �
𝜏𝜏𝑖𝑖𝑖𝑖𝛼𝛼𝜂𝜂𝑖𝑖𝑖𝑖

𝛽𝛽

∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝛼𝛼𝜂𝜂𝑖𝑖𝑖𝑖
𝛽𝛽

𝑙𝑙∈𝑁𝑁𝑖𝑖
𝑘𝑘

0,

, 
 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖𝑘𝑘 

(5.1) 

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

where 𝜏𝜏𝑖𝑖𝑖𝑖  and 𝜂𝜂𝑖𝑖𝑖𝑖  are the pheromone intensity and visibility level of edge 𝑖𝑖𝑖𝑖 , 

respectively. If the ant is currently at the depot 𝑠𝑠, then 𝜏𝜏𝑠𝑠𝑠𝑠 and 𝜂𝜂𝑠𝑠𝑠𝑠  are the pheromone 

intensity and visibility level between the depot 𝑠𝑠 and the trip 𝑗𝑗. 𝑁𝑁𝑖𝑖𝑘𝑘 is the feasible set 

including ant 𝑘𝑘’s all the unvisited trips 𝑙𝑙 that are compatible with the current trip 𝑖𝑖. 

 

 
Figure 12. The solution generation process of each ant 
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We need to initialize all the edges’ pheromone intensities and visibility levels before 

the algorithm starts. The initial visibility levels are initialized differently for depot-trip 

pairs and trip-trip pairs. The initial visibility value 𝜂𝜂𝑖𝑖𝑖𝑖 between any two trips 𝑖𝑖 and 𝑗𝑗 is 

simpler, which is 𝜂𝜂𝑖𝑖𝑖𝑖 = 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

 where 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is deadhead duration between trip 𝑖𝑖 and trip 𝑗𝑗. 

It is used to represent travel desirability. The shorter the deadhead duration 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is, the 

more the ant is willing to choose the edge from trips 𝑖𝑖 to trip 𝑗𝑗.  

 

As for the initial visibility value 𝜂𝜂𝑠𝑠𝑠𝑠 between the depot 𝑠𝑠 and the trip 𝑖𝑖, it is calculated 

as 𝜂𝜂𝑠𝑠𝑠𝑠 = 1
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠

(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), where 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 is the deadhead duration between the depot 𝑠𝑠 and the trip 𝑖𝑖, and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the 

latest bell time of the given school bus system. One way to reduce the total number of 

routes is to make individual routes longer, allowing the ant to serve more trips in a 

single route. To achieve this, the bell time of the first trip 𝑖𝑖 on the route should be as 

early as possible. The additional term in the 𝜂𝜂𝑠𝑠𝑠𝑠  as compared to 𝜂𝜂𝑖𝑖𝑖𝑖 , namely 

(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), shows the sequence of 

trip 𝑖𝑖’s bell time in the whole system. If the bell time of trip 𝑖𝑖 is among the earliest ones, 

the value of (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) will be 

large, which will give us a high visibility value 𝜂𝜂𝑠𝑠𝑠𝑠. This makes trip 𝑖𝑖 more likely to be 

chosen as the first trip on a bus route. As a result, the corresponding bus route can 

connect more trips and help potentially reduce the total number of buses. 
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The initial values of the pheromone intensities can be set to be some constants (Jabir et 

al., 2017). Or they can be determined based on some heuristic methods (e.g., the nearest 

neighbor heuristic) to accelerate the convergence of the ACO (Gambardella et al., 

1999). We generate initial pheromone intensities for the proposed ACO using the 

Greedy Algorithm (GDA) proposed in Chapter 4. But the GDA is designed for solving 

the single-depot multi-school bus scheduling problems. It can only determine the 

connections among trips (i.e., the depot for each bus route is unknown). Therefore, we 

assign each bus to its nearest depot after obtaining the incomplete bus routes from the 

GDA method. Once the bus routes are fully determined, we calculate the total deadhead 

duration 𝑇𝑇𝑇𝑇, including the total dead duration between trips and the total deadhead 

duration between trips and depots. And then the initial pheromone intensity 𝜏𝜏𝑖𝑖𝑖𝑖 of edge 

𝑖𝑖𝑖𝑖 is calculated based on the formula 𝜏𝜏𝑖𝑖𝑖𝑖 = 1
𝑇𝑇𝑇𝑇

.  

 

However, 𝑇𝑇𝑇𝑇 is much larger than the deadhead between each pair of nodes 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 (or 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠), so the initial pheromone value 𝜏𝜏𝑖𝑖𝑖𝑖 (or 𝜏𝜏𝑠𝑠𝑠𝑠) will be much smaller than the initial 

visibility value  𝜂𝜂𝑖𝑖𝑖𝑖  (or 𝜂𝜂𝑠𝑠𝑠𝑠). Especially for the edges between depots and trips, after 

considering the difference between the bell time of the trip 𝑖𝑖 and the latest bell time in 

the system, the visibility value  𝜂𝜂𝑠𝑠𝑠𝑠 will be much larger than 𝜏𝜏𝑠𝑠𝑖𝑖. This will make the 

visibility value dominate the ant’s edge selection and make pheromone intensities 

useless. Therefore, we add a coefficient to the original formula for calculating the initial 

pheromone intensity 𝜏𝜏𝑖𝑖𝑖𝑖  (including 𝜏𝜏𝑠𝑠𝑠𝑠 ), which is 𝜏𝜏𝑖𝑖𝑖𝑖 = 1
𝑇𝑇𝑇𝑇
∗ 100 . By doing so, the 

initial pheromone value and the initial visibility value can have the same magnitude so 

that both terms can be effective for guiding the ants to find the shorter path. 
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Based on the initial pheromone intensities, initial visibility levels, and the 

corresponding magnitude 𝛼𝛼 and 𝛽𝛽, we can calculate the initial probability matrices 

between depot to trip (𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘 ) and trip to trip (𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 ). Then, ant 𝑘𝑘  can begin its tour 

construction. It will start from a randomly selected depot 𝑠𝑠 and then determine the first 

trip 𝑖𝑖 based on the probability 𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘 . Suppose a trip 𝑖𝑖 has an earlier bell time, a higher 

pheromone intensity between itself and the depot 𝑠𝑠, and a shorter deadhead duration 

between itself and depot 𝑠𝑠. In that case, it will be of higher probability to be chosen as 

the first trip of the ant’s first route due to a high probability 𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘 . After determining the 

first trip 𝑖𝑖, the ant 𝑘𝑘 starts its first route by moving from depot 𝑠𝑠 to trip 𝑖𝑖. The depot 𝑠𝑠’s 

capacity is reduced by one. On the first trip 𝑖𝑖, The ant searches for the next possible 

trip 𝑗𝑗 based on the probability 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 . This procedure continues until no more compatible 

trips can be added to the current route. Then, the ant returns to the starting depot 𝑠𝑠.  

 

After returning to the nest, the ant starts its second route from one of those depots that 

still have capacities. The depot capacity is updated, and the above process is repeated 

for finishing the second route. For building a complete tour that visits all the trips, the 

whole solution construction process of the ant 𝑘𝑘 is continued until all the trips are 

visited exactly once. When all the trips are visited, the algorithm computes the total 

number of bus routes and the corresponding total deadhead duration. 

 

For each iteration, a total number of 𝐴𝐴𝑛𝑛 ants build their own complete tour based on 

the above procedures. The one with the minimum objective (i.e., the minimum number 
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of buses and the total deadhead duration) in the current iteration is compared with the 

best solution so far. If there is any improvement, the best solution is updated and stored. 

Then, we start the next iteration. The procedure is repeated till the algorithm’s stopping 

rules are reached. Two stopping criteria are used in this algorithm: (1) the maximum 

number of iterations 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is reached, and (2) the maximum number of iterations 

with no significant improvement is reached. For (2), if the improvement is less than 1% 

after five consecutive iterations, the procedure will stop. 

5.1.3 Local Search Procedures 

After obtaining the current best solution from the ACO of each iteration, we 

sequentially apply three local search schemes to improve the solution. They include 

trip-shift, bus assignment, and trip-swap procedures. First, without considering the 

current bus-depot assignment, the trip-shift operation is conducted to mainly reduce the 

total number of buses. Second, the bus assignment scheme determines the best depot 

location for each bus route. At last, the trip swap operator mainly reduces the deadhead 

duration within the bus routes belonging to each depot. The details of those local search 

procedures are shown below. 

(1) Trip-shift procedure 

The trip shift operator is mainly used to reduce the number of bus routes. For using it, 

we need to first ignore the current depot assignment plan from the ACO and only focus 

on the trip connections on the bus routes. To be specific, we randomly choose two bus 

routes (𝑟𝑟1 and 𝑟𝑟2) every time. A total number of 𝑢𝑢 trips (in this study, 𝑢𝑢 is set to 1) is 

removed from the route 𝑟𝑟1 and is inserted into the route 𝑟𝑟2 without violating the trip 

compatibilities. There are three main possible outcomes: 
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• Case I: One new route 𝑟𝑟1′ or 𝑟𝑟2′, regardless of the changes in total deadhead 

duration (the total deadhead duration can be increased or decreased). 

 

 
Figure 13. Output case I after the trip-shift operation 

 

An example of Case I is shown in Figure 13. We first randomly choose two routes. 

Those two routes serve one trip and two trips, respectively. During the trip-shift 

operation, Trip 𝑡𝑡1 from the first route is chosen. Luckily, it is compatible with Trip 𝑡𝑡2 

and Trip 𝑡𝑡3  on the second route. Therefore, it is removed from the first route and 

inserted into the second route. This eliminates the first route while making the second 

route longer. The new route is saved, and the original two routes are deleted. We don’t 

care about the changes in the deadhead duration here because the main goal of the trip-

shift operation is to reduce the total number of buses. 

 

• Case II: Two new routes 𝑟𝑟1′ and 𝑟𝑟2′, and the total deadhead duration of those two 

new routes is less than that of the original two routes. 

An example of Case II is shown in Figure 14. Two routes are randomly chosen at first. 

