
 Final
Report

Multi-depot and Multi-school Bus scheduling
Problem with School Bell Time Optimization

Qinglian He, Ph.D.
University of Maryland, College Park

Ali Haghani, Ph.D.
University of Maryland, College Park

Prepared for the Urban Mobility & Equity Center, Morgan State University, CBEIS 327, 1700 E.
Coldspring Lane, Baltimore, MD 21251

iii

ACKNOWLEDGMENT

This research was partially funded by the Urban Mobility & Equity Center, Morgan State
University.

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for

the facts and the accuracy of the information presented herein. This document is

disseminated under the sponsorship of the U.S. Department of Transportation’s

University Transportation Centers Program, in the interest of information exchange.

The U.S. Government assumes no liability for the contents or use thereof.

©Morgan State University, 2018. Non-exclusive rights are retained by the U.S. DOT.

iv

1. Report No. 2. Government Accession
No.

3. Recipient’s Catalog No.

4. Title and Subtitle
Multi-depot and Multi-school Bus scheduling
Problem with School Bell Time Optimization

5. Report Date
12 April 2022

6. Performing Organization Code

7. Author(s) Include ORCID # 0000-0003-3181-7155 8. Performing Organization Report
No.

9. Performing Organization Name and Address
University of Maryland
College Park, MD 20742

10. Work Unit No.

11. Contract or Grant No.
69A43551747123

12. Sponsoring Agency Name and Address
US Department of Transportation
Office of the Secretary-Research
UTC Program, RDT-30
1200 New Jersey Ave., SE
Washington, DC 20590

13. Type of Report and Period
Covered
Final

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract
The school bus transportation system is responsible for transporting students to and
from schools safely and promptly. This research aims to optimize the school bus
schedules and the school bell times simultaneously for improving the efficiency of
the school bus system operation. We consider the school bus scheduling problem
in a multi-depot multi-school bus system and incorporate the bell time optimization
to make bus operations more efficient. We propose four different methods,
including one exact method and three heuristic methods, to solve the Multi-depot
and Multi-school Bus Scheduling Problem with School Bell Time Optimization
(MDSBSPTW). Besides, they can also solve the Single-depot Multi-school Bus
Scheduling Problem with School Bell Time Optimization problems (SDSBSPTW)
or problems without bell time optimization regardless of the number of depots (i.e.,
MDSBSP or SDSBSP).

First, the MDSBSPTW is formulated as a mixed-integer programming model.
Second, a two-phase heuristic method is proposed, namely the first-route second-
assignment method. Then, we improve the first-route phase of the two-phase
heuristic method with a Simulated Annealing-based Greedy Algorithm (SA-GDA)
method. Combined with the same second-assignment phase, we have the improved
two-phase heuristic method. Finally, we propose a Tabu Search-Based Ant Colony
Optimization (TS-ACO) for solving the MDSBSPTW without dividing it into
different phases.

v

Fourteen test problems with different characteristics derived from the real-world
collected data are used to examine the performance of the proposed four methods.
The results are compared and explained. The improved two-phase heuristic method
and the TS-ACO method perform better than the other two methods when the
problems are more complicated (e.g., more trips, depots, schools, or larger bell
time window). Overall, the improved two-phase heuristic method is the best as it
can achieve better solutions (i.e., fewer buses) much quicker, especially for large-
size complicated problems. Generally, incorporating the school bell time
optimization into the school bus scheduling problem can significantly reduce the
total number of buses since it makes more trips compatible and thus link more trips
together on a single bus route. Besides, the larger the school bell time window, the
fewer buses are needed overall, but more computational resources and longer
model running time are required.

17. Key Words : 18. Distribution Statement
No Restriction

19. Security Classif. (of this
report) :
Unclassified

20. Security Classif. (of this
page)
Unclassified

21. No. of
Pages
150

22. Price

vi

Table of Contents

Table of Contents ... vi

List of Tables .. viii

List of Figures .. ix

List of Abbreviations .. xi

Chapter 1: Introduction ... 1

1.1 Background ... 1
1.2 Motivation ... 4
1.3 Research Contributions ... 5
1.4 Report Structure .. 6

Chapter 2: Literature Review .. 9

2.1 Vehicle Routing Problem .. 9
2.2 Multi-depot Vehicle Routing Problem.. 12
2.3 Multi-depot Vehicle Routing Problem with Time Windows 20
2.4 School Bus Scheduling Problem ... 22
2.5 School Bell Time Optimization .. 25
2.6 Research Gaps ... 27

Chapter 3: Problem Description and Model Formulation ... 29

3.1 Problem Description ... 29
3.2 Model Assumptions .. 31
3.3 Mathematical Formulation .. 32

3.3.1 Notation.. 32
3.3.2 Model Formulation .. 34

3.4 Summary ... 38

Chapter 4: Two-Phase Heuristic Method .. 39

4.1 Problem Description ... 39
4.2 Two-Phase Heuristic Method ... 40

4.2.1 First-route Phase .. 40
4.2.2 Second-assignment Phase .. 41

4.3 Model Assumptions .. 42
4.4 Mathematical Formulation .. 43

4.4.1 Notation.. 43

vii

4.4.2 Model Formulation for First-route Phase .. 45
4.4.3 Model Formulation for Second-assignment Phase 47

4.5 Improved Two-Phase Heuristic Method ... 49
4.5.1 Greedy Algorithm .. 51
4.5.2 Simulated Annealing Algorithm .. 54
4.5.3 Overall SA-GDA method .. 57

4.6 Summary ... 59

Chapter 5: Tabu Search-based Ant Colony Optimization ... 60

5.1 Ant Colony Optimization .. 60
5.1.1 Initialization ... 63
5.1.2 Solution Construction .. 64
5.1.3 Local Search Procedures .. 69
5.1.4 Pheromone Update ... 75
5.1.5 Overall ACO Method ... 76

5.2 Tabu Search Method ... 78
5.2.1 Initial Solution ... 78
5.2.2 Neighborhoods ... 79
5.2.3 Tabu List .. 79
5.2.4 Aspiration Criterion ... 80
5.2.5 Stopping Rules ... 80

5.3 Overall TS-ACO Method .. 81
5.4 Summary ... 83

Chapter 6: Test Problems .. 84

6.1 Data Description ... 84
6.2 Results of the MIP Model ... 92
6.3 Results of the Two-phase Heuristic Method ... 94
6.4 Results of the Improved Two-phase Heuristic Method 99
6.5 Results of the TS-ACO Method .. 104
6.6 Overall Results and Comparison .. 106
6.7 Sensitivity Analysis .. 119

6.7.1 Coefficients of the Objective Function .. 119
6.7.2 Dismissal Time Window.. 123

6.8 Summary ... 124

Chapter 7: Conclusions and Future Work ... 126

7.1 Summary and Conclusions ... 126
7.2 Recommendations for Future Work.. 132

References ... 134

viii

List of Tables

Table 1. Summary of some MDVRP variants .. 17

Table 2. Summary of the notations for the MIP model formulation 32

Table 3. Summary of the notations for the two-phase model formulation 44

Table 4. Parameters of the ACO ... 63

Table 5. Configurations of test problems .. 87

Table 6. Results of all the test problems based on the MIP model 93

Table 7. Results of each phase of all the test problems based on the two-phase heuristic

method... 95

Table 8. Complete results of all the test problems based on the two-phase heuristic

method... 98

Table 9. Results of each phase of all the test problems based on the improved two-

phase heuristic ... 99

Table 10. Complete results of all the test problems based on improved two-phase

heuristic ... 103

Table 11. Results of all the test problems based on the TS-ACO method 104

Table 12. Summary of the results of all the test problems based on all the proposed

methods ... 107

Table 13. Results of some test problems using cost function as the objective function

... 120

ix

List of Figures

Figure 1. Illustration of bus routes before bell time optimization 2

Figure 2. Illustration of bus routes after bell time optimization 3

Figure 3. Variants of VRP .. 10

Figure 4. Illustration of the MDVRP .. 13

Figure 5. Illustration of the total deadhead duration of a route 30

Figure 6. Example of the two-phase heuristic method for MDSBSPTW 42

Figure 7. Flow chart of the proposed GDA method ... 52

Figure 8. Example of the proposed GDA method .. 53

Figure 9. Examples of the neighboring bell time vectors of a given bell time vector 56

Figure 10. Pseudocode of SA-GDA method... 57

Figure 11. An example of the ant's complete tour .. 62

Figure 12. The solution generation process of each ant .. 65

Figure 13. Output case I after the trip-shift operation .. 70

Figure 14. Output case II after the trip-shift operation ... 71

Figure 15. Output case III after the trip-shift operation .. 72

Figure 16. Another example for output case III after the trip-shift operation 73

Figure 17. Example of the trip-swap operation .. 75

Figure 18. Pseudocode of the proposed ACO algorithm .. 77

Figure 19. Flow chart of the proposed TS-ACO method.. 82

Figure 20. The layout of the depot locations .. 85

Figure 21. Depot used in Case #1 to Case #3 ... 88

Figure 22. Depots used in Case #4 to Case #6 .. 89

x

Figure 23. Depots used in Case #7 to Case #9 .. 90

Figure 24. Depots used in Case #10 to Case #12 .. 91

Figure 25. Savings in the number of buses after the dismissal time optimization.... 113

Figure 26. How dismissal time changed after the optimization................................ 115

Figure 27. Differences between the school dismissal times before and after the

optimization for Case #2 based on all proposed methods... 117

Figure 28. Number of trips services per route with or without dismissal time

optimization .. 118

Figure 29. Savings in the number of buses over the different dismissal time windows

... 124

xi

List of Abbreviations

Problems

School Bus Scheduling Problem: SBSP

Single-depot Multi-school Bus Scheduling Problem: SDSBSP

Multi-depot Multi-school Bus Scheduling Problem: MDSBSP

School Bus Scheduling Problem with School Bell Time Optimization: SBSPTW

Single-depot Multi-school Bus Scheduling Problem with School Bell Time

Optimization: SDSBSPTW

Multi-depot Multi-school Bus Scheduling Problem with School Bell Time

Optimization: MDSBSPTW

Algorithms:

Simulated Annealing: SA

Genetic Algorithm: GA

Greedy Algorithm: GDA

Ant Colony Optimization: ACO

Tabu Search: TS

Simulated Annealing-based Greedy Algorithm: SA-GDA

Tabu Search-based Ant Colony Optimization: TS-ACO

Others:

ES: Elementary School

MS: Middle School

xii

HS: High School

RT: Model Running Time

ODT: Original Dismissal Time

TOB: Total Number of Buses

TDT: Total Deadhead Time Between Trips (min)

TDTD: Total Deadhead Time Between Trips and Depots (min)

TD: Total Deadhead Time (min), including the deadhead between trips and the

deadhead between trips and depots

1

Chapter 1: Introduction

1.1 Background

In the U.S., the expenditures for public student transportation keep increasing.

According to the National Center for Education Statistics (2021), from 2010-11 to

2017-18, the expenditures have increased from about $22 billion to $26 billion. The

average spending per student transported in 2017-18 has risen to $1079. However,

since the economic recession in 2008, most states have cut school funding. In 2015,

there were still 29 states that didn’t restore their school funding to pre-recession levels

(Leachman et al., 2017). In this case, public school districts are facing severe budget

crises. Consequently, transportation spending, which mainly consists of bus-related

costs and bus drivers’ salaries, is often reduced.

Improving school transportation efficiency with only a limited transportation budget is

crucial. Considering the very high cost of buying new buses (from $50,000 to $100,000

per bus) and the annual maintenance cost for each bus, minimizing the total number of

buses can be the number one choice to lessen the financial strain. Another way to

improve the efficiency is to cut down on deadhead time, namely the total time buses

run without students on board. By doing so, school districts can achieve significant

savings in fuel and wear on the buses. To achieve those goals, mathematical models

combined with optimization technologies should be utilized to construct efficient

school bus routes to serve all the students cost-effectively.

2

Moreover, adjusting school bell times can also improve bus operation efficiency. In a

particular school district, the demand for school buses is usually unbalanced since the

bell times of most schools are around the same time. If we can change the bell time of

some schools, more trips will become compatible so that more trips can be linked

together and be served on the same bus. As a result, one single bus route becomes

longer, thus reducing the total number of buses.

Figure 1. Illustration of bus routes before bell time optimization

A simple example illustrates this point. Two schools and two depots (i.e., Depot 1 and

Depot 2) are in the hypothetical school bus system shown in Figure 1. Please note that

we only show the starting depot for each bus, but each bus must start and end at the

same depot. For example, Bus 1 starts from Depot 1, and it should return to Depot 1

once finishing its journey. We consider the PM case where school buses transport

students from schools to their homes. The dismissal time for School A and School B

are 14:00 and 14:30, respectively. School A has two trips, Trip 1 with a travel duration

of 20 minutes and Trip 3 with a travel duration of 35 minutes. Trip 2 and Trip 4 belong

to School B, and their travel times are 20 minutes and 30 minutes, respectively.

3

Three buses are needed to serve those four trips. Bus 1 is a two-trip bus. It starts from

Depot 1 and first arrives at School A to serve Trip 1. Then, it takes 10 minutes to drive

from the last stop of Trip 1 to School B (the first stop of Trip 2). At 14:30, Bus 1 starts

to serve Trip 2 and will go back to Depot 1 after finishing Trip 2. Bus 2 is a single-trip

bus that starts from Depot 2 and arrives at School A to serve Trip 3. After finishing

Trip 3, Bus 2 will go back to Depot 2. Similarly, Bus 3 starts from Depot 1, arrives at

School B to serve Trip 4 and will return to Depot 1 at the end.

Figure 2. Illustration of bus routes after bell time optimization

If we change the dismissal time of School B from 14:30 to 14:35, as shown in Figure

2, then the total number of buses in this system can be reduced to two. Because Trip 3

and Trip 4 can be served on the same bus now (i.e., Bus 2), and thus Bus 3 is eliminated.

Therefore, bell time optimization can reduce the number of buses needed overall.

Given the trip information and school bell time plans, the School Bus Scheduling

Problem (SBSP) aims to optimize the school bus schedules for a given school district.

This research focuses on the SBSP with the objective to minimize the number of buses

4

needed overall and the total deadhead time. Besides, to potentially reduce the total

number of buses, the school bell time optimization is incorporated into the SBSP.

Therefore, the integrated model is used to optimize the school bell times and provide

an efficient bus schedule to improve the efficiency of the school bus system.

1.2 Motivation

Most existing studies consider the school bus scheduling problem as a single-depot

problem in which buses are required to start and end at the only depot (or garage).

However, this cannot represent the real-world situations where the school buses usually

start from multiple garages, serve several routes in the morning or afternoon, and return

to the garages after finishing their work. Therefore, it is essential to formulate the

school bus scheduling problem as a multi-depot problem.