The deadhead duration between trips for each of those two routes is 20 minutes and 25 
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minutes, respectively. Trip 𝑡𝑡5  from the second route is chosen during the trip-shift 

operation. Since Trip 𝑡𝑡5 is compatible with Trip 𝑡𝑡2 on the first route, we remove it from 

the second route and insert it into the first route. After the trip-shift operation, the total 

number of buses is still two. The deadhead duration between trips for the two new 

routes is 27 minutes and 15 minutes, respectively. And the total deadhead duration 

between trips of those two new routes is 42 minutes which is smaller than the original 

two routes (i.e., 45 minutes). Therefore, we accept the two new routes and save them 

while deleting the original two routes. 

 

 
Figure 14. Output case II after the trip-shift operation 

 

• Case III: Two new routes 𝑟𝑟1′ and 𝑟𝑟2′, and the total deadhead duration of those 

two new routes is larger than that of the original two routes. 

Based on the same example of Case II, if the deadhead duration between trips for the 

two new routes is 27 minutes and 20 minutes, respectively (Figure 15). Then, the total 

deadhead duration between trips of those two new routes is 47 minutes which is larger 

than the original two routes (i.e., 45 minutes). In this study, if the total deadhead 
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duration is slightly larger than the original deadhead duration (the difference is set to 

be 5~10 min in this study), we still accept the two new routes. Otherwise, we should 

reject the two new routes and keep the original two routes unchanged. 

 

 
Figure 15. Output case III after the trip-shift operation 

 

As a result, since we are interested in searching for better solutions, if the total number 

of routes is reduced (i.e., Case I), we accept the new route (𝑟𝑟1′ or 𝑟𝑟2′) regardless of the 

deadhead duration of the new route. For Case II, though the total number of routes is 

unchanged, the total deadhead duration is reduced. We also accept the new routes. 

However, for case III, the new solution after the trip shift operation is worse than the 

original one. We will accept it only if the total deadhead duration is slightly larger than 

the original deadhead duration (the difference is set to be 5~10 min). We accept this 

“bad” move for potentially reducing the buses later. An example is shown in Figure 16. 

Otherwise, the resulting inferior solution is discarded. 

As shown in Figure 16, three routes were generated after the ACO method. The 

deadhead duration between trips for those routes is 15 minutes, 10 minutes, and 9 
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minutes, respectively. First, the first and the second routes are chosen for the trip-shift 

operation. Trip 𝑡𝑡2 from the first route is chosen. Since it is compatible with Trip 𝑡𝑡4 on 

the second route, Trip 𝑡𝑡2 is removed from the first route and is inserted into the second 

route. There are still three routes after the first trip-shift operation. However, the total 

deadhead duration between trips of the three new routes is 37 minutes, slightly larger 

than the original three routes (i.e., 34 minutes). We still accept the three new routes 

since the difference is only three minutes (less than 5 minutes).  

 

 

Figure 16. Another example for output case III after the trip-shift operation 
 

Then, we start the second trip-shift operation in which the first and the third routes are 

chosen. Those two routes are both single-trip bus routes and are likely to be combined 

into one bus route. It turns out that Trip 𝑡𝑡5 can be inserted into the first route, hence 

eliminating the third route. We can save one bus after conducting the trip-shift 

operation twice. Though the solution after the first trip-shift operation is slightly worse 

than the original one, it helps reduce the total number of buses in the later trip-shift 

operations. This example shows the benefit of accepting slightly worse solutions. 
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The trip-shift operation is conducted for multiple iterations until no significant 

improvement is achieved or the predetermined maximum number of iterations is 

reached. After that, we will move forward to the next bus assignment step. 

(2) Bus assignment procedure 

After the trip-shift procedure, we will determine the best depot from which each bus 

route should start. It is based on the same integer programming formulation we 

proposed in section 4.4.3 in Chapter 4. The goal is to determine the best bus-depot 

assignment, which minimizes the total deadhead duration between trips and depots for 

all the bus routes. For each bus route, the deadhead duration between trips and depots 

is the sum of the deadhead duration from the depot to the first trip on the route and the 

deadhead duration from the last trip on the route to the depot. The constraints guarantee 

that each bus can only be assigned to one depot without violating the depot capacities. 

If the original problem is a single-depot problem, we skip this step. 

(3) Trip-swap procedure 

After determining the starting depot for each bus route, the trip-swap operation is used 

to reduce the total deadhead duration. The trip-swap operator used in this study is 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1). For the bus routes that start from the same depot, we randomly choose two 

bus routes (𝑟𝑟1 and 𝑟𝑟2). Take the example of Depot 1 in Figure 17, for example. We 

randomly select one trip (i.e., 𝑡𝑡2) from route 𝑟𝑟1 and one trip (i.e., 𝑡𝑡5) from route 𝑟𝑟2. If 

those two trips have the same bell times, trip 𝑡𝑡2 is swapped with trip 𝑡𝑡5, that is, trip 𝑡𝑡2 

is removed from the route 𝑟𝑟1 and inserted into the route 𝑟𝑟2 at the position of trip 𝑡𝑡5, 

while trip 𝑡𝑡5 is removed from the route 𝑟𝑟2 and inserted into the route 𝑟𝑟1 at the position 
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of trip 𝑡𝑡2 . But if trip 𝑡𝑡2  and trip 𝑡𝑡5  have different bell times, the trips can still be 

swapped if the trip compatibilities are maintained for both bus routes after the swapping. 

Otherwise, a new trip-swap operation should be conducted until both new routes are 

feasible. The total deadhead duration of the new two routes is 28 minutes which is less 

than that of the original two routes (i.e., 40 minutes). So, we accept those two new 

routes. Otherwise, we keep the original routes. 

 

 

Figure 17. Example of the trip-swap operation 
 

We conduct the trip-swap operation on its bus routes for multiple iterations for each 

depot until no significant improvement is achieved or the predetermined maximum 

number of iterations is reached. After the trip-swap operation, the best route plan will 

be returned and will be used to update pheromones. 

5.1.4 Pheromone Update 

The global pheromone evaporation is conducted for all edges to avoid a too rapid 

convergence of the proposed ACO. Besides, we will also increase the pheromone 

intensities for those edges included in the best solution after the local search 
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improvements. Given the best solution, the pheromone intensity on edge (𝑖𝑖, 𝑗𝑗) at the 

current iteration 𝑡𝑡 and the pheromone evaporation rate 𝜌𝜌, the pheromone intensity on 

edge (𝑖𝑖, 𝑗𝑗) for the next iteration 𝑡𝑡 + 1 is carried out using Eq. (5.2). 

𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡+1 = �
(1 − 𝜌𝜌) ∗ 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 +

1
𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

(1 − 𝜌𝜌) ∗ 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 ,
, 

 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 
(5.2) 

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

where 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the total deadhead duration of the best solution we found at the current 

iteration 𝑡𝑡, 𝜌𝜌 is the evaporation rate, and 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡  and 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡+1 are the pheromone intensity on 

edge (𝑖𝑖, 𝑗𝑗) at the current iteration 𝑡𝑡 and the next iteration 𝑡𝑡 + 1. 

 

The pheromone evaporates on all edges based on the evaporation rate, and (1 − 𝜌𝜌) ∗

𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡  is the remaining amount of pheromone after evaporation. For those edges included 

in the best solution, the pheromone intensities are increased by an additional amount 

1
𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

. Those edges have higher pheromone levels and will be more attractive to the 

ants in the next iteration, which helps accelerate the whole searching process. 

5.1.5 Overall ACO Method 

The overall ACO method is summarized in Figure 18. 
 
 
 
 
Pseudocode of the overall ACO algorithm 
Begin 

Initialize 
• Collected input data (bus trips, current school bell time) 
• Algorithm parameters (𝐴𝐴𝑛𝑛, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ,𝛼𝛼,𝛽𝛽,𝜌𝜌) 
• Pheromone trail matrix, 𝜏𝜏 
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• Visibility matrix, 𝜂𝜂 
While (Stopping criteria on iterations) 

For ants, from 1 to 𝐴𝐴𝑛𝑛 
• Build a complete tour 

While the number of unvisited trips > 0 do 
Randomly select a depot // check depot capacity 
Probability-based customer selection // related to pheromone 
trails and visibility levels 
Build bus routes // check trip compatibility 

End while 
• Compute the objective function value, 𝑆𝑆(𝐴𝐴𝐴𝐴𝐴𝐴) 
• Compare and store the best solution, 𝑆𝑆∗(𝐴𝐴𝐴𝐴𝐴𝐴) 

End For 
// applied local search 
While (termination conditions) 

• Do the trip shift // reduce the total number of buses 
• Do the bus assignment // find the best depot assignment; skip this 

step if it is a single-depot problem 
• Do the trip swap(1,1) within each depot // reduce the total 

deadhead duration 
• Compare and store the best solution 𝑆𝑆∗(𝐴𝐴𝐴𝐴𝐴𝐴_𝐿𝐿𝐿𝐿) 

End while 
• Pheromone trials update using the best solution (including pheromone 

evaporation) 
End while 

End 
Figure 18. Pseudocode of the proposed ACO algorithm 

 

The overall ACO includes initialization, solution construction by the ants, three local 

search procedures for improving the solution, and the pheromone update procedure. 

The output is the best schedule that minimizes the total number of buses and the total 

deadhead duration under a fixed bell time plan. If the original problem is without the 
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bell time optimization, the proposed ACO can provide the final solution to the problem. 

Otherwise, we need to use the tabu search method to find the best bell time plan.  

 

5.2 Tabu Search Method 

The ACO method is used to find the best bus schedule, which minimizes the total 

number of buses and the total deadhead duration under each fixed bell time plan. When 

it comes to bell time optimization, the ACO should be embedded into some local search 

method to find the best combination of bell times. The simulated annealing algorithm 

presented in Chapter 4 could be one option. It accepts non-improving moves with some 

probability to escape from the local minima, but it may revisit a solution, fall back to a 

previous local optimum, or even cycle, which is a waste of time and resources. 

Therefore, we use the Tabu Search (TS) method to avoid revisiting a solution or cycling. 

The tabu search method is an iterative, memory-based neighborhood-search method 

(Glover et al., 1993). Like the simulated annealing algorithm, the tabu search method 

iteratively searches for a better solution. It also utilizes the tabu list data structure to 

forbid or penalize certain moves that would return to a recently visited solution, making 

it more efficient than other local search procedures. The tabu search method used in 

this study is described below in detail. 

5.2.1 Initial Solution 

The proposed tabu search method is used to find the best combination of school bell 

times. It starts from a random initial bell time vector 𝐷𝐷𝐷𝐷0 = {𝑎𝑎𝑘𝑘|𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆}, where 𝑎𝑎𝑘𝑘 

is a randomly selected bell time for school 𝑘𝑘  from the given bell time window 
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(𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘). Then, the initial solution 𝑍𝑍0 is calculated based on 𝐷𝐷𝐷𝐷0 using ACO. It 

is the best bus schedule that minimizes the total number of buses and the total deadhead 

duration given the initial bell time 𝐷𝐷𝐷𝐷0 using ACO. Besides, the 𝑍𝑍0 and 𝐷𝐷𝐷𝐷0 are set to 

be the current best solution 𝑍𝑍∗ and 𝐷𝐷𝐷𝐷∗. 

5.2.2 Neighborhoods 

The neighborhood of the current bell time is defined as a new bell time in which only 

a certain number of schools are allowed to change their bell times within a specific 

range. We construct 𝑛𝑛 new bell times based on the current bell time. Specifically, for 

building each new bell time, we randomly choose 𝑚𝑚 schools and only allow those 

schools to change their bell times in a neighborhood of their current bell times. The 

neighborhood refers to being within ±5 min of the current bell time for each school. 

Each bell time change is called a move. Suppose the resulting bell time is infeasible 

(i.e., the resulting bell time of some schools violates the given bell time window); in 

that case, another random bell time will be generated until feasibility is satisfied. We 

calculate the corresponding 𝑍𝑍 using ACO for each new feasible bell time 𝐷𝐷𝐷𝐷. 

5.2.3 Tabu List 

The tabu list 𝑇𝑇𝑇𝑇 is used to avoid re-visiting of recent neighborhoods. It records the 

latest moves and is updated dynamically as the search proceeds. If a move is already in 

the tabu list, it is not allowed until it reaches a termination point. Specifically, the tabu 

list 𝑇𝑇𝑇𝑇 is initialized as an empty list with a fixed length before TS starts. As the search 

proceeds, at each iteration, we create 𝑛𝑛 new bell times based on the current bell time. 

For each new bell time 𝐷𝐷𝐷𝐷, we calculate its corresponding 𝑍𝑍 using ACO. We then 
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choose the best 𝑍𝑍� among them and compare it with the current best solution 𝑍𝑍∗. If 𝑍𝑍� <

𝑍𝑍∗, the new solution 𝑍𝑍� and its corresponding bell time plan 𝐷𝐷𝐷𝐷�  are kept as the best 

solution. For the bell time 𝐷𝐷𝐷𝐷� , we know which schools have their bell time changed. 

Those schools are added to the list for preventing cycling. As new moves enter the list, 

the list’s size might exceed the predetermined length. If that happens, according to the 

First-In-First-Out rule, we delete the schools added at the earliest time. 

5.2.4 Aspiration Criterion 

The aspiration criterion is employed to override the tabu status. The schools in the tabu 

list change their bell times until they reach an expiration point. Only if the tabu list 

exceeds the predetermined size can the elements added at the earliest be deleted. In this 

study, we use the most intuitive aspiration rule to relax the tabu restrictions of some 

elements in the tabu list. If the aspiration criterion is met, those elements can be 

removed from the tabu list and used to provide better solutions. Specifically, if some 

schools in the tabu list happen to contribute to a better solution than the current best-

known solution, we revoke the tabu status of those schools. Therefore, those otherwise-

excluded schools can be used to produce a better solution. 

5.2.5 Stopping Rules 

The whole search process of the TS method is terminated once the maximum number 

of iterations is reached or no significant improvement is achieved after a certain number 

of consecutive iterations. Then, the best school bell time plan 𝐷𝐷𝐷𝐷∗  and its 

corresponding school bus schedule 𝑍𝑍∗ are returned. 
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5.3 Overall TS-ACO Method 

We combined the tabu search method and the proposed ACO algorithm for solving the 

MDSBSPTWs. The overall proposed TS-ACO method is shown in Figure 19.  

 

The tabu search method is used to examine different school bell time plans. Under each 

bell time plan, the ACO is used to find the best bus schedule that minimizes the total 

number of buses and the total deadhead duration. The proposed TS-ACO method can 

be used to solve SDSBSPTWs as well. If it is a single-depot problem, we simply skip 

the bus assignment procedure in the ACO while keeping other steps unchanged.  
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Figure 19. Flow chart of the proposed TS-ACO method 
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5.4 Summary 

This chapter introduced the Tabu Search-based Ant Colony Optimization (TS-ACO) 

method for solving the MDSBSPTW (or SDSBSPTW) without dividing the problem 

into different phases. The TS method is used to examine different bell time plans. The 

ACO is embedded into it to find the best bus schedule that minimizes the total number 

of buses and the total deadhead duration under each fixed bell time plan. First, the ACO 

was described, including the initialization, solution construction by the ants, three local 

search procedures for improving the solution, and the pheromone update procedure. 

Then, the TS method was presented, including the initialization, neighborhood 

construction, tabu list settings, and aspiration criteria. 
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Chapter 6: Test Problems 

In this chapter, five groups of test problems constituting a total of fourteen test 

problems with different characteristics are used to examine the performance of the 

proposed four methods, namely the mixed-integer programming model, the two-phase 

heuristic method, the improved two-phase heuristic method, and the TS-ACO method. 

All the test problems consider the school bus scheduling problem in the PM, that is, to 

find the best dismissal time plan and the optimal bus schedule to transport students 

from school back home. They all are derived from real-world data collected from a 

public school system in Maryland. The results of solving these test problems using the 

exact and the heuristic approaches are presented and analyzed. 

 

6.1 Data Description 

The real-world data was collected from a public school system in Maryland. There are, 

in total, 55 schools and 678 trips to serve all schools. Fifty-five schools consist of 31 

elementary schools (ESs), 13 middle schools (MSs), and 11 high schools (HSs). The 

school district wants to find the optimal bus schedules to transport students from 

schools to their designated bus stops and optimize school dismissal time. The current 

dismissal times for all schools are provided. And they are 15:30, 15:00, and 14:15 for 

all ES, MS, and HS, respectively. For each bus trip, its fixed travel duration and the 

locations of its first stop and last stop (i.e., longitudes and latitudes) are given. All the 

trips belonging to the same school depart at the same time. All school buses are parked 

at 28 different depots, as shown in Figure 20. 
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Figure 20. The layout of the depot locations 

 

We call this a PM problem, and the goal is to find the optimal bus routes (from school 

to bus stops) and optimize school dismissal time. While the objective of an AM 

problem is to find the optimal bus routes (from bus stops to schools) and optimize 

school bell time. If school bell times are provided, we can use one of the proposed 

methods to solve the AM problem and get the corresponding bus schedule. As for the 

bell time optimization, if we assume that the school duration is fixed, the AM bell time 

can be easily obtained by subtracting the school duration from the calculated PM 

dismissal time. If the problem is an AM problem and the bell time is optimized, the PM 

dismissal time can be obtained by adding the school duration to the AM bell time. 

 

Five test problem groups, including fourteen test problems, were derived from the 

collected real-world data. Table 5 shows the detailed configurations of the school, trip, 

depot, and school dismissal time window for each test problem. Each test group 

contains trips from all types of schools. Inside each test group, three cases are 
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considered: (1) the problem without the dismissal time optimization; (2) the problem 

with a small dismissal time window; (3) the problem with a larger dismissal time 

window. Take Case #2; for example, for each school, its dismissal time after 

optimization should be no earlier than 30 minutes before its original dismissal time and 

no later than 30 minutes after its original dismissal time. The school dismissal times 

after optimization are allowed to be before the current school dismissal times. If that 

happens, the starting time of those schools will be changed accordingly (i.e., starting 

earlier than before). Overall, across different test groups, different school dismissal 

time windows and number of depots are set to examine the models’ performance. The 

last group considers the entire collected real-world data. 
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Table 5. Configurations of test problems 

 No. of Schools No. of Trips No. of Depots Depot Capacity* School Dismissal Time Windows** 

Group1 

Case #1 13 94 1 - - 
Case #2 13 94 1 - [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚] 

Case #3 13 94 1 - [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚] 

Group2 

Case #4 13 55 3 15 - 
Case #5 13 55 3 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚] 

Case #6 13 55 3 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚] 

Group3 

Case #7 21 129 7 15 - 
Case #8 21 129 7 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚] 

Case #9 21 129 7 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚] 

Group4 

Case #10 45 306 8 25 - 
Case #11 45 306 8 25 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚] 

Case #12 45 306 8 25 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚] 

Group5 
Case #13 55 678 28 25 - 
Case #14 55 678 28 20 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚] 

Note: “*”: “-” in depot capacity: unconstrained depot capacity; “**”: “-” in school dismissal time windows: without dismissal time optimization; ODT: original 

dismissal time of School 𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆. 
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All the test problems consider the school bus scheduling problem in the PM, that is, to 

find the optimal bus schedules to transport students from schools to their designated 

bus stops. Therefore, the school bell time optimization is actually school dismissal time 

optimization. For those cases with dismissal time optimization, we try to find the best 

dismissal time for each school within the given time window.  

 

 
Figure 21. Depot used in Case #1 to Case #3 

 

Case #1 to Case #3 can be grouped together. They are the special cases of the MDSBSP 

by reducing the total number of depots to one. For these three cases, the input data 

comes from the small region in the middle part of the whole area, which includes a total 

of 94 trips that belong to 13 different schools (i.e., seven ESs, three MSs, and three 

HSs) and a depot highlighted with the red circle as shown in Figure 21. As for the 

school dismissal time windows, Case #1 is the single-depot multi-school bus 

scheduling problem without school dismissal time optimization. Case #2 and Case #3 
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are the single-depot multi-school bus scheduling problem with school dismissal time 

optimization. The time window in Case #2 is smaller than that in Case #3. 

 

 
Figure 22. Depots used in Case #4 to Case #6 

 

Case #4 to Case #6 can be grouped together as well. The trips are derived from the 

region in the northeast part of the whole area, as shown in Figure 22. A total of 55 trips 

that belong to 13 different schools (i.e., seven ESs, three MSs, and three HSs) are used 

as the input data for these three cases. Three depots, namely, Depot 1, Depot 10, and 

Depot 13, are used and are highlighted with the red triangle in Figure 22. As for the 

dismissal time optimization, Case #4 is the MDSBSP, but Case #5 and Case #6 are the 

MDSBSPTW. The time window in Case #5 is smaller than that in Case #6. 