Besides, bell time optimization is also challenging for such a multi-depot multi-school

system. On the one hand, the number of related studies is small, and those mainly work

on single-depot bus systems. On the other hand, unlike the Multi-Depot Vehicle

Routing Problem with Time Window (MDVRPTW), where the time window for each

customer is independent of other customers, the time windows for schools are coupled

with each other because multiple trips may be associated with each school. If the school

bell times are changed, the trip starting times should be adjusted accordingly. And when

the schools have multiple trips, to ensure that all the students can come to the school

(or return home) on time, the starting times of the trips belonging to the same school

5

should be around the same time. Therefore, synchronizing the change in the starting

time of the schools and trips is a major challenge.

Though doing the school bus scheduling and bell time optimization are beneficial, we

don’t want to solve them as two subproblems sequentially as they are highly related to

each other. Therefore, we should incorporate the bell time optimization into the multi-

depot multi-school bus scheduling problem to simultaneously provide a good bus

schedule and school bell times. However, the integrated model, which deals with more

features, is much more complicated and can be very hard to solve, especially for large-

size problems. Therefore, solving the integrated model efficiently, especially for large

MDSBSPTWs, is a critical task in this study.

1.3 Research Contributions

This study aims to solve the multi-depot multi-school bus scheduling problem with bell

time optimization (MDSBSPTW) for improving the efficiency of the given school bus

system. The solution to the problem is the best bus schedule that minimizes the total

number of buses, the total deadhead duration, and the corresponding school bell time

for each school. This study tries to fulfill several existing research gaps:

1. Formulate a mathematical model for the MDSBSPTW.

This study will develop an exact method, a Mixed-Integer Programming (MIP) model,

to solve the MDSBSPTW. The proposed MIP model will also be able to solve the

single-depot multi-school bus scheduling problems with bell time optimization

6

(SDSBSPTW) or the problems without bell time optimization regardless of the total

number of depots in the system (i.e., MDSBSP and SDBSP).

2. Develop heuristic methods for large-size MDSBSPTW.

The proposed MIP model may lose its power when dealing with large-scale instances,

and heuristic methods will become the methodology of choice. We will develop several

heuristic methods from different perspectives to find suitable solutions within

reasonable time for large-scale problems. All the proposed heuristic methods will be

capable of solving SDSBSPTWs, SDSBSPs, and MDSBSPs as well.

3. Test the performance of all the proposed methods.

Real-world data will be collected for testing the performance of all the proposed

methods. We will generate multiple test problems with different characteristics (e.g.,

different depot size, trip size, school size, and different sizes for the school bell time

window) from the collected data. The performance of all proposed methods on each

test problem will be presented, compared, and analyzed. We will also test the

performance of all the proposed methods on the largest problem that uses the entire

collected data. Their performances will be examined and compared. Finally, sensitivity

analysis will be conducted on some key parameters of the MDSBSPTW.

1.4 Report Structure

The organization of the report is as follows:

• Chapter 1 introduces the background and the motivation of this research. It also

presents the problem statement and the contributions.

7

• Chapter 2 is the literature review. It first summarizes the current studies on the

vehicle routing problem, multi-depot vehicle routing problem, and multi-depot

vehicle routing problem with time windows. Then, it reviews the existing

studies on the school bus scheduling problem and the school bell time

optimization. Finally, the research gaps are discussed.

• Chapter 3 presents the mathematical formulation for the multi-depot multi-

school bus scheduling problem with bell time optimization. The model

assumptions are first introduced. Then, the mixed-integer programming model

is presented. The objective function and the constraints are clearly stated.

• Chapter 4 presents a two-phase heuristic method, the first-route second-

assignment method, for solving the multi-depot multi-school bus scheduling

problem with bell time optimization through two phases sequentially. The first-

route phase converts the original problem into a single-depot multi-school bus

scheduling problem with bell time optimization and is formulated as a mixed-

integer programming model. The second-assignment phase is a bus-depot

assignment problem formulated as an integer programming model. Then, we

propose the improved two-phase heuristic method. It keeps the second-

assignment phase unchanged while replacing the MIP model in the first-route

phase with the Simulated Annealing-based Greedy Algorithm (SA-GDA)

method. All the models and the SA-GDA method are presented in detail.

• Chapter 5 presents the Tabu Search-based Ant Colony Optimization (TS-ACO)

method for solving the MDSBSPTW without dividing it into different phases.

The proposed ACO algorithm and the TS method are described in detail.

8

• Chapter 6 presents the performances of all proposed methods on fourteen test

problems derived from real-world collected data. They all are applied to the

largest test problem based on all collected data at the end. The performances of

different methods on all test problems are examined and compared, followed

by the sensitivity analysis results on two key model parameters.

• Chapter 7 concludes this research and discusses the future research directions.

9

Chapter 2: Literature Review

The multi-depot multi-school bus scheduling problem with the school bell time

optimization problem (MDSBSPTW) can be considered a real-world application of the

Multi-depot Vehicle Routing Problem with Time Windows (MDVRPTW), which is a

variant of the classic Vehicle Routing Problem. Therefore, first, an overview of the

classic Vehicle Routing Problem and the Multi-depot Vehicle Routing Problem is

provided. Then, the Multi-depot Vehicle Routing Problem with Time Windows

research is discussed. Finally, the School Bus Scheduling Problem and the School Bell

Time Optimization studies are reviewed.

2.1 Vehicle Routing Problem

Given a set of customers, Vehicle Routing Problems (VRPs) aim to find a set of optimal

routes that serve all the customers at minimum cost. It is one of the most important and

studied optimization problems and has wide applications in real-world systems (Toth

and Vigo, 2002). The basic configurations of the VRPs include a central depot,

deterministic demand, and a homogeneous fleet of vehicles. However, real-world

situations are often much more complicated. Therefore, different VRP variants are

proposed to accommodate different situations. The VRP variants are the basic VRP

with extra features such as heterogeneous vehicle capacity, customer time windows,

and multiple depots. Some of them are shown in Figure 3.

10

Figure 3. Variants of VRP

VRP variants can better describe the actual situation. For example, Dantzig and Ramser

(1959) first introduced the CVRP for the gasoline delivery truck dispatching problem.

They proposed a procedure based on a linear programming formulation to obtain a

near-optimal solution. Later, Clarke and Wright (1964) came up with a heuristic

method that is based on the “saving” concept to improve the solution. Since then, a

large number of methods and algorithms have been proposed to solve the VRP and its

variants. There are mainly three types of approaches, namely the exact methods,

heuristic methods, and metaheuristic methods.

Some popular exact methods include branch-and-bound, branch-and-cut, and branch-

and-cut-and-price. However, both the VRP and its variants are NP-hard such that the

exact methods are only powerful when the problem size is small. In general, these small

instances involve around 100 customers (Laporte et al., 2014). Otherwise, solving the

problem with the exact methods will become super time-consuming. Take CVRP, for

example. To the best of the author’s knowledge, the largest instance solved to

11

optimality with the exact method has 360 customers. The problem was solved with an

improved branch-and-cut-and-price algorithm by Pecin et al. (2017). However, it took

a very long time to reach optimality (162,405 seconds).

The heuristic or metaheuristic methods are proposed and widely used for large-scale

instances in practice, considering the tradeoff between computational speed and

solution quality. They are capable of quickly finding near-optimal solutions. Classical

heuristic methods include construction heuristics and improvement heuristics (Laporte

et al., 2014). As for metaheuristics, Simulated Annealing (SA), Tabu Search (TS),

Genetic Algorithm (GA), and Ant Colony Optimization (ACO) are most commonly

used. Those heuristics and metaheuristics can solve large-scale VRPs with nearly 500

customers (Kytöjoki et al., 2007; Laporte et al., 2014).

More recently, the interest in hybrid methods has grown rapidly due to their ability to

combine the advantages of different algorithms or techniques together (Subramanian

et al., 2013). Meta-meta hybridization is the commonly used one. For example,

Kytöjoki et al. (2007) presented a Variable Neighborhood Search (VNS) method

combined with a Guided Local Search (GLS) metaheuristic to prevent the local minima.

They can efficiently solve very large-scale real-life VRPs in a reasonable time. The

proposed hybrid method can solve the CVRP with up to 20,000 customers in about 144

minutes. Another hybridization is the metaheuristic, which combines the exact method

(i.e., the mathematical programming technique) and the heuristics (or the

metaheuristics). For example, Subramanian (2013) proposed a hybrid method that

12

combines a set partitioning model with an Iterated Local Search (ILS) heuristic for

solving a class of VRPs. The idea is to find and store sufficiently high-quality routes

(i.e., the columns of the set-partitioning model) based on the ILS and then solve the set

partitioning model with a MIP solver. Results showed that the solutions of some

benchmark examples could be improved based on the proposed metaheuristic. Other

best performing published methods include Knowledge-Guided Local Search (KGLS)

(Arnold and Sörensen, 2019), Slack Induction by String Removals (SISRs) (Christiaens

and Vanden Berghe, 2020), and the Partial Optimization Metaheuristic Under Special

Intensification Conditions (POPMUSIC) (Queiroga et al., 2021).

2.2 Multi-depot Vehicle Routing Problem

The Multi-depot VRP (MDVRP) is an extension of the basic VRP. In the MDVRP,

vehicles start from multiple depots to serve all the customers and are often required to

return to the same depot from which they start (Renaud et al., 1996). It has important

applications in the field of transportation, logistics, and distribution. For example,

logistics companies often operate from more than one distribution center (commonly

referred to as a depot) to efficiently transport goods to customers.

Let 𝐺𝐺(𝑉𝑉,𝐴𝐴) be a complete graph. 𝑉𝑉 is the vertex set which consists of a depot set 𝑆𝑆 =

{𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑛𝑛} and a customer set 𝑊𝑊 = {𝑤𝑤𝑛𝑛+1,𝑤𝑤𝑛𝑛+2,⋯ ,𝑤𝑤𝑛𝑛+𝑚𝑚}. In this case, there is a

total number of 𝑛𝑛 depots and 𝑚𝑚 customers. 𝐴𝐴 = {�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗�: 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗} is the arc

set and is associated with a travel time matrix (𝑐𝑐𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉, 𝑖𝑖 ≠ 𝑗𝑗). Based on this

graph, The MDVRP aims to optimize the vehicle routes such that (1) each customer

13

must be visited exactly once by any vehicle in the fleet, and (2) each vehicle starts from

a depot 𝑠𝑠𝑛𝑛 and is required to go back to 𝑠𝑠𝑛𝑛 after finishing its route. The objective can

be a single objective, such as minimizing the total traveling cost (i.e., traveling time or

distance) or minimizing the total number of vehicles. Or it can be a bi-objective

function that minimizes the total number of buses and the total traveling cost. Figure 4

is an example of a feasible solution for an MDVRP. There are 15 customers and three

depots. Five routes (i.e., the solid blue lines) are built to serve all those 15 customers

exactly once. And every vehicle starts and ends at the same depot.

Figure 4. Illustration of the MDVRP

As one variant of the VRP, the MDVRP is NP-hard. Thus, most studies worked on

developing heuristic and metaheuristic methods to find good solutions for relatively

large-scale instances in a short time. Despite this, some research studies focused on

exact methods. Pioneer works would be two branch-and-bound algorithms for solving

the symmetric version MDVRP (1894) and asymmetric version MDVRP (1988),

respectively (Laporte et al., 1984, 1988). More recently, Baldacci and Mingozzi (2009)

14

presented a unified exact method for solving several different classes of the VRP,

including MDVRP. The proposed method is based on the set partitioning formulation

with new proposed tight lower bounds. It can solve the instance with 199 customers

and four depots to optimality. Contardo and Martinelli (2014) also used the set-

partitioning formulation. Combined with a vehicle-flow formulation, the proposed

exact method can solve the MDVRP with capacity and route length constraints. Results

showed that it can provide stronger lower bounds and could solve some previously

unsolved open instances with the exact method. The largest instance it could solve

optimally had 240 customers and six depots. More recently, Ramos et al. (2020)

proposed a two-commodity flow formulation for the MDVRP considering a

heterogeneous vehicle fleet and maximum routing time. The proposed model was

tested on some benchmark instances and achieved better performances.

As for the heuristic methods, the cluster first-route second heuristic methods are widely

used. Specifically, “Cluster first” refers to decomposing the MDVRP into multiple

single-depot VRPs based on different customer allocation strategies, and then “route-

second” solves a VRP for each depot. The most straightforward customer allocation

strategy would be the nearest-depot assignment approach, firstly proposed by Tillman

(1969). It assigns the customers to their nearest depot and then adds refinements to

improve the solution (Salhi and Sari, 1997). Later, researchers took the customer

geographical distribution features into consideration and improved customer allocation

with some clustering methods or some assignment algorithms. The clustering methods

include the adaptive genetic clustering method (Salhi and Sari, 1997), the geometric

15

shape-based genetic clustering algorithm (Yücenur and Demirel, 2011), and the bi-

level Voronoi diagram (Tu et al., 2014). As for the assignment algorithms, Giosa et al.

(2002) proposed several measures for assigning a customer to a depot, such as an

assignment through urgencies, cyclic assignment, and assignment by clusters.

Metaheuristics can be the method of choice for efficiently solving large-scale instances

in a reasonable time and providing good solutions (Montoya-Torres et al., 2015). Two

often-used metaheuristics for the MDVRPs are Tabu Search (TS) (Renaud et al., 1996;

Escobar et al., 2014) and Genetic Algorithm (GA) (Ho et al., 2008; Vidal et al., 2012).

The TS algorithm is a local search method designed to avoid a local optimum based on

a flexible memory system. The GAs consist of several steps, such as mutation,

crossover, and selection. They are robust and effective but may have a slow

convergence speed. A nice review of the genetic algorithms for MDVRPs can be found

in the paper written by Karakatič and Podgorelec (2015).

Some bio-inspired metaheuristic methods are also very popular for solving the

MDVRPs. Those methods include the Ant Colony Optimization algorithm (ACO) and

the Antlion Optimization (ALO). The ACO is inspired by the ants’ foraging behavior,

and the pheromone is the key parameter that affects the ants’ route selection (Yu et al.,

2011; Demirel and Yilmaz., 2012). While the ALO is based on the ant hunting

mechanism of antlions which mainly consists of the random walk of the ants and the

entrapment and catching behavior of the antlions (Barma et al., 2019). Besides, Bezerra

et al. (2018) solved the MDVRP through a General Neighborhood Search (GVNS).

16

The GVNS has fewer parameters but can also achieve reasonable results. Sadati et al.

(2021) also work on solving the MDVRP using the VNS. They combined it with the

tabu shaking mechanism to improve both solution quality and mode running time.

Researchers also extend the basic MDVRP with additional constraints. Some

frequently used constraints are (1) depot (or vehicle) capacity; (2) fleet type

(homogeneous or heterogeneous); (3) time windows for customers; (4) route length

(i.e., traveling time or distance); (5) vehicles are not required to go back to the depots

from which they start (i.e., open VRP); (6) pickup and delivery demand at each

customer. A summary of some MDVRP variants is presented in Table 1.

17

Table 1. Summary of some MDVRP variants

Authors and

Year
Type of Problem Main Constraints Method Type

Method

(Algorithm)

Number of

Depots

Number of

Customers

Polacek et al.