 

Case #7 to Case #9 is a larger size MDSBSP derived from the region in the southwest 

of the whole area, as shown in Figure 23. It has more trips, schools, and depots. To be 

specific, a total of 129 trips which belong to 21 different schools (i.e., nine ESs, six 
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MSs, and six HSs) and a total of seven depots (i.e., Depot 3, Depot 6, Depot 7, Depot 

12, Depot 14, Depot 17, and Depot 21) are used in this test group. As for the dismissal 

time optimization, Case #7 is the MDSBSP, but Case #8 and Case #9 are the 

MDSBSPTW. The time window in Case #8 is smaller than that in Case #9. 

 

 
Figure 23. Depots used in Case #7 to Case #9 

 

Case #10 to Case #12 is also a large size MDSBSP. It is derived from the region in the 

northeast of the whole area, as shown in Figure 24. It has a total number of 306 trips 

which belongs to 45 different schools (i.e., 25 ESs, 11 MSs, and 9 HSs) and a total of 

eight depots (i.e., Depot 1, Depot 2, Depot 10, Depot 13, Depot 20, Depot 23, Depot 

24, and Depot 27) are used in this test group. As for the dismissal time optimization, 

Case #10 is the MDSBSP, but Case 11 and Case #12 are the MDSBSPTW. The time 

window in Case #11 is smaller than that in Case 12. 
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Figure 24. Depots used in Case #10 to Case #12 

 

Case #13 and Case #14 use the entire collected data, including 678 trips from 55 schools 

(i.e., 31 ESs, 13 MSs, and 11 HSs) and 28 depots shown in Figure 20. Case #13 is an 

MDSBSP, while Case #14 is an MDSBSPTW. After optimization, each school's 

dismissal time should be no earlier than 30 minutes before its original dismissal time 

and no later than 30 minutes after its original dismissal time. 

 

For each test problem, the MIP model, the two-phase heuristic method, and the second-

assignment phase of the improved heuristic method are solved by the Gurobi solver in 

Python. The model running time limit is set to be 10 hours (36,000 seconds) for Case 

#1 to Case #12. And it is set to be 50 hours (180,000 seconds) for the largest-size test 

problems (i.e., Case #13 and Case #14). We run each model 10~20 times for each test 

problem for all proposed heuristic methods. The best solution and the average model 

running time are reported for each test problem. The code is written in Python 3.8 on a 

computer with Intel® Core™ i5-10600K processor, 4.10GHz with 8GB RAM. 
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6.2 Results of the MIP Model 

The results of all the test problems based on the MIP model presented in Chapter 3 are 

shown in Table 6. Under the name of each test problem shows the configuration of the 

test problem: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.  𝑁𝑁𝑁𝑁𝑁𝑁  means the test problem is 

without the bell time optimization. 30 𝑚𝑚𝑚𝑚𝑚𝑚  or 40 𝑚𝑚𝑚𝑚𝑚𝑚  means the test problem 

considers the dismissal time optimization, and the dismissal time after optimization for 

each school should be no earlier than 30 min (or 40 min) before its original dismissal 

time and no later than 30 min (or 40 min) after its original dismissal time. 

 

Cases #1 to # 3 are the special cases of the MDSBSPs, that is, the SDSBSPs. By looking 

at the model running time, Case #1 used much less time to reach optimality than Case 

#2 and Case #3. Case #4 to #12 are all MDSBSPs belonging to three different test 

groups. Generally, all the test problems without dismissal time optimization can be 

solved to optimality regarding the size of depots, trips, and schools. However, after 

adding the dismissal time window constraints, small problems with a small school 

dismissal time window (e.g., Case #4) can still reach optimality. As the problem size 

(i.e., number of trips and schools) and dismissal time window get larger, it is harder to 

solve the problems to optimality after reaching the model running time limit. Instead, 

the MIP model provides unreasonable solutions with huge optimal gaps (e.g., Case #9 

and #11) or even fails to find a feasible solution (i.e., Case #12).  
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Table 6. Results of all the test problems based on the MIP model 

 RT Optimal Gap TOB TD 

Case #1 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝑵𝑵𝑵𝑵𝑵𝑵 0.87 0.00% 60 1,458 

Case #2 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 11,069.35 0.01% 31 1,174 

Case #3 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 36,000 10.34% 29 1,094 

Case #4 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝑵𝑵𝑵𝑵𝑵𝑵 0.46 0.00% 36 778 

Case #5 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000 9.15% 19 615 

Case #6 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000 42.09% 19 576 

Case #7 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝑵𝑵𝑵𝑵𝑵𝑵 21.86 0.00% 81 1,374 

Case #8 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000 57.13% 49 1,501 

Case #9 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000 98.12% 54 2,269 

Case #10 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝑵𝑵𝑵𝑵𝑵𝑵 603.15 0.00% 179 5,495 

Case #11 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000 87.026% 156 6,917 

Case #12 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 - - - - 

Case #13 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 48,704 0.00% 412 6,585 

Case #14 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 - - - - 

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips 

and between trips and depots (min). 

 

Cases #13 and #14 are the largest test problems created based on the entire collected 

data, including 678 trips from 55 schools and 28 depots. Case #13, an MDSBSP, can 

still be solved optimally. But the model running time (i.e., 48,704 sec) is much longer 

than that of all the other smaller MDSBSPs. However, for Case #14, an MDSBSPTW, 

Gurobi fails to find a feasible solution after reaching the model running time limit. 
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In summary, all the test problems without the dismissal time optimization (Case #1, 

Case #4, Case #7, Case #10, and Case #13) can be solved to optimality based on the 

proposed MIP model. The larger the problem is, the more computational time is needed 

to reach optimality. Only one test problem (Case #2), an SDSBSPTW, was solved to 

optimality when considering the test problems with the dismissal time optimization. 

For the others, the optimal gap increases as the problem size (i.e., more trips or more 

schools) and the dismissal time window increase. The MIP may end up with some 

unreasonable solution with a huge optimal gap (e.g., Case #9 and Case #11) or even 

fail to find a feasible solution (i.e., Case #12 and Case #14) after reaching the model 

running time limit. Results indicate that Gurobi is not the best option for solving 

relatively large size problems with dismissal time window constraints. 

 

6.3 Results of the Two-phase Heuristic Method 

We used the two-phase heuristic method for solving all the test problems. The results 

for each phase of each test problem are shown in Table 7. Notice that Cases #1 to #3 

are the single-depot problems, so their final solutions (i.e., the total number of buses 

and the total deadhead duration) can be directly derived from the first-route phase 

without going further into the second-assignment phase. For these three cases, the 

virtual depot in the first phase is set to be the actual depot. The total deadhead duration, 

which consists of the deadhead duration between trips and deadhead duration between 

trips and depots, is then calculated. For all other multi-depot test problems, the results 

for each phase are listed in detail, including the model running time, the optimal gap 

from the Gurobi solver, the total number of buses (from the first-route phase), the total 
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deadhead duration between trips (from the first-route phase), and the total deadhead 

duration between trips and depots (from the second-assignment phase). 

 

Table 7. Results of each phase of all the test problems based on the two-phase heuristic method 

Case #1 

First-route Phase 

RT Optimal Gap TOB TD 

0.79 0.00% 60 1,458 

Case #2 

First-route Phase 

RT Optimal Gap TOB TD 

36,000 2.14% 31 1,174 

Case #3 

First-route Phase 

RT Optimal Gap TOB TD 

36,000 25.09% 29 1,090 

Case #4 

First-route Phase 

RT Optimal Gap TOB TDT 

0.24 0.00% 36 110 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.01 0.00% 682 

Case #5 

First-route Phase 

RT Optimal Gap TOB TDT 

15,740.12 0.01% 19 307 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.02 0.00% 316 

Case #6 

First-route Phase 

RT Optimal Gap TOB TDT 

36,000 26.26% 19 261 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.01 0.00% 312 

Case #7 

First-route Phase 

RT Optimal Gap TOB TDT 

2.72 0.00% 81 251 

Second-assignment Phase 
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RT Optimal Gap TDTD 

0.03 0.00% 1226 

Case #8 

First-route Phase 

RT Optimal Gap TOB TDT 

36,000 26.81% 41 658 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.03 0.00% 566 

Case #9 

First-route Phase 

RT Optimal Gap TOB TDT 

36,000 56.39% 41 785 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.02 0.00% 686 

Case #10 

First-route Phase 

RT Optimal Gap TOB TDT 

42.88 0.00% 179 581 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.02 0.00% 5,119 

Case #11 

First-route Phase 

RT Optimal Gap TOB TDT 

36,000 51.75% 94 1,269 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.02 0.00% 1,989 

Case #12 

First-route Phase 

RT Optimal Gap TOB TDT 

36,000 70.25% 90 1,268 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.02 0.00% 1,871 

Case #13 

First-route Phase 

RT Optimal Gap TOB TDT 

709.82 0.00% 412 1,235 

Second-assignment Phase 
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RT Optimal Gap TDTD 

0.12 0.00% 5,993 

Case #14 

First-route Phase 

RT Optimal Gap TOB TDT 

180,000 55.79% 255 2,869 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.07 0.00% 4,292 

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips 

and between trips and depots (min); TDT: total deadhead time between trips (min); TDTD: total 

deadhead time between trips and depots (min). 

 

According to Table 7, the second-assignment phase of all the test problems can always 

be solved to optimality in a very short time (less than one second). For the first-route 

phase, all the test problems are first converted into a single-depot problem (i.e., 

SDSBSP or SDSBSPTW) when using the two-phase heuristic method. For all 

SDSBSPs, the two-phase heuristic method can solve them to optimality just like the 

MIP model but use much less computational time. For all SDSBSPTWs, it took Gurobi 

a long time to solve them. Gurobi provided solutions with large optimal gaps for some 

of them after reaching the model running time limit. But overall, the optimal gap is 

much smaller than that of the MIP model. For example, for Case #12 and Case #14 that 

are unsolvable using the MIP model, the two-phase heuristic method can still provide 

a feasible solution to those problems. However, for Case #3, the optimal gap from the 

two-phase heuristic method is larger than that from the MIP model. Gurobi failed to 

efficiently solve it because it has a relatively large number of trips and a large school 

dismissal time window though it only has one depot. 

 



98 
 

The complete solution for each test problem is presented in Table 8. The model running 

time is the total model running time for both phases. The total number of buses is 

derived from the first-route phase. And the total deadhead duration is the sum of the 

deadhead between trips (results from the first-route phase) and the deadhead between 

trips and depots (results from the second-assignment phase). 

 

Table 8. Complete results of all the test problems based on the two-phase heuristic method 
 RT TOB TD 

Case #1 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 −𝑵𝑵𝑵𝑵𝑵𝑵 0.79 60 1,458 

Case #2 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 36,000 31 1,174 

Case #3 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 36,000 29 1,090 

Case #4 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 −𝑵𝑵𝑵𝑵𝑵𝑵 0.25 36 792 

Case #5 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 15,740.14 19 623 

Case #6 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000.01 19 573 

Case #7 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 −𝑵𝑵𝑵𝑵𝑵𝑵 2.75 81 1,477 

Case #8 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000.03 41 1,224 

Case #9 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000.02 41 1,471 

Case #10 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 −𝑵𝑵𝑵𝑵𝑵𝑵 42.90 179 5,700 

Case #11 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000.02 94 3,258 

Case #12 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000.02 90 3,139 

Case #13 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 709.94 412 7,228 

Case #14 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 180,000.07 255 7,161 

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips 

and between trips and depots (min). 
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Most test problems with the dismissal time optimization have reached the given model 

running time limit. But based on the current results, we can still find out that the total 

number of buses was significantly reduced after the school dismissal time optimization. 

The larger the school dismissal time window is, the more buses can be reduced, but a 

longer model running time is needed.  

 

6.4 Results of the Improved Two-phase Heuristic Method 

We also list the detailed results for each phase of each test problem based on the 

improved two-phase heuristic method in Table 9.  

 

Table 9. Results of each phase of all the test problems based on the improved two-phase heuristic  

Case #1 

First-route Phase 

RT Optimal Gap TOB TD 

0.13 - 60 1,479 

Case #2 

First-route Phase 

RT Optimal Gap TOB TD 

491 - 32 1,215 

Case #3 

First-route Phase 

RT Optimal Gap TOB TD 

535.15 - 29 1,218 

Case #4 

First-route Phase 

RT Optimal Gap TOB TDT 

0.05 - 36 115 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.01 0.00% 688 

Case #5 

First-route Phase 

RT Optimal Gap TOB TDT 

157.95 - 19 413 

Second-assignment Phase 
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RT Optimal Gap TDTD 

0.01 0.00% 320 

Case #6 

First-route Phase 

RT Optimal Gap TOB TDT 

222.40 - 19 310 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.01 0.00% 319 

Case #7 

First-route Phase 

RT Optimal Gap TOB TDT 

0.23 - 83 233 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.02 0.00% 1,249 

Case #8 

First-route Phase 

RT Optimal Gap TOB TDT 

1,368 - 41 998 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.02 0.00% 631 

Case #9 

First-route Phase 

RT Optimal Gap TOB TDT 

1,610.22 - 38 1,088 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.03 0.00% 720 

Case #10 

First-route Phase 

RT Optimal Gap TOB TDT 

1.63 - 179 652 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.03 0.00% 5,114 

Case #11 

First-route Phase 

RT Optimal Gap TOB TDT 

3,913.01 - 92 2,282 

Second-assignment Phase 
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RT Optimal Gap TDTD 

0.02 0.00% 1,964 

Case #12 

First-route Phase 

RT Optimal Gap TOB TDT 

6,617.25 - 84 2,328 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.01 0.00% 1,826 

Case #13 

First-route Phase 

RT Optimal Gap TOB TDT 

7.42 - 413 1,305 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.11 0.00% 5,922 

Case #14 

First-route Phase 

RT Optimal Gap TOB TDT 

23,297.44 - 226 5,366 

Second-assignment Phase 

RT Optimal Gap TDTD 

0.07 0.00% 4,240 

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips 

and between trips and depots (min); TDT: total deadhead time between trips (min); TDTD: total 

deadhead time between trips and depots (min). 

 

For the improved two-phase heuristic method, the first-route phase formulated as a 

single-depot problem is solved by the proposed SA-GDA algorithm without using 

Gurobi solver, so the optimal gap is not reported. According to Table 9, the proposed 

SA-GDA algorithm can optimally solve the test problems without dismissal time 

optimization except for Case #7, Case #10, and Case #13. But the optimal gap in terms 

of the total number of buses is only 2%, 1%, and 0.24% for those three cases, 

respectively. Also, the model running time of those three cases is much less than that 

of the previous two methods. Take Case #13, for example; it is the largest MDSBSP 
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created based on the entire collected data. The total number of buses and the total 

deadhead duration from the improved two-phase heuristic method are 0.24% and 0.9% 

larger than the optimal solution. But the model running time of the improved two-phase 

heuristic method is only 7.42 seconds, while that of the other two methods are 48,704 

seconds and 709.04 seconds, respectively. Overall, the improved two-phase heuristic 

performs better than the other two methods. 

 

As for the test problems with dismissal time optimization, the improved two-phase 

heuristic performs much better than the other two in all the test problems. It can even 

achieve fewer buses much quicker when the test problem involves more trips, depots, 

schools, and larger dismissal time windows (e.g., Case #6, #9, #11, #12, and #14). For 

example, Case #14 is the MDSBSPTW based on the entire dataset. The MIP model 

failed to solve it within the given running time limit. The two-phase heuristic method 

reached a solution with a 55.79% optimal gap after 50 hours. However, the improved 

heuristic method only used around 12% of the running time of the two-phase heuristic 

method but achieved a much better solution with 29 fewer buses. 

 

When it comes to the second-assignment phase, all problems can be solved optimally 

in less than one second. The complete solution for each test problem based on the 

improved two-phase heuristic method is presented in Table 10. The model running time 

is the total model running time from both phases. The total number of buses is from the 

first-route phase. And the total deadhead duration is the sum of the deadhead between 
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trips (from the first-route phase) and the deadhead between trips and depots (results 

from the second-assignment phase). 

 
Table 10. Complete results of all the test problems based on improved two-phase heuristic 

 RT TOB TD 

Case #1 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 −𝑵𝑵𝑵𝑵𝑵𝑵 0.13 60 1,479 

Case #2 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 491 32 1,215 

Case #3 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 535.15 29 1,218 

Case #4 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 −𝑵𝑵𝑵𝑵𝑵𝑵 0.06 36 803 

Case #5 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 157.96 19 733 

Case #6 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 222.41 19 629 

Case #7 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 −𝑵𝑵𝑵𝑵𝑵𝑵 0.25 83 1,482 

Case #8 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 1,368.02 41 1,629 

Case #9 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 1,610.25 38 1,808 

Case #10 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 −𝑵𝑵𝑵𝑵𝑵𝑵 1.66 179 5,766 

Case #11 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 3,913.03 92 4,246 

Case #12 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 6,617.26 84 4,154 

Case #13 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 7.42 413 7,227 

Case #14 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 23,297.51 226 9,606 

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips 

and between trips and depots (min). 

 

According to Table 10, the improved two-phase heuristic method can efficiently 

provide better results (i.e., fewer buses) for almost all the test problems than the 
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previous two methods. Besides, like previous findings, having a larger school dismissal 

time window could reduce more buses but result in a longer model running time. 

 

6.5 Results of the TS-ACO Method 

The results of the proposed TS-ACO method are presented in Table 11. 

 
Table 11. Results of all the test problems based on the TS-ACO method 

 RT TOB TD 

Case #1 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 −𝑵𝑵𝑵𝑵𝑵𝑵 1.20 60 1,459 

Case #2 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 1,512 32 1,198 

Case #3 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 1,401 30 1,153 

Case #4 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 −𝑵𝑵𝑵𝑵𝑵𝑵 0.65 36 779 

Case #5 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 284 20 631 

Case #6 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 328 19 594 

Case #7 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 −𝑵𝑵𝑵𝑵𝑵𝑵 3.82 81 1,399 

Case #8 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 3,395 43 1,453 

Case #9 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 6,000 38 1,701 

Case #10 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 −𝑵𝑵𝑵𝑵𝑵𝑵 30.15 179 5,677 

Case #11 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 21,437.16 94 4,050 

Case #12 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 22,966.52 85 4,096 

Case #13 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 326.45 412 6,991 

Case #14 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 120,628 235 9,539 

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips 

and between trips and depots (min). 



105 
 

For the test problems without dismissal time optimization, the running time of the ACO 

model is around the same as the MIP model and the two-phase heuristic method when 

the problem size is relatively small (i.e., Case #1 and Case #4). When the problem size 

gets larger, the running time of the ACO model is less than the other two methods. 

However, the running time of the ACO model is longer than that of the improved two-

phase heuristic method in all cases. As for the solution, the ACO model, like the MIP 

model and the two-phase heuristic method, can reach the optimal number of buses for 

all test problems without dismissal time, outperforming the improved two-phase 

heuristic method. Besides, the ACO model can obtain a shorter deadhead duration than 

the two-phase heuristic method and the improved two-phase heuristic method but a 

slightly longer deadhead duration than that of the MIP model. 

 

For the test problems with dismissal time optimization, the TS-ACO method 

consistently outperforms the MIP model in terms of the model running time and the 

solution quality. Though for the SDSBSPTWs (Case #2 and Case #3), the total number 

of buses from TS-ACO has one more bus than that from the MIP model, considering 

the computational time, the TS-ACO method is still better than the MIP model. 

Compared to the two-phase heuristic method, the TS-ACO performs better as the 

problem size gets larger or the dismissal time window is larger (e.g., Case #9, #11, #12, 

and #14). However, the improved two-phase heuristic method can get even better 

results for the large-size MDSBSPTWs than the TS-ACO method in a much shorter 

time (e.g., Case #12 and #14). Take Case #14, for example; it is the largest 

MDSBSPTW based on the entire collected data. The MIP model failed to find a 
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solution after reaching the running time limit. The TS-ACO used less time than the 

two-phase heuristic method and provided a better solution with 20 fewer buses than the 

two-phase heuristic method. The improved two-phase heuristic method only used 

around 19.3% of the running time of the TS-ACO method but achieved a solution that 

has nine fewer buses than the TS-ACO method. Therefore, the improved two-phase 

heuristic method is the most powerful among all proposed methods. 