(2004)
MDVRPTW Time windows for customers Heuristic Variable Neighborhood Search 4≤S≤6 48≤N≤288

Nagy and Salhi

(2005)
MDVRPPD

Vehicle capacity, minimum

and maximum loads for a

route

Heuristic Integrated Heuristic 2≤S≤5 50≤N≤249

Crevier et al.

(2007)
MDVRPI Inter-depot routes Heuristic Tabu Search 5≤S≤7 48≤N≤288

Bettinelli et al.

(2011)
MDHVRPTW

The time window for

customers; Heterogeneous

feet; route duration

Exact Branch-and-Cut-and-Price 2≤S≤6 25≤N≤100

Vidal et al.

(2012)
MDPVRP

Multiple periods (4 or 6

days), vehicle capacity, route

length

Heuristic Hybrid Genetic 4≤S≤6 48≤N≤288

Narasimha et al.

(2013)
min–max
MDVRP

Maximum route length Heuristic Ant Colony Optimization 3≤S≤5 80≤N≤140

18

Salhi et al.

(2014) MDHFVRP

Multiple vehicle types (5

types), vehicle capacity, route

length

Heuristic Variable Neighborhood Search 2≤S≤9 50≤N≤360

Wang et al.

(2016)

min-max
SDMDVRP-

MSTR

A customer can be visited

multiple times by different

vehicles, and route duration

Heuristic MD Heuristic 1≤S≤20 10≤N≤500

Alinaghian et al.

(2018) MDMCVRP

The cargo space of each

vehicle has multiple

compartments with a limited

capacity, vehicle route

duration, depot capacity

Heuristic
Hybrid Adaptive Large

Neighborhood Search
1≤S≤6 30≤N≤360

Zhou et al.

(2018) MD-TEVRP-DO

Two levels of routing

problems: depots-satellites

and satellites-customers.

Customers have two delivery

options (pick up/direct

delivery), vehicle capacity,

satellite capacity

Heuristic
Hybrid Multi-population

Genetic Algorithm

1≤S≤3

(4~12

satellites,

10~30 pickup

facilities)

50≤N≤200

Zhang et al.

(2019) MDGVRP

Refill the alternative fuel-

powered vehicles only at their

original depots

Heuristic Ant Colony System Algorithm 4≤S≤6 25≤N≤75

19

Brandão, J.

(2020) MDOVRP

Vehicles are not allowed to

return to the depot, and

vehicle capacity

Heuristic
Memory-based Iterated Local

Search
4≤S≤6 48≤N≤288

Sadati et al.

(2021)

MDVRPTW;

MDOVRP

Vehicle capacity, time

window, tour duration
Heuristic

Variable Tabu Neighborhood

Search
4≤S≤6 48≤N≤288

Note:

• MDVRPTW: MDVRP with time windows

• MDVRPPD: MDVRP with pickups and deliveries

• MDVRPI: MDVRP with inter-depot routes

• MDHVRPTW: Multi-depot heterogeneous vehicle routing problem with time window

• MDPVRP: Multi-depot periodic VRP

• min–max MDVRP: minimize the maximum distance traveled by any vehicle

• MDHFVRP: Multi-depot heterogeneous vehicle routing problem

• min-max SDMDVRP-MSTR: min-max split delivery multi-depot vehicle routing problem with minimum service time requirement

• MDMCVRP: Multi-depot multi-compartment vehicle routing problem

• MD-TEVRP-DO: Multi-depot two-echelon vehicle routing problem with delivery options for the last mile distribution

• MDGVRP: Multi-depot green vehicle routing problem

• MDOVRP: Multi-depot open vehicle routing problem

20

2.3 Multi-depot Vehicle Routing Problem with Time Windows

The Multi-depot Vehicle Routing Problem with Time Windows (MDVRPTW) is one

MDVRP variant. Besides the two basic constraints of the MDVRP, the additional

constraint defines a time window [𝑒𝑒𝑚𝑚, 𝑙𝑙𝑚𝑚] for each customer 𝑚𝑚 where 𝑒𝑒𝑚𝑚 and 𝑙𝑙𝑚𝑚 are

the earliest service time and latest service time, respectively. In this case, the customer

𝑚𝑚 can be served at any time in the given time window. Some real-life applications of

MDVRPTW are package delivery, school bus routing, and waste collection.

The MDVRPTW is NP-hard, and thus metaheuristics are widely used. Luo and Chen

(2014) proposed the Multi-Phase Modified Shuffled Frog Leaping Algorithm

(MPMSFLA) framework for solving both MDVRP and MDVRPTW. Sadati et al.

(2021) proposed an efficient Variable Tabu Neighborhood Search (VTNS) for solving

a class of MDVRPs, including MDVRP itself, MDVRPTW, and MDOVRP.

From another perspective, the MDVRPTW is also one variant of the VRPTW.

Therefore, some researchers designated a unified metaheuristic method for solving a

large class of VRPTWs and then applied it to MDVRPTW. For example, Cordeau et

al. (2001) proposed a unified Tabu Search (TS) algorithm and applied it to the VRPTW,

PVRPTW, and MDVRPTW. Later in 2004, they improved the TS for solving the

MDVRPTW with route duration constraints. More recently, they proposed a parallel

iterated Tabu Search heuristic for solving VRPTW, PVRPTW, MDVRPTW, and site-

dependent VRPTW. Experimental results showed that the proposed method could

21

improve the computational speed by fully using the multiple cores available on the

computers and provide competitive solutions (Cordeau et al., 2012).

Vidal et al. (2013) introduced a Hybrid Genetic Search with Advanced Diversity

Control (HGSADC) for a large class of VRPTW, including the MDVRPTW. The

proposed HGSADC can improve the solutions of some MDVRPTW benchmark

instances. Besides, the HCSADC also performs well on some newly proposed larger

instances with up to 960 customers, 12 depots, and two types of time windows. Besides,

they concluded that the distribution and tightness of the time windows might strongly

affect the performance of the methods and the quality of the solutions.

As for studies solely focused on the MDVRPTW, Polacek et al. (2004, 2008) first

applied the Variable Neighborhood Search (VNS) to the MDVRPTWs. Experiment

results showed that the VNSs are also powerful in solving the MDVRPTWs. Bettinelli

et al. (2011) worked on the MDVRPTW with a heterogeneous fleet, namely the

MDHVRPTW. They presented an exact algorithm, the branch-and-cut-and-price

algorithm, for solving the MDHVRPTW. The proposed exact method can solve the

problems with three types of vehicles, 100 customers and two depots. Without vehicle

type constraints, the largest instance it can solve has 96 customers and four depots. Li

et al. (2016) studied the MDVRPTW under shared depot resources, which allow

vehicles not to end at the depot from which they start. They solved the problem with a

hybrid genetic algorithm with an adaptive local search algorithm.

22

2.4 School Bus Scheduling Problem

In a school bus transportation system, bus stops are the essential elements to which

students are assigned. A trip is a sequence of bus stops and their designated school. A

bus route links several trips from different schools together and is assigned to a school

bus. Given the trip information and the school bell times, the Bus Scheduling Problem

(SBSP) aims to optimize bus schedules to serve all the trips.

The SBSPs could be classified based on the characteristics of the school bus

transportation system, such as (1) the total number of depots (single or multiple); (2)

the total number of schools (single or multiple); (3) district locations (urban or rural)

and (4) problem scope (morning or afternoon). Numerous works solve the single depot

problems in which each bus is required to start and end at the only depot (Kim, 2012;

Fügenschuh, 2009, 2011; Wang, 2019). Bektaş and Elmastaş (2007) also worked on a

single depot problem but considered the problem as an open VRP in which buses can

end their tours at any point other than the depot. Löbel (1998) worked on the multi-

depot vehicle scheduling problems in public transit. He formulated the problem as a

multi-commodity flow problem and solved it by column generation. However, to the

best of the authors' knowledge, no existing study is working on the multi-depot school

bus scheduling problem. As for the school settings of the SBSPs, early studies are

mainly on single-school problems (Park and Kim, 2010). As for the multi-school

problems, some research decomposed the problem into several single depot

subproblems (Chen et al., 2015). Others applied the metaheuristics (Braca et al., 1997).

23

Three nice reviews can be found in Park and Kim (2010), Wang et al. (2017), and

Ellegood et al. (2020).

The objective of the SBSPs could be set based on three criteria: efficiency,

effectiveness, and equity (Savas, 1978). To be specific, efficiency is related to the cost

of the school bus system. Numerous research studies have focused on efficiency. And

the most commonly used objectives are (1) to minimize the total number of buses; (2)

to minimize the total traveling cost (i.e., traveling distance or traveling time); or (3) to

minimize the weighted sum of the number of buses and the total vehicle traveling cost

(Wang, 2019). Effectiveness is evaluated by how well the demand is satisfied and thus

is related to students (Park and Kim, 2010). For example, one objective considering

effectiveness could be to minimize students’ walking distance. As for equity, it requires

the system to be balanced relative to the busload route duration (or distance). For

example, Shafahi et al. (2018) set the objective to minimize the total number of buses

while minimizing the maximum route duration.

A broad range of constraints can be added to the SBSP. One unique type of constraint

used in the SBSP is called trip compatibility constraint. As mentioned in Wang (2019),

the trip compatibility constraint ensures that only compatible trip pairs are considered

in the problem and thus helps to reduce the problem size. Other constraints include

vehicle capacity, time windows, and maximum bus route length (or duration). The time

window constraints are usually associated with school bell times and could potentially

reduce the total number of buses (Fügenschuh, 2009, 2011).

24

The SBSPs for homogeneous buses with fixed start and end times can be considered a

modified assignment problem or modified transportation problem (Kim et al., 2012).

However, it’s impossible to enumerate all possible routes for a large SBSP in a

reasonable time. Therefore, the column generation method, which only generates the

routes that have the potential to improve the objective function, becomes the

methodology of choice (Fügenschuh, 2011; Wang, 2019). Besides, some metaheuristic

methods are also used. For example, Chen et al. (2015) proposed a simulated annealing

algorithm to minimize the number of buses and the total travel distance for a single-

depot multi-school bus scheduling problem.

More recently, researchers have begun to consider the SBSP with stochasticity. Yan et

al. (2015) formulated the inter-school bus routing and scheduling problem with

stochastic travel time as a special multiple commodity network flow model. A heuristic

algorithm based on a problem decomposition technique and variable fixing method is

proposed and successfully solved a real-life problem with 400 passengers. Babaei and

Rajabi-Bahaabadi (2019) formulated the simultaneous school bus scheduling and

routing problem with stochastic time-dependent travel times as a bi-level problem and

solved by a heuristic method that is a combination of ant colony optimization and a

proposed route decomposition heuristic method. Wang et al. (2020) proposed a column

generation-based stochastic school bell time and bus scheduling optimization, which

also takes the stochastic travel time into account. Caceres et al. (2017) proposed a

chance-constrained programming approach for a general multi-depot multi-school bus

scheduling problem (MDSBSP) with the consideration of three types of uncertainty,

25

namely (1) the bus overcrowding condition; (2) the probability that a bus is late to

school; (3) the expected maximum ride time of a student on any bus. The MDSBSP is

first decomposed into several multi-depot single-school subproblems. And each

subproblem is then solved with a column-generation-based algorithm.

2.5 School Bell Time Optimization

In a particular district, the demand for school buses is usually unbalanced since the bell

times of most schools are around the same time. If we can change the bell time of some

schools, more trips will become compatible so that more trips can be linked together to

create a route for each bus. Therefore, the number of buses needed overall can be

potentially reduced. Though school bell time optimization is beneficial, only a few

studies have focused on school bell time optimization. All of them are under the single-

depot configuration to the best of the authors’ knowledge. Most of those studies

incorporated the school bell time optimization into the school bus scheduling problem

and formed the integrated model, namely SBSPTW. The SBSPTW is very difficult

because the schools and trips interact with each other. If the school bell times are

changed, then the trip starting times should be adjusted accordingly (Fügenschuh,

2011). Besides, when the schools have multiple trips, to ensure that all the students can

come to school (or go back home) on time, the starting times of the trips belonging to

the same school should be around the same time (Wang, 2019).

Fügenschuh (2009) formulated the integrated optimization of school starting times and

bus route schedules as an integer programming problem and solved it with branch-and-

26

cut techniques. The results showed that the integrated model could reduce the total

number of buses by 10-25%. Besides, wider school starting time windows may

potentially lower the number of buses needed overall but also make the problem more

difficult to solve (i.e., longer solution time and larger optimal gap). Later in 2011,

Fügenschuh presented a set partitioning relaxation formulation and a primal

construction heuristic to improve the solutions to the same problem (Fügenschuh,

2011). The largest real-world dataset used in both studies is collected in a German

county which contains 191 trips and 82 schools.

Kim et al. (2012) considered both SBSPTW with a homogeneous fleet and a

heterogeneous fleet. They solved the problems with assignment problem-based exact

method and heuristic method. Wang (2019) formulated an integrated deterministic

model to solve school bus routing, bell time, and scheduling, considering the maximum

ride time and vehicle time. Considering the stochasticity of the travel time, Wang and

Haghani (2020) proposed a column generation-based stochastic school bell time and

bus scheduling optimization. The proposed model has two stages in which the first

stage optimizes the bus schedules, and the second stage optimizes the bell time. The

model is tested on a real-world dataset from a public-school transportation system with

286 trips and 93 schools. Results showed that, on average, 20% of buses could be saved

with bell time optimization. Miranda et al. (2021) proposed three bell time strategies

for improving the efficiency of the rural school bus system in Brazil. Results showed

that the proposed bell time adjustment strategies could achieve up to 9% savings on the

total cost, including the fixed cost of buses and the traveling cost.

27

Bertsimas et al. (2019) consider the school bell time optimization as a subproblem of

their proposed bi-objective Routing Decomposition (BiRD) algorithm for optimizing

schools’ start times and bus routes. They first constructed several routing scenarios for

each school and then formulated the school bell time optimization as a multi-objective

generalized quadratic assignment problem. The proposed algorithm has been

implemented in Boston and has led to $5 million in yearly savings.

Changing school start times can also have some adverse effects on communities. For

example, later school start times might negatively interfere with students’ after-school

activities, and thus schools prefer schedules with lower absolute deviation in start times

from the current schedule (Banerjee and Smilowitz, 2019). Therefore, they aimed to

reduce the disutilities associated with changing school start times using a minimax

model and solved the model using a lexicographic minimax approach.

2.6 Research Gaps

This Chapter presented a literature review on the studies related to the school bus

scheduling problem and school bell time optimization, including the VRP, MDVRP,

MDVRPTW, SBSP, and SBSPTW. The developments of the solution methods and

algorithms for each of those problems are described.

According to the literature review, most of the existing approaches to the SBSP

formulate the problem as a single-depot problem to simplify the complicated real-world

28

situation. However, in reality, multiple depots may exist in the network, and vehicles

are required to operate from different depots.

Second, only a few studies work on school bell time optimization. One study solved it

as a subproblem, and the others incorporated the school bell time optimization into the

SBSP, which led to the SBSPTW. However, all the existing studies are based on the

single-depot configuration and solved as an SDSBSPTW. Therefore, incorporating the

school bell time optimization into the multi-depot multi-school bus scheduling problem

is a major challenge in this study. Although the existing studies can provide some

insights on how to optimize the school bell time, it is still a difficult task because (1)

each school may have multiple trips, and (2) schools and trips are coupled with each

other while the customers in the VRPTW are independent. How to synchronize the

starting time of the school and trips is also challenging.

Therefore, this research will try to address these problems. First, this study will focus

on the multi-depot bus scheduling problem (MDSBSP). Then, the school bell time

optimization will be incorporated into the multi-depot school bus scheduling problem

and form the integrated model, namely, the MDSBSPTW. The mathematical

formulation and the heuristic methods will be proposed to solve the MDSBSPTW. And

the performance of the proposed methods will be tested on different test problems.

29

Chapter 3: Problem Description and Model Formulation

This chapter proposes a mathematical formulation to solve the multi-depot multi-

school bus scheduling problem with school bell time optimization (MDSBSPTW).

First, the problem is thoroughly described, and the model’s assumptions are listed.

Then, the problem is formulated as a mixed-integer programming (MIP) problem. The

mathematical model formulation is presented along with the explanations. Depending

on the settings of the depot and the bell time window, the proposed MIP model can

solve the multi-depot problems with or without bell time optimization (MDSBSPTW

or MDSBSP) and the single-depot multi-school scheduling problems with or without

school bell time optimization (SDSBSPTW or SDSBSP).

3.1 Problem Description

In a particular multi-depot multi-school system, a bus trip includes a sequence of bus

stops and their designated school. For example, a bus trip in the afternoon starts from

a school and then visits several stops sequentially, dropping off students at each stop

until the bus becomes empty. A morning trip visits bus stops first and has school as the

last stop. This study assumes the trips are fixed (i.e., the visiting sequence of bus stops

on each trip is known). Based on the trip information, a bus route is a sequence of bus

trips from different schools that are linked together to be served by one bus. Each bus

route is then assigned to a single bus. Buses usually park at different depots. And each

bus is required to start and end at the same depot. Therefore, after each bus departs

30

from the depot, it serves one bus route by visiting multiple trips from various schools

in sequence, and after its journey, it will return to the same depot from which it starts.

This study aims to minimize both the total number of buses and the total deadhead

duration. The total deadhead duration is the total time buses run without students on

board. Take the bus route in Figure 5, for example. This route serves two bus trips,

namely Trip 𝐴𝐴 and Trip 𝐵𝐵. Specifically, Trip 𝐴𝐴 has five stops, and Trip 𝐵𝐵 has four

stops. And Trip 𝐵𝐵 follows Trip 𝐴𝐴. The total deadhead time of this route consists of:

(1) The total time traveling from the depot to the first stop of the first trip (Trip 𝐴𝐴);

(2) The total time traveling from the last stop of Trip 𝐴𝐴 to the first stop of Trip 𝐵𝐵;

(3) The total time traveling from the last stop of the last trip (Trip 𝐵𝐵) to the same

depot from which the bust starts.

Figure 5. Illustration of the total deadhead duration of a route

For simplification, we call the sum of deadhead (1) and deadhead (3) the deadhead

between trips and depots and call deadhead (2) the deadhead between trips.

31

We also incorporate the school bell time optimization into the school bus scheduling

problem. Even small changes in the school bell times can make more trips compatible.

Each bus route can become longer by serving more trips. Therefore, the overall number

of buses can be reduced. This study aims to solve the multi-depot multi-school bus

scheduling problem with bell time optimization (MDSBSPTW). The goal is to optimize

the bus schedules to serve all the trips at minimum cost and find the best school bell

time for each school within a given time window simultaneously.

3.2 Model Assumptions

Depots, schools, trips, and buses are the major components of this problem. The

following assumptions are made regarding each of these components.

1. Depots

• The depot locations are known;

• The capacity of each depot is known.

2. Schools

• Each school has a hard school bell time window;

• All the trips belonging to the same school depart at the school bell time.

3. Bus trips

• The trip information is known, including the sequence of visiting stops on

each trip and the location of the first stop and the last stop on each trip;

• Each trip has its fixed service time duration, and that is known.

By combining the location information of depots and trips (i.e., first stop and last stop),

the deadhead between trips and depots and the deadhead between any pair of trips can

32

be calculated from Google Map Distance API. Considering the stochasticity of travel

times, the option “travel time with traffic” is chosen.

4. Buses

• The fleet type is homogenous;

• The bus capacity is larger than the maximum load of the trips;

• All the buses arrive at schools on time;

• Every bus should start and end at the same depot.

5. Other assumptions

• Idle time is not considered in this study;

• Students have no special needs (homogeneous population).

3.3 Mathematical Formulation

3.3.1 Notation

Table 2 is a summary of the notations used in this model.

Table 2. Summary of the notations for the MIP model formulation

Variable Description

𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
Binary variable equals 1 if trip 𝑖𝑖 is served followed by trip 𝑗𝑗 on the same route

starting from depot 𝑠𝑠

𝑦𝑦𝑘𝑘 Integer variable, the school 𝑘𝑘’s bell time (or dismissal time)

Parameter Description

𝑆𝑆𝑆𝑆𝑆𝑆 Set of schools

𝑇𝑇 Set of bus trips

𝑆𝑆 Set of depots

𝑆𝑆𝑆𝑆 Set of start depot trip pairs

𝐸𝐸𝐸𝐸 Set of end depot trip pairs

𝐸𝐸 Set of possible compatible trip pairs when 𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇

33

𝐸𝐸′ Set of all the possible compatible trip pairs (𝑆𝑆𝑆𝑆 ∪ 𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸)

𝐴𝐴𝑘𝑘 Set of discrete school bell timestamps for school 𝑘𝑘

𝑡𝑡𝑡𝑡𝑖𝑖 The travel time of the trip 𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 The deadhead time from trip (or depot) 𝑖𝑖 to trip (or depot) 𝑗𝑗

𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 The earliest allowable bell time for school 𝑘𝑘

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 The latest allowable bell time for school 𝑘𝑘

𝜆𝜆 The minimum time interval

𝑂𝑂{𝑖𝑖} The school to which trip 𝑖𝑖 belongs

𝑀𝑀𝑏𝑏 The large coefficient for prioritizing the “total number of buses” term

𝑓𝑓𝑐𝑐 The operation cost per bus per day

𝑅𝑅𝑐𝑐 The traveling cost per minute

𝑀𝑀 A very large positive number (big-M)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 The maximum capacity of each depot 𝑠𝑠

The school bell time window is denoted by (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘,𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘), where 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 is the earliest

allowable bell time and 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 is the latest allowable bell time. Each school must start

(or dismiss) at some discrete timestamps in the given time window based on the

minimum time interval 𝜆𝜆. The minimum time interval 𝜆𝜆 can be set to any positive value,

such as one minute, five minutes, or 10 minutes. Once the minimum time interval 𝜆𝜆 is

chosen, the continuous time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘,𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘) is discretized into a set of discrete

timestamps as defined as 𝐴𝐴𝑘𝑘. And the elements in 𝐴𝐴𝑘𝑘 can be written as:

 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 + 𝑛𝑛 ∗ 𝜆𝜆 (3.1)

where 𝑛𝑛 ∈ �0, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘
𝜆𝜆

�, and integer.

For example, if the given bell time window of school 𝑘𝑘 is from 15:00 to 15:20, and the

minimum time interval 𝜆𝜆 is set to be one minute, then we will have 21 one-minute

discrete timestamps (e.g., 15:00, 15:01, and 15:02) that are just as well as continuous

time. Those discrete timestamps are included in 𝐴𝐴𝑘𝑘 and School 𝑘𝑘 can only dismiss at

34

one of those timestamps. But if the minimum time interval 𝜆𝜆 is set to be five minutes,

only five elements are in 𝐴𝐴𝑘𝑘, that is, 15:00, 15:05, 15:10, 15:15, and 15:20. School 𝑘𝑘

can only dismiss at one of those five timestamps. In this study, the minimum time

interval 𝜆𝜆 is set to be one minute.

The set of all the possible compatible trip pairs 𝐸𝐸′(𝑆𝑆𝑆𝑆 ∪ 𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸) includes the trip pair

(𝑖𝑖, 𝑗𝑗), which satisfies one of the following conditions:

• (𝑠𝑠, 𝑗𝑗) and ∀s ∈ S, 𝑗𝑗 ∈ 𝑇𝑇. This is the start depot trip pair and stored in set 𝑆𝑆𝑆𝑆.

• (i, 𝑠𝑠) and ∀𝑖𝑖 ∈ 𝑇𝑇, s ∈ S. This is the end depot trip pair and stored in set 𝐸𝐸𝐸𝐸.

• Trip pair (𝑖𝑖, 𝑗𝑗) ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 is compatible if 1) 𝑖𝑖, 𝑗𝑗 are not the same trip; and 2) the

departure time of trip 𝑖𝑖 plus the travel time of trip 𝑖𝑖 and the deadhead time from

trip 𝑖𝑖 to trip 𝑗𝑗 is less than or equal to the departure time of trip 𝑗𝑗 . These

compatible trip pairs are stored in set 𝐸𝐸.

Mathematically, it can be written as:

 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑂𝑂{𝑖𝑖} + 𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑂𝑂{𝑗𝑗},∀𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 (3.2)

Instead of enumerating all possible trip pairs, only compatible trip pairs in 𝐸𝐸′(𝑆𝑆𝑆𝑆 ∪

𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸) are used in the model. This can reduce the total number of variables.

3.3.2 Model Formulation

Based on the model assumptions, the mixed-integer programming (MIP) formulation

for solving the multi-depot multi-school bus scheduling problem with school bell time

optimization (MDSBSPTW) is presented below.

Objective

35

Minimize 𝑀𝑀𝑏𝑏� � 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝑇𝑇𝑠𝑠∈𝑆𝑆

+ � � 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′𝑠𝑠∈𝑆𝑆

 (3.3)

Or

Minimize 𝑓𝑓𝑐𝑐� � 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝑇𝑇𝑠𝑠∈𝑆𝑆

+ 𝑅𝑅𝑐𝑐� � 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′𝑠𝑠∈𝑆𝑆

 (3.4)

Subject to:

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑖𝑖:(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (3.5)

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
′

= 0,∀𝑠𝑠 ∈ 𝑆𝑆; 𝑗𝑗 ∈ 𝑇𝑇; 𝑠𝑠′ ∈ 𝑆𝑆 ∖ {𝑠𝑠} (3.6)

� � � 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑠𝑠∈𝑆𝑆𝑗𝑗∈𝑆𝑆𝑖𝑖∈𝑆𝑆

= 0 (3.7)

� 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑗𝑗:(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′

= � 𝑥𝑥ℎ𝑖𝑖𝑠𝑠
ℎ:(ℎ,𝑖𝑖)∈𝐸𝐸′

,∀𝑖𝑖 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆 (3.8)

� 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠
𝑗𝑗∈𝑇𝑇

= � 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑖𝑖∈𝑇𝑇

,∀𝑠𝑠 ∈ 𝑆𝑆 (3.9)

𝑦𝑦𝑂𝑂{𝑖𝑖} + 𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑀𝑀 × �1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 � ≤ 𝑦𝑦𝑂𝑂{𝑗𝑗} ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, 𝑠𝑠 ∈ 𝑆𝑆 (3.10)

� 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠
𝑗𝑗∈𝑇𝑇

,∀𝑠𝑠 ∈ 𝑆𝑆 (3.11)

𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸′, 𝑠𝑠 ∈ 𝑆𝑆 (3.12)

 𝐴𝐴𝑘𝑘 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 + 𝑛𝑛𝑛𝑛,𝑛𝑛 ∈ �0, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘−𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘
𝜆𝜆

� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (3.13)

𝑦𝑦𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (3.14)

As for the objective function, we have two forms. Both are used to minimize the total

number of buses and the total deadhead duration. Here the total deadhead duration

includes the deadhead time between trip pairs and the deadhead time between trips and

36

depots. The first objective function (3.3) is suited for prioritizing minimizing the total

number of buses by giving a very large coefficient 𝑀𝑀𝑏𝑏 to the “total number of buses”

term. This means that a bus scheduling plan with a shorter total deadhead time is worse

than the other plans with a higher total deadhead time but fewer buses. Because the

annual fixed cost for each bus is between $50,000 and $100,000 in the state of

Maryland (Shafahi et al., 2018), we choose 𝑀𝑀𝑏𝑏 as $ 80,000 in this study.

While the second one (3.4) is a cost function that minimizes the total bus operation cost

per day. Suppose the total school days of a certain year is 𝑑𝑑𝑠𝑠𝑠𝑠ℎ, then the operation cost

of each bus per day 𝑓𝑓𝑐𝑐 is $ (𝑀𝑀𝑏𝑏 𝑑𝑑𝑠𝑠𝑠𝑠ℎ⁄). The traveling cost per minute 𝑅𝑅𝑐𝑐 is set to be $1

per minute. More generally, 𝑓𝑓𝑐𝑐 and 𝑅𝑅𝑐𝑐 can also be considered as the weights of the two

terms in the objective function, respectively. Therefore, they can be set to any value

(even zero) for different research purposes (i.e., prioritizing either term).

Constraints (3.5) ensure that each trip can only be visited once. Constraints (3.6) show

the consistency of the depot index. Constraints (3.7) eliminate the traffic between

depots, which means that we cannot dispatch vehicles between depots. Constraints (3.8)

and (3.9) are the conservation of flow constraints for the trips and depots, respectively.

Constraints (3.10), (3.13), and (3.14) relate to bell time optimization. To be specific,

the school 𝑘𝑘’s bell time window is (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘), where 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 is the earliest allowable

bell time, and 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 is the latest permissible bell time. Based on the minimum time

interval 𝜆𝜆, which is set to be one min in this study, the continuous time window

37

(𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘) is discretized into a set of discrete timestamps as defined as 𝐴𝐴𝑘𝑘. And

Constraints (3.13) show the elements in 𝐴𝐴𝑘𝑘. Similar to Wang’s work (Wang, 2019),

Constraints (3.10) are the trip compatibility constraints. They ensure that for every

possible trip pair (𝑖𝑖, 𝑗𝑗), they are served on the same bus only if the finish time of Trip 𝑖𝑖

(i.e., its departure time 𝑦𝑦𝑂𝑂{𝑖𝑖} , plus its travel time 𝑡𝑡𝑡𝑡𝑖𝑖) plus the deadhead time from Trip

𝑖𝑖 to Trip 𝑗𝑗 (𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖) is less than or equal to the departure time of Trip 𝑗𝑗 (𝑦𝑦𝑂𝑂{𝑗𝑗}). Each school

is required to dismiss at only one of the discrete timestamps in 𝐴𝐴𝑘𝑘. Constraints (3.11)

are depot capacity constraints. The maximum capacity of each depot cannot be

exceeded. Constraints (3.12)-(3.14) are domain constraints.