 

6.6 Overall Results and Comparison 

Table 12 summarizes the results of all the test problems based on the four methods 

proposed in this study regarding the model running time, optimal gap, the total number 

of buses, and total deadhead duration. As for the model running time for the two-phase 

heuristic method and the improved two-phase heuristic method, first, the total model 

running time is listed. Then the running times of both phases are listed in the bracket 

in which the first element is the model running time of the first-route phase, and the 

second element is the model running time of the second-assignment phase. For the 

single-depot problems (Case #1 to Case #3), only the first-route phase is used, so the 

model running time column only lists the model running time of the first phase. It works 

the same for the total deadhead duration column. The total deadhead duration is first 

shown. Then, inside the next bracket, the first element is the deadhead duration between 

trips obtained from the first-route phase. The second element is the deadhead duration 

between trips and depots from the second-assignment phase. 
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Table 12. Summary of the results of all the test problems based on all the proposed methods 

 Method RT OG TOB TD 

Case #1 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝑵𝑵𝑵𝑵𝑵𝑵 

MIP model 0.87 0.00% 60 1,458 

Two-phase 0.79 0.00% 60 1,458 

Improved two-phase 0.13 - 60 1,479 

TS-ACO 1.20 - 60 1,459 

Case #2 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model 11,069.35 0.01% 31 1,174 

Two-phase 36,000 2.14% 31 1,174 

Improved two-phase 491 - 32 1,215 

TS-ACO 1,512 - 32 1,198 

Case #3 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 

MIP model 36,000 10.34% 29 1,094 

Two-phase 36,000 25.09% 29 1,090 

Improved two-phase 535.15 - 29 1,218 

TS-ACO 1,401 - 30 1,153 

Case #4 MIP model 0.46 0.00% 36 778 
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𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝑵𝑵𝑵𝑵𝑵𝑵 Two-phase 0.25 
(0.24+0.01) 0.00% 36 792 

(110+682) 

Improved two-phase 0.06 
(0.05+0.01) - 36 803 

(115+688) 

TS-ACO 0.65 - 36 779 

Case #5 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model 36,000 9.15% 19 615 

Two-phase 15,740.14 
(15,740.12+0.02) 0.01% 19 623 

(307+316) 

Improved two-phase 157.96 
(157.95+0.010) - 19 733 

(413+320) 

TS-ACO 284 - 20 631 

Case #6 
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 

MIP model 36,000 42.09% 19 576 

Two-phase 36,000.01 
(36,000+0.01) 26.26% 19 573 

(261+312) 

Improved two-phase 222.41 
(222.40+0.01) - 19 629 

(310+319) 
TS-ACO 328 - 19 594 

Case #7 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝑵𝑵𝑵𝑵𝑵𝑵 

MIP model 21.86 0.00% 81 1,374 

Two-phase 2.75 
(2.72+0.03) 0.00% 81 1,477 

(251+1,226) 

Improved two-phase 0.25 
(0.23+0.02) - 83 1,482 

(233+1,249) 

TS-ACO 3.82 - 81 1,399 
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Case #8 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model 36,000 57.13% 49 1,501 

Two-phase 36,000.03 
(36,000+0.03) 26.81% 41 1,224 

(658+566) 

Improved two-phase 1,368.02 
(1,368+0.02) - 41 1,629  

(998+631) 

TS-ACO 3,395 - 43 1,453 

Case #9 
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 

MIP model 36,000 98.12% 54 2,269 

Two-phase 36,000.02 
(36,000+0.02) 56.39% 41 1,471 

(785+686) 

Improved two-phase 1,610.25 
(1,610.22+0.03) - 38 1,808 

(1,088+720) 

TS-ACO 6,000 - 38 1,701 

Case #10 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝑵𝑵𝑵𝑵𝑵𝑵 

MIP model 603.15 0.00% 179 5,495 

Two-phase 42.90 
(42.88+0.02) 0.00% 179 5,700 

(581+5,119) 

Improved two-phase 1.66 
(1.63+0.03) - 179 5,766 

(652+5,114) 
TS-ACO 30.15 - 179 5,677 

Case #11 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model 36,000 87.026% 156 6,917 

Two-phase 36,000.02 
(36,000+0.02) 51.75% 94 3,258 

(1,269+1,989) 

Improved two-phase 3,913.03 
(3,913.01+0.02) - 92 4,246 

(2,282+1,964) 
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TS-ACO 21,437.16 - 94 4,050 

Case #12 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 

MIP model - - - - 

Two-phase 36,000.02 
(36,000+0.02) 70.25% 90 3,139 

(1,268+1,871) 

Improved two-phase 6,617.26 
(6,617.25+0.01) - 84 4,154 

(2,328+1,826) 
TS-ACO 22,966.52 - 85 4,096 

Case #13 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 

MIP model 48,704 0.00% 412 6,585 

Two-phase 709.94 
(709.82+0.12) 0.00% 412 7,228 

(1,235+5,993) 

Improved two-phase 7.42 
(7.31+0.11) - 413 7,227 

(1,305+5,922) 
TS-ACO 326.45 - 412 6,991 

Case #14 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model - - - - 

Two-phase 180,000.07 
(180,000+0.07) 55.79% 255 7,161 

(2,869+4,292) 

Improved two-phase 23,297.51 
(23,297.44+0.07) - 226 9,606 

(5,366+4,240) 

TS-ACO 120,628 - 235 9,539 
Note: RT: model running time (sec); TOB: total number of buses; TD.: total deadhead time between trips and between trips and depots (min) 
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The optimal gap is obtained directly from the Gurobi solver. Table 12 shows the 

optimal gap for the MIP model and the first-route phase of the two-phase heuristic 

method, which is also a MIP model. The first-route phase of the improved heuristic 

method and the TS-ACO is not solved with Gurobi, so the optimal gap is not presented. 

Besides, we found that the second-assignment phase of the two-phase heuristic method 

and the improved two-phase heuristic method can always reach optimality in a very 

short time. So, the optimal gaps of that phase for both methods are omitted. 

 

For the test problems without the dismissal time optimization, the MIP model, the two-

phase heuristic method, and the TS-ACO method can always achieve optimality. The 

improved two-phase heuristic method can reach optimality in most cases, but 

sometimes it may reach a solution that is only slightly worse than the optimal solution 

(i.e., Case #7 and Case #13) using much less time than the other three methods.  

 

For the test problems with the dismissal time optimization, the MIP model performs 

well when the problem size (e.g., a smaller depot size, trip size, or school size) and the 

dismissal time window are small. When the problem size and the dismissal time 

window get larger, a solution with a relatively large optimal gap will be returned after 

reaching the running time limit. The same thing happens for the first-route phase of the 

two-phase heuristic method, which is an SDSBSPTW. It seems that Gurobi cannot 

efficiently solve the large-size test problems with the dismissal time window. But 

overall, the two-phase heuristic method performs better than the MIP model in terms 

of the model running time and optimal gap.  
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The TS-ACO method works better as the problem size gets larger or has a larger 

dismissal time window than the MIP model and the two-phase heuristic method in 

terms of the model running time and the solution quality. The improved two-phase 

heuristic method performs the best among all the proposed methods in all test problems. 

It can even achieve fewer buses much quicker when the problem involves more trips, 

depots, schools, and a larger dismissal time window. Generally, for both SDSBSPTW 

and MDSBSPTW, no matter what method to use, having a larger school dismissal time 

window could reduce more buses but make the problem more complicated and thus 

result in a longer model running time. 

 

Figure 25 shows the actual bus savings and the percentage savings in the number of 

buses from all the proposed methods for all test problems with dismissal time 

optimization. For each test problem, the exact bus saving is calculated as the total 

number of buses without dismissal time optimization minus the total number of buses 

after the dismissal time optimization. The percentage of saving in the number of buses 

is the exact bus saving divided by the total number of buses without dismissal time 

optimization. In Figure 25, the (−30,30) or (−40,40) right after the test problem’s 

name indicate the size of the dismissal time window for each school 𝑖𝑖  in that test 

problem. For example, the dismissal time window for each school 𝑖𝑖  in Case #2 is 

[𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]. The problem size is also described in the bottom 

as 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Because the MIP 

model failed to solve Case #12 and Case #14, we didn’t plot the bus savings from the 

MIP model for those two test problems in Figure 25. 
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Figure 25. Savings in the number of buses after the dismissal time optimization 
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According to Figure 25, the average bus saving percentage is around 45%, and the 

highest is 54.22% (Case #9 based on the improved two-phase heuristic method). In 

comparison, the lowest bus saving percentage is 12.85% (Case #11 based on the MIP 

model). Under the same problem size setting, the exact bus saving and the bus saving 

percentage are larger when the dismissal time window is larger. It indicates that the 

larger dismissal time window results in more bus savings. When the problem size is 

small (Case #2 to Case #6), the models’ performances regarding the bus savings are 

around the same for all proposed methods. But as the problem size gets larger (Case #8 

to Case #14), the MIP model tends to be less powerful and can only reduce a limited 

number of buses or even fail to solve the problem. The improved two-phase heuristic 

method performs the best, followed by the TS-ACO method. 

 

For both SDSBPTWs and MDSBSPTWs, the dismissal times for most schools are 

changed after the school dismissal optimization. And the dismissal times of those 

schools after the optimization are more likely to reach (or near) the boundary values of 

the dismissal time window no matter which method is used. Figure 26 shows how the 

school dismissal time changed after the optimization for one SDSBSPTW (i.e., Case 

#2), one MDSBSPTW (i.e., Case #8), and another larger size MDSBSPTW that uses 

all the collected data (i.e., Case #14). For those three test problems, the dismissal time 

window settings are the same; that is, for each school 𝑖𝑖, the dismissal time window is 

[𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]. 
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(a) Case #2 

 
(b) Case #8 

 
(c) Case #14 

Figure 26. How dismissal time changed after the optimization 



116 
 

We can get each school’s dismissal time after the optimization based on each proposed 

method. So for each of those three test problems based on each proposed method, we 

calculated the absolute difference between the school dismissal time before and after 

the school dismissal optimization for each school 𝑖𝑖, which is 𝑎𝑎𝑎𝑎𝑎𝑎(𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑛𝑛𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷𝑖𝑖), 

where 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖  and 𝑛𝑛𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷𝑖𝑖  are the original dismissal time and new dismissal time of 

school 𝑖𝑖 after the optimization, respectively. The absolute difference is classified into 

three categories: [0,10), [10,20), [20,30]. Suppose the absolute difference between 

the school dismissal time before and after the optimization for a particular school falls 

in the last category [20,30]. In that case, it indicates that that school has experienced a 

significant change in its dismissal time, and its new dismissal time is close to the 

boundary values of its dismissal time window. 