The proposed MIP model can solve the SDSBSPTW if the depot set 𝑆𝑆 only has one

element. It can also solve the multi-depot problems (or single-depot problems) without

the bell time optimization if the bell time for each school is fixed at a particular

timestamp. For solving the problems without bell time optimization, we need to make

some changes in the formulation. Specifically, we don’t need the decision variable 𝑦𝑦𝑘𝑘

and the constraints (3.13) and (3.14). For Constraints (3.10), the school bell times 𝑦𝑦𝑂𝑂{𝑖𝑖}

and 𝑦𝑦𝑂𝑂{𝑗𝑗} should change to the given bell times of the schools to which Trip 𝑖𝑖 and Trip

𝑗𝑗 belong, respectively. Therefore, for the problems without bell time optimization, the

goal is only to find the best bus schedule that minimizes the total number of buses and

total deadhead duration under the given school bell time plan.

38

3.4 Summary

This chapter proposed a mixed-integer programming formulation for solving the

MDSBSPTWs. First, the problem was clearly stated. Then, the model assumptions

were introduced. Finally, the mathematical model was presented with a detailed

explanation of the objective function and the constraints. The objective function is to

minimize the total number of buses and total deadhead duration and has two forms for

different research purposes. One is used for prioritizing the total number of buses, and

the other is a cost function that minimizes the total bus operation cost per day. The

constraints mainly include the trip assignment constraints, conservation of flow

constraints for both depots and trips, trip compatibility constraints, depot maximum

capacity constraints, and the constraints for determining the best bell time for each

school. The proposed MIP model can also solve single-depot problems with school bell

time optimization and the problems without school bell time optimization.

39

Chapter 4: Two-Phase Heuristic Method

This chapter presents a two-phase heuristic method, that is, the first-route second-

assignment method, for solving the multi-depot multi-school bus scheduling problem

with school bell time optimization (MDSBSPTW). By adding a virtual depot and

ignoring all the depot information, the MDSBSPTW is first converted into a single-

depot multi-school bus scheduling problem with bell time optimization (SDSBSPTW)

formulated as a mixed-integer programming model in the first-route phase. The goal is

to use the minimum number of bus routes to serve all the trips. Then, those bus routes

are the input for the second-assignment phase that decides the best depot for each bus.

It is formulated as an integer programming model. We then introduce a Simulated

Annealing-based Greedy Algorithm method (SA-GDA) to solve large size

SDSBSPTWs more efficiently in the first-route phase. The SA-GDA method combined

with the assignment model proposed in the second-assignment phase is the improved

two-phase heuristic method. This chapter includes introductions to the proposed two-

phase heuristic method, model assumptions, the mathematical model formulations for

both phases, and detailed explanations of the SA-GDA framework.

4.1 Problem Description

The problem is the same as described in Section 3.1 in Chapter 3, which focuses on

developing an efficient bus plan for a multi-depot multi-school system and optimizing

the school bell times. The ultimate goal is to serve all the trips with a minimum number

of buses and deadhead duration and find the best bell time for each school.

40

4.2 Two-Phase Heuristic Method

We first present a two-phase heuristic method, the first-route second-assignment

approach for solving the MDSBSPTW. The goal is to solve large-size MDSBSPTWs

more efficiently than the MIP model proposed in Chapter 3. The general idea is to

construct a minimum number of bus routes to serve all the trips in the first-route phase.

And then, in the second-assignment phase, we decide on the best starting depot for each

bus. The key is to add a virtual depot in the first phase. The following subsections show

each phase’s input, constraints, objective, and output.

4.2.1 First-route Phase

By adding a virtual depot, the first-route phase is a single-depot multi-school bus

scheduling problem with bell time optimization (SDSBSPTW).

(1) Input: A virtual depot, bus trips, deadhead time between any pair of bus trips,

schools, and the given school bell time window for each school.

(2) Constraints:

1) Every trip should be served exactly once;

2) Each school bus is required to start its route from the virtual depot and

return to the virtual depot after serving several bus trips in sequence;

3) The bell time of each school is constrained within a given time window.

(3) Objective:

1) Minimize the total number of scheduled buses and the total deadhead

time between trips;

2) Find the best school bell time for each school.

41

(4) Output: School bus scheduling plan in which all the buses start from the virtual

depot and return to the virtual depot, and the school bell time for each school.

4.2.2 Second-assignment Phase

(1) Input: School bus scheduling plan from the first phase, the deadhead duration

matrix between trips and depots.

(2) Constraints:

1) Every bus should be assigned to only one depot;

2) The maximum capacity of each depot cannot be exceeded.

(3) Objective: Minimize the total deadheads between trips and depots.

(4) Output: The starting depot for each bus.

By combining the results from both phases, we can obtain the complete school bus

scheduling plan and the best bell time for each school. Specifically, the total number of

buses can be found from the outputs of the first-route phase. The total deadhead

duration is the sum of the deadhead between trips (from the first-route phase) and the

deadhead between trips and depots (from the second-assignment phase).

An example is shown in Figure 6. There are eight trips and three depots in the original

multi-depot problem. After adding a virtual depot and doing the first-route phase

optimization, results show that three bus routes are needed to serve those eight trips.

The first route (blue dot lines with arrow) serves three bus trips. The second route

(orange dot lines with arrows) serves four trips, and the final route marked in green

only serves one trip. Those three bus routes should start and end at the virtual depot in

42

the first phase. The second-assignment phase decides the starting depot for each bus

without violating the depot capacities. The solid lines with an arrow show the final

assignment. Those three buses are assigned to three different depots.

Figure 6. Example of the two-phase heuristic method for MDSBSPTW

When solving the MDSBSPTW with the proposed two-phase heuristic method, a

Mixed-integer Programming (MIP) model is formulated for the first-route phase, which

is an SDSBSPTW. It can also solve the problem without the bell time optimization (i.e.,

SDSBSP). And then, an Integer Programming (IP) model is proposed for the bus

assignment problem in the second phase. The assumptions and formulations for both

phases are provided in the following subsections.

4.3 Model Assumptions

Depots, schools, trips, and buses are the major components of this problem. The model

assumptions are the same in Section 3.2 in Chapter 3. A brief summary is provided

43

here. As for each depot, the location and the capacity are known. As for each school,

its bell time is constrained within a given time window. We set the minimum time

interval to be one minute, and then the bell time must be in discrete time slots of one

minute. Besides, each school may have multiple trips, and all the trips belonging to the

same school depart at the school bell time.

As for each trip, its travel time is fixed and known. And the trip information is known

as well, including the sequence of visiting the stops on each trip and the location of the

first stop and last stop on each trip. Based on the location of depots and trips, the

deadhead duration between trips and depots and the deadhead duration between trips

are queried from Google API. Specifically, the “travel time with traffic” in Google API

is chosen and used. As for buses, each bus has the same capacity (a homogeneous fleet)

and must return to the same depot from which it starts.

4.4 Mathematical Formulation

We first introduce the notations used in both phases (Table 3). Then, the MIP model

formulation for the first-route phase and the IP model formulation for the second-

assignment phase are provided.

4.4.1 Notation

Table 3 summarizes the notations used in this two-phase heuristic method. For the first-

route phase, we have two sets of decision variables, including 𝑥𝑥𝑖𝑖𝑖𝑖 for determining the

trip connection on each bus route and 𝑦𝑦𝑘𝑘 for determining the best bell time for each

44

school. While for the second-assignment phase, we only have one set of decision

variables called 𝑧𝑧𝑏𝑏𝑏𝑏 for assigning each bus 𝑏𝑏 to the best depot 𝑠𝑠.

Table 3. Summary of the notations for the two-phase model formulation
Variable Description

𝑥𝑥𝑖𝑖𝑖𝑖 Binary variable equals 1 if trip 𝑖𝑖 is served followed by trip 𝑗𝑗

𝑦𝑦𝑘𝑘 Integer variable, the school 𝑘𝑘’s bell time (or dismissal time)

𝑧𝑧𝑏𝑏𝑏𝑏 Binary variable equals 1 if bus 𝑏𝑏 is assigned to depot 𝑠𝑠

Parameter Description

𝑆𝑆𝑆𝑆𝑆𝑆 Set of schools

𝑇𝑇 Set of bus trips

𝑆𝑆 Set of depots

𝐵𝐵 Set of possible buses

𝑆𝑆′ The virtual depot

𝑆𝑆𝑆𝑆 Set of start depot trip pairs

𝐸𝐸𝐸𝐸 Set of end depot trip pairs

𝐸𝐸 Set of possible compatible trip pairs when 𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇

𝐸𝐸′ Set of all the possible compatible trip pairs (𝑆𝑆𝑆𝑆 ∪ 𝐸𝐸𝐸𝐸 ∪ 𝐸𝐸)

𝐴𝐴𝑘𝑘 Set of discrete school bell timestamps for school 𝑘𝑘

𝑡𝑡𝑡𝑡𝑖𝑖 The travel time of the trip 𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 The deadhead time from trip 𝑖𝑖 (or depot) to trip 𝑗𝑗 (or depot)

𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 The earliest allowable bell time for school 𝑘𝑘

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 The latest allowable bell time for school 𝑘𝑘

𝜆𝜆 The minimum time interval

𝑂𝑂{𝑖𝑖} The school to which trip 𝑖𝑖 belongs

𝑀𝑀𝑏𝑏 The large coefficient for prioritizing the “total number of buses” term

𝑓𝑓𝑐𝑐 The operation cost per bus per day

𝑅𝑅𝑐𝑐 The traveling cost per minute

𝑀𝑀 A large positive value (big-M)

𝑐𝑐𝑏𝑏𝑏𝑏
The sum of the deadhead from the last stop of the last trip on bus route 𝑏𝑏 to depot 𝑠𝑠

and the deadhead from depot 𝑠𝑠 to the first stop of the first trip on bus route 𝑏𝑏

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 The maximum capacity of each depot 𝑠𝑠

45

4.4.2 Model Formulation for First-route Phase

Objective

Minimize 𝑀𝑀𝑏𝑏� 𝑥𝑥𝑆𝑆′𝑗𝑗
𝑗𝑗∈𝑇𝑇

+ � 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 (4.1)

Or

Minimize 𝑓𝑓𝑐𝑐� 𝑥𝑥𝑆𝑆′𝑗𝑗
𝑗𝑗∈𝑇𝑇

+ 𝑅𝑅𝑐𝑐� 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐸𝐸

 (4.2)

Subject to:

� 𝑥𝑥𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑇𝑇∪𝑆𝑆′

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (4.3)

� 𝑥𝑥𝑗𝑗𝑗𝑗
𝑖𝑖∈𝑇𝑇∪𝑆𝑆′

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (4.4)

� 𝑥𝑥𝑖𝑖𝑆𝑆′
𝑖𝑖∈𝑇𝑇

= � 𝑥𝑥𝑆𝑆′𝑗𝑗
𝑗𝑗∈𝑇𝑇

 (4.5)

𝑦𝑦𝑂𝑂{𝑖𝑖} + 𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑀𝑀 × �1 − 𝑥𝑥𝑖𝑖𝑖𝑖� ≤ 𝑦𝑦𝑂𝑂{𝑗𝑗} ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 (4.6)

𝐴𝐴𝑘𝑘 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 + 𝑛𝑛𝑛𝑛,𝑛𝑛 ∈ �0,
𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘

𝜆𝜆
� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (4.7)

𝑦𝑦𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,∀𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 (4.8)

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇 ∪ 𝑆𝑆′ (4.9)

For multi-depot problems, we first introduce a virtual depot, and the objective is to

minimize the total number of buses and the total deadhead duration only between trips.

Similar to the MIP model presented in Chapter 3, we have two forms for the objective

function here as well. The first one (4.1) is suitable for prioritizing minimizing the total

46

number of buses by using the very large coefficient 𝑀𝑀𝑏𝑏. The second one (4.2) is a cost

function by adding the coefficient 𝑓𝑓𝑐𝑐 and 𝑅𝑅𝑐𝑐 for the “total number of buses” term and

the “total deadhead duration between trips” term, respectively. It is used to minimize

the total operation cost, including the bus cost and the deadhead travel per day.

But if the problem is a single-depot problem, the virtual depot is set to be the only

actual depot. Besides, instead of only minimizing the deadhead duration between trips,

we change the second term of the objective function (Eq.4.1 or Eq.4.2) to

∑ 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗)∈𝐸𝐸′ so that the total deadhead duration, including the deadhead between

trips and the deadhead duration between trips and depots, is minimized. Therefore, we

can directly get the final solution to the single-depot problems in the first-route route

without going into the second-assignment phase.

Constraints (4.3) ensure that each trip can only have one preceding trip. Constraint (4.4)

ensure that each trip can only have one succeeding trip. Constraints (4.5) show the

conservation of flow; that is, the total number of buses departing from the virtual depot

should be equal to those arriving at the depot. Based on the minimum time interval 𝜆𝜆,

which is set to be one minute in this study, the continuous time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘)

is discretized into a set of discrete timestamps stored in 𝐴𝐴𝑘𝑘. And Constraints (4.7) show

the elements in 𝐴𝐴𝑘𝑘. Constraints (4.6) are the trip compatibility constraints. They state

that for every possible trip pair (𝑖𝑖, 𝑗𝑗), They can be served on the same bus only if the

finish time of trip 𝑖𝑖 (i.e., its departure time 𝑦𝑦𝑂𝑂{𝑖𝑖} , plus its travel time 𝑡𝑡𝑡𝑡𝑖𝑖) plus the

deadhead time from trip 𝑖𝑖 to trip 𝑗𝑗 (𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖) is less than or equal to the departure time of

47

the trip 𝑗𝑗 (𝑦𝑦𝑂𝑂{𝑗𝑗}). And each school 𝑘𝑘 can only dismiss at one of the discrete timestamps

in 𝐴𝐴𝑘𝑘. Constraints (4.8)-(4.9) are domain constraints.

The proposed MIP model can also solve the problems without the bell time

optimization if the bell time for each school is known and fixed. The goal is to find the

best bus schedule that minimizes the total number of buses and the deadhead duration

between trips under the given school bell times. Therefore, we don’t need the decision

variable 𝑦𝑦𝑘𝑘 and the constraints (4.7) and (4.8). For Constraints (4.6), the school bell

times 𝑦𝑦𝑂𝑂{𝑖𝑖} and 𝑦𝑦𝑂𝑂{𝑗𝑗} should change to the given bell times of the schools to which Trip

𝑖𝑖 and Trip 𝑗𝑗 belong, respectively.

4.4.3 Model Formulation for Second-assignment Phase

Objective

Minimize � � 𝑐𝑐𝑏𝑏𝑏𝑏𝑧𝑧𝑏𝑏𝑏𝑏
𝑠𝑠∈𝑆𝑆𝑏𝑏∈𝐵𝐵

 (4.10)

Subject to:

� 𝑧𝑧𝑏𝑏𝑏𝑏
𝑠𝑠∈𝑆𝑆

= 1,∀𝑏𝑏 ∈ 𝐵𝐵 (4.11)

� 𝑧𝑧𝑏𝑏𝑏𝑏
𝑏𝑏∈𝐵𝐵

≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠,∀𝑠𝑠 ∈ 𝑆𝑆 (4.12)

𝑧𝑧𝑏𝑏𝑏𝑏 ∈ {0,1},∀𝑏𝑏 ∈ 𝐵𝐵,∀𝑠𝑠 ∈ 𝑆𝑆 (4.13)

48

The inputs for the second-assignment phase are the bus routes generated in the first-

route phase. Each bus route can only be assigned to one single bus. And the goal of this

phase is to determine the best depot for each bus without violating depot capacities.

The objective function of the second-assignment phase (4.10) minimizes the total

deadhead time between trips and depots. For each bus route 𝑏𝑏, it is the sum of the

deadhead duration from the first stop of the first trip on the bus route 𝑏𝑏 to the depot 𝑠𝑠

and the deadhead duration from the depot 𝑠𝑠 to the last stop of the last trip on the bus

route 𝑏𝑏. And Eq. 4.10 minimizes the deadhead duration for all the buses. Constraints

(4.11) ensure that each bus can only be assigned to one depot. Constraints (4.12) are

depot capacity constraints. Different buses can be assigned to the same depot, but the

total number of buses assigned to the depot can’t exceed the depot’s maximum capacity.

Constraints (4.13) are the domain constraints.

After finishing both phases, we can have the complete solution (i.e., the bus schedule

and the best bell time for each school). For multi-depot problems, the total number of

buses can be found from the first-route phase. The total deadhead duration is the sum

of the deadhead duration between trips (from the first phase) and the deadhead duration

between trips and depots (from the second phase). For single-depot problems, we can

directly get the complete solution after finishing the first-route phase.

49

4.5 Improved Two-Phase Heuristic Method

The first-route phase is an SDSBSPTW. Due to its NP-hard nature, it may not be

efficiently solved by the exact method when the problem size is relatively large or has

a large bell time window. Since the final goal of the first-route phase is to find the best

combination of school bell times such that the total number of buses and the deadhead

duration between trips are minimized, some local search strategies can be applied to

speed up the solution searching process. Therefore, we propose a hybrid heuristic

method, namely, the Simulated Annealing-based Greedy Algorithm (SA-GDA)

method, to replace the MIP model in the first-route phase for efficiently solving

complicated SDSBSPTWs. Since the SA-GDA is designed for the single-depot

problems, we still introduce a virtual depot for the multi-depot problems so that they

can be converted into a single-depot problem in the first-route phase. We keep the

assignment model in the second-assignment unchanged for determining the best depot

for each bus route. Therefore, the SA-GDA method combined with the assignment

model produces the improved two-phase heuristic method.

The SA-GDA method can solve the multi-depot bus scheduling problems with or

without bell time optimization and the single-depot bus scheduling problems with or

without bell time optimization. For problems with bell time optimization, the simulated

annealing algorithm tries out different school bell time plans. Under each fixed bell

time plan, the proposed greedy algorithm is used to find the best bus schedule. For

multi-depot problems with bell time optimization (i.e., MDSBSPTWs), the best bus

schedule is the one that minimizes the total number of buses and the deadhead duration

50

between trips (Eq.4.1 or Eq.4.2). But for single-depot problems (i.e., SDSBSPTWs),

there is only one depot in the system, and there is no need for doing the bus-depot

assignment later. Therefore, the virtual depot is set to be the actual depot, and the total

deadhead duration, including the deadhead duration between trips and the deadhead

duration between trips and depots, is calculated. So, for SDSBSPTWs, the results from

the SA-GDA method are the final solution. But for the MDSBSPTWs, the buses

obtained from the SA-GDA method should be assigned to different depots to minimize

the deadhead duration between trips and depots in the second phase. Then, the complete

solution to the MDSBSPTWs is obtained. For both MDSBSPTWs and SDSBPTWs,

after embedding the greedy algorithm into the simulated annealing algorithm

framework, the overall SA-GDA method compares different bus schedules and returns

the best one and its corresponding school bell time plan.

For problems without the bell time optimization (i.e., MDSBSP or SDSBSP), the

simulated annealing algorithm is not used as school bell times are given and fixed. Only

the greedy algorithm is used in the first-route phase. For MDSBSPs, the greedy

algorithm finds the best bus schedule that minimizes the total number of buses and the

deadhead duration between trips under the given school bell times. We then pass the

bus routes from the greedy algorithm to the assignment model in the second phase to

get the deadhead duration between trips and depots to obtain the final solution. But for

SDSBSPs, since there is only one depot, the virtual depot is set to be the only depot.

Without doing the extra depot assignment, we can directly use the greedy algorithm to

calculate the total deadhead duration, including the deadhead duration between trips

51

and the deadhead duration between trips and depots. Therefore, only using the greedy

algorithm in the first-route phase can obtain the final solution that minimizes the total

number of buses and the total deadhead duration for SDSBSPs.

4.5.1 Greedy Algorithm

The proposed Greedy Algorithm (GDA) is used to come up with the best bus schedule

that minimizes the total number of buses and the deadhead duration between trips (Eq.

4.1 or Eq. 4.2) for multi-depot problems. For single-depot problems, the goal is to

minimize the total number of buses and the total deadhead duration. The flow chart of

the proposed GDA method is shown in Figure 7.

If the total number of unique bell times in the school bus system is 𝑁𝑁, we then divide

the trips into 𝑁𝑁 different groups based on the bell time so that the trips in the same

group 𝑔𝑔𝑛𝑛 (𝑛𝑛 = 1,⋯ ,𝑁𝑁) have the same bell time. Those trip groups are saved in

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in ascending order of the bell time. Since the mixed load is not allowed, the

trips in the same group can’t be served on the same bus. In other words, 𝑁𝑁 is the

maximum length of a bus route. Figure 8 shows an example of an afternoon school bus

scheduling problem. We have four schools but only have three unique dismissal times.

Therefore, the total number of trips that each bus can serve cannot exceed three. For a

random trip 𝑖𝑖, its bell time, which is 𝐷𝐷𝐷𝐷𝑖𝑖, is in the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝑖𝑖)𝑡𝑡ℎ position among all the

bell times. Because the trip groups are ordered, the group to which trip 𝑖𝑖 belongs is

𝑔𝑔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐷𝐷𝐷𝐷𝑖𝑖). Besides, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 are used to store the used trips and the

built routes, respectively. The 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is returned after the GDA is finished.

52

Figure 7. Flow chart of the proposed GDA method

53

To minimize the total number of buses, we try to connect as many trips from different

trip groups as possible on a single bus. And the earlier bell time the first trip has, the

more trips the bus is more likely to serve. Therefore, after the bus 𝑤𝑤 leaving the depot,

the first trip 𝑡𝑡1 it serves is first randomly chosen from the group 𝑔𝑔1 in which trips have

the earliest bell time. Then, we check if any unused trips are compatible with trip 𝑡𝑡1. If

not, it is a single-trip bus (e.g., Bus 1 in Figure 8). We return it and start a new bus

route. As for the new route, if there are some unused trips in 𝑔𝑔1, the new bus route still

first serves the trip from 𝑔𝑔1 (e.g., Bus 2 and Bus 3). If all the trips in 𝑔𝑔1 have been used

and there are still trips unvisited, we start to build the bus route whose first trip is from

the next trip group 𝑔𝑔2 and so on. For example, the first trip on Bus 4 is from the group

𝑔𝑔2, while the first trip on Bus 5 is from the group 𝑔𝑔3.

Figure 8. Example of the proposed GDA method

If there are trips compatible with the first trip 𝑡𝑡1, we continue checking if any of those

trips are in the next group 𝑔𝑔2. If yes, we choose the one (trip 𝑡𝑡2) which minimizes the

deadhead duration 𝑑𝑑𝑑𝑑𝑡𝑡1,𝑡𝑡2. Otherwise, we move to the next group 𝑔𝑔3, do the same

54

check, and so on. By doing so, we connect more trips on a single bus and minimize the

total deadhead duration. Once trip 𝑡𝑡2 is determined, we seek the succeeding trip of the

trip 𝑡𝑡2 based on the same process. Once no more trips can be added to the bus route 𝑤𝑤,

we return it and start a new bus route. The set 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and all the trip groups keep

updating to ensure that each trip can only be visited once. The whole process is repeated

until all the trips are visited. And the set 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, which includes all the constructed

bus routes, is returned.

The size of the set 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the final total number of buses. Then, the total

deadhead duration between trips is calculated for the multi-depot problems. While the

total deadhead duration, including the deadhead between trips and the deadhead

between trips and depots, is calculated for the single-depot problems. We can combine

the total number of buses and the total deadhead duration between trips (or the total

deadhead duration) into one value 𝑍𝑍 based on Equation (4.1) or Equation (4.2) for

solution comparisons. The solution with a smaller 𝑍𝑍 is better.

4.5.2 Simulated Annealing Algorithm

The Simulated Annealing (SA) Algorithm is an iterative improvement algorithm that

imitates the annealing process in metallurgy (Kirkpatrick et al., 1983). Its strength is

that it can jump out of the local minima by accepting solutions that are worse than the

current solution with some probability. The original SA has been famous for its good

performance in solving some combinatorial problems such as Vehicle Routing Problem

(VRP), Travelling Salesman Problems (TSP), etc.

55

The temperature 𝑇𝑇 is the key parameter in the SA algorithm. The initial temperature 𝑇𝑇0

is usually set to a very high value and is cooled down very slowly until reaching the

frozen temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 according to a specific cooling schedule. At the initial

temperature 𝑇𝑇0 an initial state is randomly selected, and the resulting initial solution is

calculated. The state and the corresponding solution, take the TSP, for example, is a

permutation of the cities to be visited and the corresponding total traveling cost. The

neighboring states of the current state are the set of permutations produced based on

operations like swapping or reversing.

But the SA here is used to try out different bell time plans. Each state here refers to a

bell time vector 𝐷𝐷𝐷𝐷0 = {𝑎𝑎𝑘𝑘|𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆}, where 𝑎𝑎𝑘𝑘 is a randomly selected bell time for

school 𝑘𝑘 from the given bell time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘,𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘). The solution to each state

(i.e., each bell time plan) is the bus schedule that minimizes the total number of buses

and the total deadhead duration between trips (or the total deadhead duration for single-

depot problems) calculated based on the bell time vector 𝐷𝐷𝐷𝐷0 using the proposed GDA

method. Given the current state, we can create multiple new bell time vectors. Each

new bell time vector 𝐷𝐷𝐷𝐷 is called a neighboring state of the current state. For creating

a new bell time vector 𝐷𝐷𝐷𝐷, each school randomly chooses a new bell time from the

neighborhood of its current bell time. The neighborhood for each school is set to be

within ±5 min of its current bell time in this study. If the resulting 𝐷𝐷𝐷𝐷 is infeasible

(i.e., some schools’ new bell times violate the given bell time window), another random

bell time vector will be generated until feasibility is satisfied. Under the new feasible

bell time vector, the best bus schedule is also calculated using the GDA method.

56

Figure 9 shows an example of an afternoon school bus scheduling problem with

dismissal time optimization. There are three schools, and their original dismissal time

(in minutes) are 800, 830, and 900, respectively. The earliest dismissal time 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 and

the latest dismissal time 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 for each school are also given, which are ±30 min of the

original dismissal time. If we generate a neighborhood dismissal time vector as 803,

825, and 905, it is an acceptable neighborhood because (1) they all fall in the

corresponding dismissal time window (𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘) , and (2) each school has its

dismissal time changed within ±5 min of the current dismissal time. However, if the

neighborhood is generated as 806, 827, and 903, though they all fall in the given time

window, it is not acceptable as the change that school A made is beyond 5 min. A new

dismissal time vector must be generated until all requirements are satisfied.

Figure 9. Examples of the neighboring bell time vectors of a given bell time vector

A predetermined number of iterations are performed at each temperature of the SA

algorithm to determine the current best solution. At each iteration, the algorithm

randomly chooses one neighboring state (i.e., a new bell time plan) of the current state

(i.e., the current bell time plan) to generate a new solution (i.e., the bus schedule under

57

the new bell time plan) based on the proposed GDA method. If the new solution is

better than the current best solution, it replaces the current best solution. Otherwise, it

is accepted with some probability. The temperature will decrease, and the same process

will repeat at each temperature until the frozen temperature is reached. Then, the best

school bus schedule and the associated school bell time plan are returned.

4.5.3 Overall SA-GDA method

Figure 10 shows the pseudo-code of the proposed SA-GDA method. It is built based

on the framework of the SA algorithm. The GDA method is embedded into it to find

the best bus schedule under each bell time plan created by the SA method.

1 Initialize 𝑇𝑇0,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝛼𝛼,𝐾𝐾,𝑇𝑇 = 𝑇𝑇0, 𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

2 Construct an initial bell time 𝐷𝐷𝐷𝐷0

3 Calculate 𝑍𝑍0 based on the initial bell time 𝐷𝐷𝐷𝐷0 using the GDA method

4 while 𝑇𝑇 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

5 for 𝑖𝑖𝑖𝑖 = 0 to 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

6 Generate a neighbor bell time D𝑇𝑇

7 Calculate 𝑍𝑍 based on the bell time D𝑇𝑇 using the GDA method

8 if 𝑍𝑍 < 𝑍𝑍0

9 𝑍𝑍0 = 𝑍𝑍

10 B𝑇𝑇0 = 𝐵𝐵𝐵𝐵

11 else

12 Calculate probability 𝑝𝑝, 𝑝𝑝 = exp (𝑍𝑍0−𝑍𝑍
𝑇𝑇

)

13 if 𝑝𝑝 > 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[0, 1]

14 𝑍𝑍0 = 𝑍𝑍

15 𝐷𝐷𝑇𝑇0 = 𝐷𝐷𝐷𝐷

16 𝑇𝑇 = 𝛼𝛼𝛼𝛼
Figure 10. Pseudocode of SA-GDA method

58

We first initialize the initial temperature 𝑇𝑇0, the frozen temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, the constant

𝐾𝐾 (𝐾𝐾 = 1 in this study. In nature, it is Boltzmann’s constant), and the maximum

iterations 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 performed at each temperature. Based on previous studies and

preliminary experiments, 𝑇𝑇0 is set such that a solution 20% worse than the initial

solution has a 50% chance to be accepted and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is set such that a solution that is

inferior by 1% relative to the current solution is accepted with a probability of 0.1%

(Wei et al., 2018). The geometric cooling schedule (𝑡𝑡 = 𝑡𝑡 ∗ 𝛼𝛼) is chosen to decrease

the temperature gradually, and the cooling rate 𝛼𝛼 is set to be 0.95.

The SA algorithm starts with a random initial bell time vector 𝐷𝐷𝐷𝐷0 = {𝑎𝑎𝑘𝑘|𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆},

where 𝑎𝑎𝑘𝑘 is a randomly selected bell time for school 𝑘𝑘 from the given bell time window

(𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘). The initial solution 𝑍𝑍0, which is the best initial bus schedule, is obtained

by the proposed GDA method. Starting at the initial temperature 𝑇𝑇0, we conduct 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

attempts and then decrease the temperature according to the geometric cooling schedule.