 

As shown in Figure 26, no matter what method is used, most schools have their 

dismissal time changed to reach (or get near) the boundary values of the dismissal time 

window (falling in the last category). To better illustrate this, we also present the 

differences between the school dismissal times before and after the optimization for 

each school (i.e., the original dismissal time minus the dismissal time after the 

optimization) for Case #2 based on each proposed method in Figure 27. The figure 

shows that only one school’s dismissal time (i.e., Sch-3) was unchanged after the 

optimization in Case #2 based on the improved heuristic method. For those schools 

whose dismissal times are changed, if we only look at the results from the MIP model, 

we can find that seven schools have their dismissal time adjusted to be 𝑂𝑂𝑂𝑂𝑂𝑂 − 30 𝑚𝑚𝑚𝑚𝑚𝑚 

or 𝑂𝑂𝑂𝑂𝑂𝑂 + 30 𝑚𝑚𝑚𝑚𝑚𝑚. Two schools (i.e., Sch-9 and Sch-10) have their new dismissal 
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times very close to the boundary values of the dismissal time window. The results from 

the other methods show the same pattern. 

 

 

Figure 27. Differences between the school dismissal times before and after the optimization for 

Case #2 based on all proposed methods 

 

Since the original school dismissal times are quite close, changing the dismissal time 

to the boundary values of the school dismissal time window after the optimization can 

make more trips compatible. Thus, more trips can be linked together on a single bus 

route. Figure 28 shows the number of trips services per route with and without the 

optimization for one single-depot problem (Case #1 and Case #2), one multi-depot 

problem (Case #7 and Case #8), and the largest multi-depot problem based on all the 

collected data (Case #13 and Case #14). We can find that almost all the single-trip bus 

routes are eliminated, and bus routes tend to become longer after the school dismissal 

time optimization, which helps reduce the total number of buses. 
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(a) Case #1 and Case #2 

 
(b) Case #7 and Case #8 

 
(c) Case #13 and Case #14 

Figure 28. Number of trips services per route with or without dismissal time optimization 

 

According to Figure 28, the test problems without the school dismissal time 

optimization tend to have many single-trip bus routes. This is because the original 



119 
 

school dismissal times are quite close, making it impossible for buses to go to different 

schools after finishing the trips of the current school. After the dismissal time 

optimization, single-trip bus routes can be significantly reduced or even eliminated. 

Also, bus routes after the dismissal time optimization tend to become longer. Therefore, 

more trips become compatible as each school can have its own dismissal time after the 

optimization. As more trips can be served on one bus, the bus route can become longer, 

and thus the total number of buses can be reduced.  

 

6.7 Sensitivity Analysis 

6.7.1 Coefficients of the Objective Function 

The objective function of the proposed MIP model in Chapter 3 and the objective 

function of the MIP model of the first-route phase of the two-phase heuristic method 

in Chapter 4 can also be a cost function based on the coefficient 𝑓𝑓𝑐𝑐 and 𝑅𝑅𝑐𝑐. Therefore, 

we chose a couple of test problems and changed their objective function into the cost 

function to see how it impacts the solution. The test problems that we chose include 

Case #1 and Case #2, Case #10 and Case #11, and Case #13 and Case #14. Case #1 is 

an SDSBSP. Case #10 and Case #13 are the MDSBSPs. Case #2 is an SDSBSPTW. 

Case #11 and Case #14 are the MDSBSPTWs. For Case #2, Case #11, and Case #14, 

the dismissal time window for each school 𝑖𝑖 is [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]. The 

results from all proposed methods for those test problems are shown in Table 13. 

 



120 
 

Table 13. Results of some test problems using cost function as the objective function 

 Method RT OG TOB TD 

Case #1 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝑵𝑵𝑵𝑵𝑵𝑵 

MIP model 0.93 0.00% 60 1,458 

Two-phase 0.75 0.00% 60 1,458 

Improved two-phase 0.17 - 60 1,479 

TS-ACO 1.77 - 60 1,458.4 

Case #2 
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model 7,907.36 0.007% 31 1,174 

Two-phase 23,566.47 0.006% 31 1,174 

Improved two-phase 498.69 - 32 1,210.93 

TS-ACO 1,068.03 - 32 1,186.93 

Case #10 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝑵𝑵𝑵𝑵𝑵𝑵 

MIP model 635.76 0.00% 179 5,495 

Two-phase 43.37 
(43.35+0.02) 0.00% 179 5,699.57 

(580+5119.57) 

Improved two-phase 1.62 
(1.60+0.02) - 179 5,766 

(652+5,114) 
TS-ACO 82.44 - 179 5,709.73 

Case #11 
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model 36,000 86.45% 169 7,877 

Two-phase 36,000.02 
(36,000+0.02) 48.8774% 95 3,251.27 

(1,237+2,014.27) 
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Improved two-phase 3,815.01 
(3,815+0.01) - 93 4,237 

(2,214+2,023) 
TS-ACO 22,940.64 - 94 4,016.92 

Case #13 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 −𝑵𝑵𝑵𝑵𝑵𝑵 

MIP model 53,450 0.0031% 412 6,,591 

Two-phase 1,284.12 
(1,284+0.12) 0.00% 412 7228 

(1,235+5,993) 

Improved two-phase 8.66 
(8.54+0.12) - 413 7,227 

(1,305+5,922) 
TS-ACO 958.83 - 412 6,947.933 

Case #14 
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 

MIP model - - - - 

Two-phase 184,466.07 
(184,466+0.07) 50.04% 245 6,,509.92 

(2637+3,872.92) 

Improved two-phase 22,373.81 
(22,373.75+0.06) - 226 9,708 

(5,377+4,331) 

TS-ACO 124,090 - 236 8,819.367 
Note: RT: model running time (sec); TOB: total number of buses; TD.: total deadhead time between trips and between trips and depots (min) 
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For the test problems without the dismissal time optimization, the results in Table 13 

are almost the same (or just slightly different in the total deadhead duration) compared 

to the results shown in Table 12. But for the test problems with the dismissal time 

optimization, we may have different results based on different forms of the objective 

function. For Case #2, which is an SDSBSPTW, the MIP model and the two-phase 

heuristic method reached the same optimal solution regardless of the form of the 

objective function. However, when using the improved heuristic method and the TS-

ACO method, the number of buses is the same, but the deadhead duration is slightly 

smaller when the objective function is a cost function.  

 

Case #11 is an MDSBSPTW. When solving it using the MIP model, the two-phase 

heuristic method, or the improved two-phase heuristic method, obtained a larger total 

number of buses when the objective function is a cost function. But the TS-ACO 

reached the same total number of buses. Overall, the total number of buses is larger 

when the objective function is a cost function. It is an expected outcome because the 

coefficient of the “total number of buses” term is much larger in the previous objective 

function (i.e., 𝑀𝑀𝑏𝑏) than that in the cost function form of the objective function (i.e., 𝑓𝑓𝑐𝑐), 

hence resulting in more reduction in the total number of buses.  

 

However, the large weight (𝑀𝑀𝑏𝑏) may not always work well, especially when solving 

very large-size MDSBSPTWs problems using the MIP model. Take Case #14, for 

example; it is the largest MDSBSPTW that uses all the collected data. However, the 

total number of buses from the MIP model in which the objective function is the cost 
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function is ten fewer buses than that from the MIP model that prioritizes the “total 

number of buses” term. The results from the two-phase heuristic method and the 

improved two-phase method are almost the same regardless of the forms of the 

objective function for Case #14. When using the TS-ACO method, the model with the 

cost function as the objective function has one more bus than the model that prioritizes 

the “total number of buses” term for Case #14. 

6.7.2 Dismissal Time Window 

By comparing the solutions to the test problem with and without dismissal time 

optimization, we can find that the total number of buses can be significantly reduced 

after incorporating the dismissal time optimization into the school bus scheduling 

problem. Besides, the improved two-phase heuristic method performs the best among 

all the proposed methods. Therefore, we conduct a sensitivity analysis on the solution 

of the improved two-phase heuristic method under different sizes of the dismissal time 

window based on the entire collected data (e.g., 55 schools and 678 trips). Four 

different sizes of dismissal time windows are proposed. That is, for each school 𝑖𝑖, we 

consider [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 10 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 10 𝑚𝑚𝑚𝑚𝑚𝑚] , [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 20 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 20 𝑚𝑚𝑚𝑚𝑚𝑚] , 

[𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚], and [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚]. When the 

dismissal time window for each school 𝑖𝑖 is [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚], it is 

Case #14. After running the improved two-phase heuristic method under each dismissal 

time window scenario, we calculate the actual bus savings and the percentage of 

savings in the number of buses for each scenario. For each test problem, the exact bus 

saving is calculated as the total number of buses without dismissal time optimization 

minus the total number of buses after the dismissal time optimization. The percentage 
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of saving in the number of buses is the exact bus saving divided by the total number of 

buses without dismissal time optimization. The results are shown in Figure 29. 

 

 
Figure 29. Savings in the number of buses over the different dismissal time windows 

 

According to Figure 29, as the size of the dismissal time window increases, more buses 

can be saved. More trips become compatible after the dismissal time optimization so 

that more trips can be linked together on a single bus route. Bus routes tend to become 

longer, hence helping to reduce the total number of buses. 

 

6.8 Summary 

The performance of the proposed MIP model, the two-phase heuristic method, the 

improved two-phase heuristic method, and the TS-ACO method were tested on 

fourteen test problems in this chapter. All the test problems were derived from the real-

world data collected from a public school district in Maryland. Those problems have 
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different school sizes, trip sizes, depot sizes, and two types of school dismissal time 

windows for testing the performance of the proposed methods. First, the collected data 

and how those test problems were generated were described in detail. Then, all the 

proposed methods were examined on all the test problems. The results from all four 

proposed methods were presented, compared, and explained. Finally, we did the 

sensitivity analysis on two forms of the objective functions and several different sizes 

of the dismissal time window. The results were compared and analyzed. 
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Chapter 7: Conclusions and Future Work 

7.1 Summary and Conclusions 

The school bus scheduling problem is an important real-world transportation problem 

that affects many families daily. The school districts’ main issue is transporting all the 

students between homes and schools safely and promptly. In such problems, even a 

small improvement in the daily operation could lead to significant potential financial 

benefits. Therefore, this study aimed to solve the school bus scheduling problem. We 

first added some real-world settings such as multi-depot and multi-school 

configurations into the basic school bus scheduling problem for helping the school 

district make better decisions. We also incorporated the school bell time optimization 

into the school bus scheduling problem. Changing some schools’ bell times can make 

the bus schedule more efficient as many buses can be reduced after the school bell time 

optimization. As a result, school districts can achieve significant savings. 