At each attempt, we randomly generate a new bell time vector 𝐷𝐷𝐷𝐷 in a neighborhood

of the current bell time vector. The neighborhood refers to being within ±5 min of the

current bell time for each school. If the resulting 𝐷𝐷𝐷𝐷 is infeasible (i.e., the resulting bell

time of some schools violates the given bell time window), another random bell time

vector 𝐷𝐷𝐷𝐷 will be generated until feasibility is satisfied. Then, we compute the new

solution 𝑍𝑍 based on 𝐷𝐷𝐷𝐷 . If 𝑍𝑍 < 𝑍𝑍0 the new solution is unconditionally accepted.

Otherwise, the worse solution is accepted with the probability 𝑝𝑝 = exp ((𝑍𝑍0 − 𝑍𝑍) 𝑇𝑇⁄).

The algorithm is terminated once the frozen temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is reached. And the best

school bell time plan and its corresponding school bus schedule are returned.

59

For the single-depot problems, the result from the SA-GDA method is the final solution

that minimizes the total number of buses and the total deadhead duration. But for the

multi-depot problems, we still need to move on to the second-assignment phase to do

the bus-depot assignment. The buses from the SA-GDA method are the input for the

assignment model in the second-assignment phase. The output is the depot-bus

assignment that minimizes the total deadhead duration between trips and depots.

Combining the results from both phases gives us the final solution.

4.6 Summary

This chapter proposed a two-phase heuristic method, the first-route second-assignment

heuristic, to solve the MDSBSPTWs. The first-route phase is an SDSBSPTW and is

formulated as a mixed-integer programming model. The second-assignment phase is a

bus assignment problem that assigns the buses to the depots and is formulated as an

integer programming model. The developed mathematical models were presented with

a detailed explanation of the objective function and constraints.

Then, we proposed a Simulated Annealing-based Greedy Algorithm method (SA-GDA)

to solve large size SDSBSPTWs efficiently in the first phase. The greedy algorithm,

simulated annealing algorithm, and SA-GDA method were explained in detail.

Combined with the second-assignment phase, we have the improved two-phase

heuristic method. Both the two-phase heuristic method and the improved two-phase

heuristic method can also solve SDSBSPTWs or the problems without the bell time

optimization with some modifications.

60

Chapter 5: Tabu Search-based Ant Colony Optimization

This Chapter presents a solution for the MDSBSPTWs without dividing the problem

into different phases. It is the Tabu Search-based Ant Colony Optimization (TS-ACO)

method. The TS-ACO method is under the Tabu Search framework, in which the Tabu

Search (TS) method is used to examine different school bell time plans. Under each

school bell time plan, the ACO method is used to find the best bus schedule that

provides the minimum number of buses and total deadhead duration.

5.1 Ant Colony Optimization

Ant Colony Optimization (ACO) was first introduced by Dorigo and colleagues (1996).

It is a population-based metaheuristic that efficiently uses probabilistic techniques to

find approximate solutions to complex optimization problems. ACO mimics the

foraging behavior of real ants for seeking the shortest path between their colony and

the food. Ants start from the nest and initially explore the environment randomly. For

ants that have found the food, they will deposit the chemicals called pheromone on the

ground for guiding other ants in finding food. And ants are more likely to follow the

paths with higher pheromone levels. It turns out that the ant that has discovered a

shorter or more efficient path between the food source and nest can commute between

the food source and nest more frequently than another that uses a longer route. This

makes the shorter path has a higher pheromone level which is more attractive to the

other ants. And as more ants use a path, the pheromone level of that path grows stronger.

61

Therefore, the solution (i.e., the path from the nest to the food source) can be gradually

improved, and the shortest path can be identified eventually.

For solving the MDSBSPs using ACO, we assume that there are several ants in the nest,

and each ant represents a solution. A solution includes the bus routes that visit all the

trips without violating the depot capacity constraints and the trip compatibility

constraints. Because all the trips are visited, it is also called a complete tour of the ant.

For building such a tour, we first transform the school bus scheduling problem into a

Time-dependent Directed Scheduling Graph where each node is a trip, and the directed

edges are the compatible trip pairs (Haghani and Banihashemi, 2002). This guarantees

trip compatibility. In the constructed graph, the nodes (i.e., the bus trips) are the food

sources, and each ant should visit all of them in its tour. As there is more than one

depot in the MDSBSP, we consider the multiple depots as the nest’s different entrances

(or exits), and ants can randomly choose a depot to start their journey.

Since each node in the graph (i.e., each bus trip) should be visited exactly once without

violating the trip compatibilities, the ant may need to build several routes to visit all the

trips. The ant can randomly choose a depot to start for each route without violating the

depot capacity constraints. Besides, it should start and end at the same depot.

Determining the trips visited on each route is based on trip compatibility and the

probability related to the pheromone level and visibility level. This will be introduced

in detail in the following subsections. A complete tour for a two-depot seven-trip

problem is shown in Figure 11. We assume the depot capacity for each depot is two.

62

Figure 11. An example of the ant's complete tour

If we have 𝑛𝑛 trips and 𝑚𝑚 depots in a particular school bus system, we use numbers 1 to

𝑛𝑛 to represent trips and 𝑛𝑛 + 1 to 𝑛𝑛 + 𝑚𝑚 to represent depots. In the example shown in

Figure 11, the ant first chooses to start from Depot 1 (i.e., the first element of the first

route, 8 − 7) and serves Trip 1, Trip 4, and Trip 6 in sequence without violating trip

compatibility constraints. Since every trip can only be visited once, the succeeding trip

𝑗𝑗 should be labeled as visited when the ant moves from Trip 𝑖𝑖 to Trip 𝑗𝑗 and should

never be revisited. Once no more trips can be added to the route, the ant must return to

the same depot where it starts, namely Depot 1. And the capacity of Depot 1 should

decrease by one. Since each depot still has some capacity, the ant can randomly choose

a depot to continue its journey. It starts from Depot 2 for its second route, covering

another two trips. The capacity of Depot 2 should be updated to one. The final route

starts and ends at Depot 1 and includes the remaining two trips. Overall, the ant needs

three routes to visit all the trips. And the depot capacities are 0 and 1 at the end,

respectively. Because we build the routes based on trip compatibility constraints,

ensure that each trip can be only visited once, and keep updating depot capacity, the

feasibility of the complete tour is guaranteed. After having the complete tour, the

corresponding total deadhead duration is also calculated and saved.

63

It should be noticed that Figure 11 only illustrates one complete tour created by one

ant. Since we assume multiple ants are in the nest, each ant will build such a tour. Their

solutions will be compared, and the best one will be returned. The detailed process of

the proposed ACO method is described in the following subsections.

5.1.1 Initialization

For using the proposed ACO method to solve the MDSBSPs, we should first initialize

some parameters shown in Table 4.

Table 4. Parameters of the ACO

Parameter Description Value

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 Maximum number of iterations 100

𝐴𝐴𝑛𝑛 Number of ants 20~30

𝛼𝛼 The magnitude of the pheromone intensity 10

𝛽𝛽 The magnitude of visibility 2

𝜌𝜌 Evaporation rate of the pheromone 0.1

We perform the ACO for at most 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 Iterations to gradually improve the solution.

The algorithm may stop earlier if there is no significant improvement after a

predetermined maximum number of iterations. Specifically, if the improvement is less

than 1% after five consecutive iterations, the whole procedure of the proposed ACO

will stop. A total number of 𝐴𝐴𝑛𝑛 ants are required to build their own complete tour at

each iteration. The tour construction process can be broken down into a series of node-

to-node movements for each ant. Given the current node 𝑖𝑖, the next node 𝑗𝑗 is chosen

based on some probability related to the pheromone intensities and the visibility

intensities. The parameters 𝛼𝛼 and 𝛽𝛽 are the magnitudes for the pheromone intensities

and the visibility intensities in the probability function, respectively.

64

We also consider pheromone evaporation in the proposed ACO. Based on the

pheromone evaporation rate 𝜌𝜌 (0 < 𝜌𝜌 < 1), the pheromone intensities of each arc will

evaporate gradually based on some rules described in subsection 5.1.4. It can help to

reduce the probability of early convergence to a locally optimal solution. After a series

of tests on the value of those parameters, we chose the final values that gave the best

results and listed them in Table 4.

5.1.2 Solution Construction

A total number of 𝐴𝐴𝑛𝑛 ants are used to create ant solutions at each iteration. Each ant is

required to build a complete tour (i.e., visit all the trips) without violating the depot

capacity constraints and the trip compatibility constraints. For each ant 𝑘𝑘, Figure 12

shows the solution construction process.

For each ant 𝑘𝑘, the tour construction process can be broken down into a series of node-

to-node movements. It first starts from a randomly chosen depot 𝑠𝑠. Then, it determines

the subsequent trips to visit. Generally, the visiting sequence of the trips on each route

is determined based on the probability function given in Eq. 5.1, where 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 (or 𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘) is

the probability of the ant 𝑘𝑘 determining the next trip 𝑗𝑗 at the current trip 𝑖𝑖 (or depot 𝑠𝑠).

Since all the bus routes are required to start and end at the same depot, we assume that

the ant will directly return to its starting depot if no more trips can be added to the

existing route. Therefore, we don’t calculate the pheromone intensity and the visibility

level between the last trip 𝑖𝑖 of a route and the depot 𝑠𝑠, and the corresponding 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 .

65

𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 = �
𝜏𝜏𝑖𝑖𝑖𝑖𝛼𝛼𝜂𝜂𝑖𝑖𝑖𝑖

𝛽𝛽

∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝛼𝛼𝜂𝜂𝑖𝑖𝑖𝑖
𝛽𝛽

𝑙𝑙∈𝑁𝑁𝑖𝑖
𝑘𝑘

0,

,
 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖𝑘𝑘

(5.1)

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

where 𝜏𝜏𝑖𝑖𝑖𝑖 and 𝜂𝜂𝑖𝑖𝑖𝑖 are the pheromone intensity and visibility level of edge 𝑖𝑖𝑖𝑖 ,

respectively. If the ant is currently at the depot 𝑠𝑠, then 𝜏𝜏𝑠𝑠𝑠𝑠 and 𝜂𝜂𝑠𝑠𝑠𝑠 are the pheromone

intensity and visibility level between the depot 𝑠𝑠 and the trip 𝑗𝑗. 𝑁𝑁𝑖𝑖𝑘𝑘 is the feasible set

including ant 𝑘𝑘’s all the unvisited trips 𝑙𝑙 that are compatible with the current trip 𝑖𝑖.

Figure 12. The solution generation process of each ant

66

We need to initialize all the edges’ pheromone intensities and visibility levels before

the algorithm starts. The initial visibility levels are initialized differently for depot-trip

pairs and trip-trip pairs. The initial visibility value 𝜂𝜂𝑖𝑖𝑖𝑖 between any two trips 𝑖𝑖 and 𝑗𝑗 is

simpler, which is 𝜂𝜂𝑖𝑖𝑖𝑖 = 1
𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖

 where 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is deadhead duration between trip 𝑖𝑖 and trip 𝑗𝑗.

It is used to represent travel desirability. The shorter the deadhead duration 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is, the

more the ant is willing to choose the edge from trips 𝑖𝑖 to trip 𝑗𝑗.

As for the initial visibility value 𝜂𝜂𝑠𝑠𝑠𝑠 between the depot 𝑠𝑠 and the trip 𝑖𝑖, it is calculated

as 𝜂𝜂𝑠𝑠𝑠𝑠 = 1
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠

(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), where

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 is the deadhead duration between the depot 𝑠𝑠 and the trip 𝑖𝑖, and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the

latest bell time of the given school bus system. One way to reduce the total number of

routes is to make individual routes longer, allowing the ant to serve more trips in a

single route. To achieve this, the bell time of the first trip 𝑖𝑖 on the route should be as

early as possible. The additional term in the 𝜂𝜂𝑠𝑠𝑠𝑠 as compared to 𝜂𝜂𝑖𝑖𝑖𝑖 , namely

(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), shows the sequence of

trip 𝑖𝑖’s bell time in the whole system. If the bell time of trip 𝑖𝑖 is among the earliest ones,

the value of (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) will be

large, which will give us a high visibility value 𝜂𝜂𝑠𝑠𝑠𝑠. This makes trip 𝑖𝑖 more likely to be

chosen as the first trip on a bus route. As a result, the corresponding bus route can

connect more trips and help potentially reduce the total number of buses.

67

The initial values of the pheromone intensities can be set to be some constants (Jabir et

al., 2017). Or they can be determined based on some heuristic methods (e.g., the nearest

neighbor heuristic) to accelerate the convergence of the ACO (Gambardella et al.,

1999). We generate initial pheromone intensities for the proposed ACO using the

Greedy Algorithm (GDA) proposed in Chapter 4. But the GDA is designed for solving

the single-depot multi-school bus scheduling problems. It can only determine the

connections among trips (i.e., the depot for each bus route is unknown). Therefore, we

assign each bus to its nearest depot after obtaining the incomplete bus routes from the

GDA method. Once the bus routes are fully determined, we calculate the total deadhead

duration 𝑇𝑇𝑇𝑇, including the total dead duration between trips and the total deadhead

duration between trips and depots. And then the initial pheromone intensity 𝜏𝜏𝑖𝑖𝑖𝑖 of edge

𝑖𝑖𝑖𝑖 is calculated based on the formula 𝜏𝜏𝑖𝑖𝑖𝑖 = 1
𝑇𝑇𝑇𝑇

.

However, 𝑇𝑇𝑇𝑇 is much larger than the deadhead between each pair of nodes 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 (or

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠), so the initial pheromone value 𝜏𝜏𝑖𝑖𝑖𝑖 (or 𝜏𝜏𝑠𝑠𝑠𝑠) will be much smaller than the initial

visibility value 𝜂𝜂𝑖𝑖𝑖𝑖 (or 𝜂𝜂𝑠𝑠𝑠𝑠). Especially for the edges between depots and trips, after

considering the difference between the bell time of the trip 𝑖𝑖 and the latest bell time in

the system, the visibility value 𝜂𝜂𝑠𝑠𝑠𝑠 will be much larger than 𝜏𝜏𝑠𝑠𝑖𝑖. This will make the

visibility value dominate the ant’s edge selection and make pheromone intensities

useless. Therefore, we add a coefficient to the original formula for calculating the initial

pheromone intensity 𝜏𝜏𝑖𝑖𝑖𝑖 (including 𝜏𝜏𝑠𝑠𝑠𝑠), which is 𝜏𝜏𝑖𝑖𝑖𝑖 = 1
𝑇𝑇𝑇𝑇
∗ 100 . By doing so, the

initial pheromone value and the initial visibility value can have the same magnitude so

that both terms can be effective for guiding the ants to find the shorter path.

68

Based on the initial pheromone intensities, initial visibility levels, and the

corresponding magnitude 𝛼𝛼 and 𝛽𝛽, we can calculate the initial probability matrices

between depot to trip (𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘) and trip to trip (𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘). Then, ant 𝑘𝑘 can begin its tour

construction. It will start from a randomly selected depot 𝑠𝑠 and then determine the first

trip 𝑖𝑖 based on the probability 𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘 . Suppose a trip 𝑖𝑖 has an earlier bell time, a higher

pheromone intensity between itself and the depot 𝑠𝑠, and a shorter deadhead duration

between itself and depot 𝑠𝑠. In that case, it will be of higher probability to be chosen as

the first trip of the ant’s first route due to a high probability 𝑝𝑝𝑠𝑠𝑠𝑠𝑘𝑘 . After determining the

first trip 𝑖𝑖, the ant 𝑘𝑘 starts its first route by moving from depot 𝑠𝑠 to trip 𝑖𝑖. The depot 𝑠𝑠’s

capacity is reduced by one. On the first trip 𝑖𝑖, The ant searches for the next possible

trip 𝑗𝑗 based on the probability 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 . This procedure continues until no more compatible

trips can be added to the current route. Then, the ant returns to the starting depot 𝑠𝑠.