 

Therefore, for helping school districts with their decision-making, this study aimed to 

solve the multi-depot multi-school bus scheduling problem with bell time optimization 

(MDSBSPTW). We proposed four different methods for solving the MDSBSPTWs. 

The goal is to provide the optimal bell time for each school and the corresponding best 

bus schedule for the school district. The four proposed methods include a Mixed-

Integer Programming (MIP) model, a two-phase heuristic method, an improved two-

phase heuristic method, and a TS-ACO method. The performances of all the proposed 

methods were tested on fourteen test problems with different characteristics. All the 
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test problems were derived from the real-world data collected from a public school 

district in Maryland. The results were compared and analyzed. 

 

First, the MDSBSPTW was formulated as a MIP model. It is an integrated model that 

simultaneously optimizes the school bell times and the school bus schedule, 

considering the multi-depot and multi-school settings. It can solve single-depot 

problems if we only have one depot. It can also handle school scheduling problems 

solely without the school bell time optimization if fixing the bell time of each school 

to a specific timestamp. The objective function is to minimize the total number of buses 

and the total deadhead time, which is the time without students on board. We have two 

forms of the objective function. One adds a very large coefficient for the total number 

of buses term for prioritizing minimizing the total number of buses which is the major 

contributing factor to costs. Another one is a cost function that minimizes the total 

operation cost per day. Therefore, the proposed MIP model is a great tool that gives the 

school district flexibility for trying out different plans. 

 

The proposed MIP model is an exact method for solving MDSBSPTWs. However, it 

may not be powerful enough for solving relatively large-size problems. To address that, 

we proposed our second method, which is the two-phase heuristic method. It solves the 

MDSBSPTWs through two phases sequentially. By introducing a virtual depot, we first 

ignore all the depot information and convert the MDSBSPTW into a single-depot 

multi-school bus scheduling problem with bell time optimization (SDSBSPTW) in the 

first-route phase. All buses should start and end at the virtual depot. The first-route 
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phase is formulated as a MIP model, and the purpose is to come up with the best way 

for connecting trips to construct bus routes. The objective function minimizes the total 

number of buses and the deadhead duration only between trips. If we only have one 

depot in the system, the virtual depot is the actual depot, and the objective function is 

changed to minimize the total deadhead duration, including the deadhead duration 

between trips and the deadhead duration between trips and depots. Like the previous 

MIP model, the objective function can be a cost function or prioritize either term using 

a large weight. The proposed MIP model for the first-route phase can also solve the 

problem without the bell time optimization. Then, the bus routes from the first phase 

are the input for the second-assignment phase. The goal is to assign each bus to the best 

depot that minimizes the total deadhead duration between trips and depots. It is an 

assignment problem formulated as an integer programming model. 

 

The above two methods were fully implemented using the Gurobi solver in Python. 

They all perform well and provide optimal solutions for the test problems without the 

dismissal time optimization (including both SDSBSPTWs and MDSBSPTWs). 

However, for the test problems with the dismissal time optimization, the MIP model 

can only solve the ones with a smaller number of depots, trips, or schools or a smaller 

dismissal time window. As the problem size and the dismissal time window get larger, 

it will return a solution with a relatively large optimal gap or even can’t find a feasible 

solution after reaching the running time limit. The same thing happens for the first-

route phase of the two-phase heuristic method. But since the MIP model of the first-

route phase is designed for solving the SDSBSPTW, it has fewer variables and 
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constraints than the previous MIP model for solving the MDSBSPTW. Thus, the two-

phase heuristic method performs better than the MIP model regarding the model 

running time and optimal gap. The second-assignment phase can always be solved 

optimally in less than one second. Overall, Gurobi cannot efficiently solve the large-

size multi-school bus scheduling problem with the dismissal time optimization 

regardless of the number of depots in the system. 

 

We proposed a hybrid heuristic method that uses a local search to speed up the solution 

searching process to solve the first-route phase more efficiently. It is a Simulated 

Annealing-based Greedy Algorithm (SA-GDA) method and replaces the MIP model in 

the first-route phase. Keeping the second-assignment phase unchanged, we have our 

third method, the improved two-phase heuristic method. The SA-GDA method is 

proposed to solve the SDSBSPTWs (or SDSBSP) in the first-route phase. The 

simulated annealing algorithm is used to examine different school bell time plans. The 

proposed greedy algorithm is embedded into the framework of the simulated annealing 

algorithm to find the best bus schedule under each school bell time plan. Since we are 

only interested in the trip connections in the first-route phase, the best bus schedule 

under a given bell time plan is the one that minimizes the total number of buses and the 

deadhead duration between trips. The SA-GDA method compares different bus 

schedules and returns the best and its corresponding school bell time plan. Then, the 

buses are assigned to different depots to minimize the deadhead duration between trips 

and depots based on the assignment model proposed in the second-assignment phase. 
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The improved two-phase heuristic method can solve the test problems without the bell 

time optimization optimally (or near-optimally) using much less time than the above 

two methods. For the test problems with the bell time optimization, the improved two-

phase heuristic method performs much better than the previous two methods on all the 

test problems in terms of the solution quality and the computational time. It can even 

achieve fewer buses much quicker, especially for complicated problems that involve 

more trips, depots, schools, and larger dismissal time windows. 

 

Though the improved two-phase heuristic method is powerful, we still want to have an 

efficient model to solve the MDSBSPTW without dividing it into different phases. So 

here comes our last model, the Tabu Search-based Ant Colony Optimization (TS-ACO) 

method. The tabu search, just like the simulated annealing algorithm, is used to find 

the best combination of the school bell time plan. It iteratively searches for a better 

solution and uses a special data structure called a tabu list to forbid or penalize certain 

moves to avoid cycling or revisiting a solution to improve efficiency. Under each fixed 

school bell time plan, the ant colony optimization algorithm is used to find the best bus 

schedule with the minimum number of buses and total deadhead duration. The ant 

colony optimization used in this study includes the solution construction process of the 

ants. We also introduced three local search procedures to improve the best solution 

found by the ant. The proposed TS-ACO method can solve both SDSBPTWs and 

MDSBSPTWs. The proposed ACO is enough for finding the final solution if the 

problem is without the bell time optimization. 
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The TS-ACO method also works well on the test problems without the dismissal time 

optimization. It always performs better than the MIP model regarding model running 

time and the solution quality for the test problems with the bell time optimization. It is 

better than the two-phase heuristic method when the problem gets more complicated 

(e.g., having more depots, more trips, more schools, or a larger dismissal time window). 

However, the improved two-phase heuristic performs even better. 

 

Regarding the performances of all the proposed methods, in summary, results show 

that all four methods perform well on the problems without the bell time optimization. 

When incorporating the bell time optimization into the bus scheduling problem, the 

improved two-phase heuristic method and the TS-ACO method outperform the MIP 

model and the two-phase heuristic method that are limited by the Gurobi solver. Among 

them, the improved two-phase heuristic method has the best performance in terms of 

the model running time and the solution quality. It can help the school district examine 

different schedules or bell time plans efficiently and quickly find the best one. 

 

For the test problems with bell time optimization, most schools’ dismissal times will 

change after the optimization. The dismissal times after the optimization tend to be 

either at the boundary values of the given dismissal time window or near those 

boundary values, no matter what method is used. Also, after the school dismissal times 

are changed, almost all the single-trip bus routes are eliminated. Most bus routes tend 

to become longer by serving more trips, resulting in significant savings regarding the 

number of buses. However, the dismissal time optimization makes the integrated 
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problem much more complicated. For all proposed methods, results show that the larger 

the dismissal time window is, the more buses can be reduced, but longer model running 

time and computational resources are needed. 

 

7.2 Recommendations for Future Work 

There are several interesting avenues for future work, and we list some recommended 

directions for future research: 

1. The proposed tabu search method used the most intuitive aspiration criteria for 

overriding the tabu status of some schools corresponding to search steps that lead 

to improvements. In the future, we can enhance the aspiration criteria by 

simultaneously considering the tabu status of those schools and the change in the 

objective function after overriding those schools’ tabu status to see if we can 

improve the performance of the proposed TS-ACO method. 

2. The trips are fixed for each school in this study (i.e., the visiting sequence of bus 

stops on the trips is known and fixed). Since they are the critical inputs for our 

school bus scheduling problem, we can first optimize them and even allow mixed 

load (i.e., a trip can serve stops from more than one school) by first solving a school 

bus routing problem. Combined with the current study, we can have a 

comprehensive school bus routing and scheduling system. 

3. We assume that the buses are homogeneous (have the same capacity), and all the 

students don’t have special needs in this study. However, in reality, the bus fleet 

always consists of buses with different capacities for serving different types of 

students (e.g., special education students and general education students) in a 
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school district. Therefore, in the future, developing a model that considers the 

mixed fleet (buses have varying bus capacities) could make the model able to 

simulate situations closer to real-world cases. If we introduce multiple types of 

buses into the model, the fixed cost for each type of bus should be different. 

4. We can add some level-of-service constraints to the existing model for improving 

the equity of the school bus system. For example, we can add the maximum vehicle 

time per route or maximum length per route constraints into the model. By doing 

so, the vehicle time (or route length) of bus routes can be more balanced. 

5. We can consider the uncertainty of the travel time and the pickup and drop-off time. 

We assume that all the buses arrive at schools on time, and each trip has its fixed 

service time duration in this study. However, buses may not always arrive at schools 

or serve trips on time due to bad traffic conditions. Also, the service time of each 

trip may vary depending on the traffic condition. Therefore, the developed model 

could be further improved by accounting for the stochasticity of the travel time so 

that we can take the real-world traffic condition into account.  
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