After returning to the nest, the ant starts its second route from one of those depots that

still have capacities. The depot capacity is updated, and the above process is repeated

for finishing the second route. For building a complete tour that visits all the trips, the

whole solution construction process of the ant 𝑘𝑘 is continued until all the trips are

visited exactly once. When all the trips are visited, the algorithm computes the total

number of bus routes and the corresponding total deadhead duration.

For each iteration, a total number of 𝐴𝐴𝑛𝑛 ants build their own complete tour based on

the above procedures. The one with the minimum objective (i.e., the minimum number

69

of buses and the total deadhead duration) in the current iteration is compared with the

best solution so far. If there is any improvement, the best solution is updated and stored.

Then, we start the next iteration. The procedure is repeated till the algorithm’s stopping

rules are reached. Two stopping criteria are used in this algorithm: (1) the maximum

number of iterations 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is reached, and (2) the maximum number of iterations

with no significant improvement is reached. For (2), if the improvement is less than 1%

after five consecutive iterations, the procedure will stop.

5.1.3 Local Search Procedures

After obtaining the current best solution from the ACO of each iteration, we

sequentially apply three local search schemes to improve the solution. They include

trip-shift, bus assignment, and trip-swap procedures. First, without considering the

current bus-depot assignment, the trip-shift operation is conducted to mainly reduce the

total number of buses. Second, the bus assignment scheme determines the best depot

location for each bus route. At last, the trip swap operator mainly reduces the deadhead

duration within the bus routes belonging to each depot. The details of those local search

procedures are shown below.

(1) Trip-shift procedure

The trip shift operator is mainly used to reduce the number of bus routes. For using it,

we need to first ignore the current depot assignment plan from the ACO and only focus

on the trip connections on the bus routes. To be specific, we randomly choose two bus

routes (𝑟𝑟1 and 𝑟𝑟2) every time. A total number of 𝑢𝑢 trips (in this study, 𝑢𝑢 is set to 1) is

removed from the route 𝑟𝑟1 and is inserted into the route 𝑟𝑟2 without violating the trip

compatibilities. There are three main possible outcomes:

70

• Case I: One new route 𝑟𝑟1′ or 𝑟𝑟2′, regardless of the changes in total deadhead

duration (the total deadhead duration can be increased or decreased).

Figure 13. Output case I after the trip-shift operation

An example of Case I is shown in Figure 13. We first randomly choose two routes.

Those two routes serve one trip and two trips, respectively. During the trip-shift

operation, Trip 𝑡𝑡1 from the first route is chosen. Luckily, it is compatible with Trip 𝑡𝑡2

and Trip 𝑡𝑡3 on the second route. Therefore, it is removed from the first route and

inserted into the second route. This eliminates the first route while making the second

route longer. The new route is saved, and the original two routes are deleted. We don’t

care about the changes in the deadhead duration here because the main goal of the trip-

shift operation is to reduce the total number of buses.

• Case II: Two new routes 𝑟𝑟1′ and 𝑟𝑟2′, and the total deadhead duration of those two

new routes is less than that of the original two routes.

An example of Case II is shown in Figure 14. Two routes are randomly chosen at first.

The deadhead duration between trips for each of those two routes is 20 minutes and 25

71

minutes, respectively. Trip 𝑡𝑡5 from the second route is chosen during the trip-shift

operation. Since Trip 𝑡𝑡5 is compatible with Trip 𝑡𝑡2 on the first route, we remove it from

the second route and insert it into the first route. After the trip-shift operation, the total

number of buses is still two. The deadhead duration between trips for the two new

routes is 27 minutes and 15 minutes, respectively. And the total deadhead duration

between trips of those two new routes is 42 minutes which is smaller than the original

two routes (i.e., 45 minutes). Therefore, we accept the two new routes and save them

while deleting the original two routes.

Figure 14. Output case II after the trip-shift operation

• Case III: Two new routes 𝑟𝑟1′ and 𝑟𝑟2′, and the total deadhead duration of those

two new routes is larger than that of the original two routes.

Based on the same example of Case II, if the deadhead duration between trips for the

two new routes is 27 minutes and 20 minutes, respectively (Figure 15). Then, the total

deadhead duration between trips of those two new routes is 47 minutes which is larger

than the original two routes (i.e., 45 minutes). In this study, if the total deadhead

72

duration is slightly larger than the original deadhead duration (the difference is set to

be 5~10 min in this study), we still accept the two new routes. Otherwise, we should

reject the two new routes and keep the original two routes unchanged.

Figure 15. Output case III after the trip-shift operation

As a result, since we are interested in searching for better solutions, if the total number

of routes is reduced (i.e., Case I), we accept the new route (𝑟𝑟1′ or 𝑟𝑟2′) regardless of the

deadhead duration of the new route. For Case II, though the total number of routes is

unchanged, the total deadhead duration is reduced. We also accept the new routes.

However, for case III, the new solution after the trip shift operation is worse than the

original one. We will accept it only if the total deadhead duration is slightly larger than

the original deadhead duration (the difference is set to be 5~10 min). We accept this

“bad” move for potentially reducing the buses later. An example is shown in Figure 16.

Otherwise, the resulting inferior solution is discarded.

As shown in Figure 16, three routes were generated after the ACO method. The

deadhead duration between trips for those routes is 15 minutes, 10 minutes, and 9

73

minutes, respectively. First, the first and the second routes are chosen for the trip-shift

operation. Trip 𝑡𝑡2 from the first route is chosen. Since it is compatible with Trip 𝑡𝑡4 on

the second route, Trip 𝑡𝑡2 is removed from the first route and is inserted into the second

route. There are still three routes after the first trip-shift operation. However, the total

deadhead duration between trips of the three new routes is 37 minutes, slightly larger

than the original three routes (i.e., 34 minutes). We still accept the three new routes

since the difference is only three minutes (less than 5 minutes).

Figure 16. Another example for output case III after the trip-shift operation

Then, we start the second trip-shift operation in which the first and the third routes are

chosen. Those two routes are both single-trip bus routes and are likely to be combined

into one bus route. It turns out that Trip 𝑡𝑡5 can be inserted into the first route, hence

eliminating the third route. We can save one bus after conducting the trip-shift

operation twice. Though the solution after the first trip-shift operation is slightly worse

than the original one, it helps reduce the total number of buses in the later trip-shift

operations. This example shows the benefit of accepting slightly worse solutions.

74

The trip-shift operation is conducted for multiple iterations until no significant

improvement is achieved or the predetermined maximum number of iterations is

reached. After that, we will move forward to the next bus assignment step.

(2) Bus assignment procedure

After the trip-shift procedure, we will determine the best depot from which each bus

route should start. It is based on the same integer programming formulation we

proposed in section 4.4.3 in Chapter 4. The goal is to determine the best bus-depot

assignment, which minimizes the total deadhead duration between trips and depots for

all the bus routes. For each bus route, the deadhead duration between trips and depots

is the sum of the deadhead duration from the depot to the first trip on the route and the

deadhead duration from the last trip on the route to the depot. The constraints guarantee

that each bus can only be assigned to one depot without violating the depot capacities.

If the original problem is a single-depot problem, we skip this step.

(3) Trip-swap procedure

After determining the starting depot for each bus route, the trip-swap operation is used

to reduce the total deadhead duration. The trip-swap operator used in this study is

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(1,1). For the bus routes that start from the same depot, we randomly choose two

bus routes (𝑟𝑟1 and 𝑟𝑟2). Take the example of Depot 1 in Figure 17, for example. We

randomly select one trip (i.e., 𝑡𝑡2) from route 𝑟𝑟1 and one trip (i.e., 𝑡𝑡5) from route 𝑟𝑟2. If

those two trips have the same bell times, trip 𝑡𝑡2 is swapped with trip 𝑡𝑡5, that is, trip 𝑡𝑡2

is removed from the route 𝑟𝑟1 and inserted into the route 𝑟𝑟2 at the position of trip 𝑡𝑡5,

while trip 𝑡𝑡5 is removed from the route 𝑟𝑟2 and inserted into the route 𝑟𝑟1 at the position

75

of trip 𝑡𝑡2 . But if trip 𝑡𝑡2 and trip 𝑡𝑡5 have different bell times, the trips can still be

swapped if the trip compatibilities are maintained for both bus routes after the swapping.

Otherwise, a new trip-swap operation should be conducted until both new routes are

feasible. The total deadhead duration of the new two routes is 28 minutes which is less

than that of the original two routes (i.e., 40 minutes). So, we accept those two new

routes. Otherwise, we keep the original routes.

Figure 17. Example of the trip-swap operation

We conduct the trip-swap operation on its bus routes for multiple iterations for each

depot until no significant improvement is achieved or the predetermined maximum

number of iterations is reached. After the trip-swap operation, the best route plan will

be returned and will be used to update pheromones.

5.1.4 Pheromone Update

The global pheromone evaporation is conducted for all edges to avoid a too rapid

convergence of the proposed ACO. Besides, we will also increase the pheromone

intensities for those edges included in the best solution after the local search

76

improvements. Given the best solution, the pheromone intensity on edge (𝑖𝑖, 𝑗𝑗) at the

current iteration 𝑡𝑡 and the pheromone evaporation rate 𝜌𝜌, the pheromone intensity on

edge (𝑖𝑖, 𝑗𝑗) for the next iteration 𝑡𝑡 + 1 is carried out using Eq. (5.2).

𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡+1 = �
(1 − 𝜌𝜌) ∗ 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 +

1
𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

(1 − 𝜌𝜌) ∗ 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 ,
,

 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓
(5.2)

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

where 𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the total deadhead duration of the best solution we found at the current

iteration 𝑡𝑡, 𝜌𝜌 is the evaporation rate, and 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 and 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡+1 are the pheromone intensity on

edge (𝑖𝑖, 𝑗𝑗) at the current iteration 𝑡𝑡 and the next iteration 𝑡𝑡 + 1.

The pheromone evaporates on all edges based on the evaporation rate, and (1 − 𝜌𝜌) ∗

𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 is the remaining amount of pheromone after evaporation. For those edges included

in the best solution, the pheromone intensities are increased by an additional amount

1
𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

. Those edges have higher pheromone levels and will be more attractive to the

ants in the next iteration, which helps accelerate the whole searching process.

5.1.5 Overall ACO Method

The overall ACO method is summarized in Figure 18.

Pseudocode of the overall ACO algorithm
Begin

Initialize
• Collected input data (bus trips, current school bell time)
• Algorithm parameters (𝐴𝐴𝑛𝑛, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ,𝛼𝛼,𝛽𝛽,𝜌𝜌)
• Pheromone trail matrix, 𝜏𝜏

77

• Visibility matrix, 𝜂𝜂
While (Stopping criteria on iterations)

For ants, from 1 to 𝐴𝐴𝑛𝑛
• Build a complete tour

While the number of unvisited trips > 0 do
Randomly select a depot // check depot capacity
Probability-based customer selection // related to pheromone
trails and visibility levels
Build bus routes // check trip compatibility

End while
• Compute the objective function value, 𝑆𝑆(𝐴𝐴𝐴𝐴𝐴𝐴)
• Compare and store the best solution, 𝑆𝑆∗(𝐴𝐴𝐴𝐴𝐴𝐴)

End For
// applied local search
While (termination conditions)

• Do the trip shift // reduce the total number of buses
• Do the bus assignment // find the best depot assignment; skip this

step if it is a single-depot problem
• Do the trip swap(1,1) within each depot // reduce the total

deadhead duration
• Compare and store the best solution 𝑆𝑆∗(𝐴𝐴𝐴𝐴𝐴𝐴_𝐿𝐿𝐿𝐿)

End while
• Pheromone trials update using the best solution (including pheromone

evaporation)
End while

End
Figure 18. Pseudocode of the proposed ACO algorithm

The overall ACO includes initialization, solution construction by the ants, three local

search procedures for improving the solution, and the pheromone update procedure.

The output is the best schedule that minimizes the total number of buses and the total

deadhead duration under a fixed bell time plan. If the original problem is without the

78

bell time optimization, the proposed ACO can provide the final solution to the problem.

Otherwise, we need to use the tabu search method to find the best bell time plan.

5.2 Tabu Search Method

The ACO method is used to find the best bus schedule, which minimizes the total

number of buses and the total deadhead duration under each fixed bell time plan. When

it comes to bell time optimization, the ACO should be embedded into some local search

method to find the best combination of bell times. The simulated annealing algorithm

presented in Chapter 4 could be one option. It accepts non-improving moves with some

probability to escape from the local minima, but it may revisit a solution, fall back to a

previous local optimum, or even cycle, which is a waste of time and resources.

Therefore, we use the Tabu Search (TS) method to avoid revisiting a solution or cycling.

The tabu search method is an iterative, memory-based neighborhood-search method

(Glover et al., 1993). Like the simulated annealing algorithm, the tabu search method

iteratively searches for a better solution. It also utilizes the tabu list data structure to

forbid or penalize certain moves that would return to a recently visited solution, making

it more efficient than other local search procedures. The tabu search method used in

this study is described below in detail.

5.2.1 Initial Solution

The proposed tabu search method is used to find the best combination of school bell

times. It starts from a random initial bell time vector 𝐷𝐷𝐷𝐷0 = {𝑎𝑎𝑘𝑘|𝑘𝑘 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆}, where 𝑎𝑎𝑘𝑘

is a randomly selected bell time for school 𝑘𝑘 from the given bell time window

79

(𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘). Then, the initial solution 𝑍𝑍0 is calculated based on 𝐷𝐷𝐷𝐷0 using ACO. It

is the best bus schedule that minimizes the total number of buses and the total deadhead

duration given the initial bell time 𝐷𝐷𝐷𝐷0 using ACO. Besides, the 𝑍𝑍0 and 𝐷𝐷𝐷𝐷0 are set to

be the current best solution 𝑍𝑍∗ and 𝐷𝐷𝐷𝐷∗.

5.2.2 Neighborhoods

The neighborhood of the current bell time is defined as a new bell time in which only

a certain number of schools are allowed to change their bell times within a specific

range. We construct 𝑛𝑛 new bell times based on the current bell time. Specifically, for

building each new bell time, we randomly choose 𝑚𝑚 schools and only allow those

schools to change their bell times in a neighborhood of their current bell times. The

neighborhood refers to being within ±5 min of the current bell time for each school.

Each bell time change is called a move. Suppose the resulting bell time is infeasible

(i.e., the resulting bell time of some schools violates the given bell time window); in

that case, another random bell time will be generated until feasibility is satisfied. We

calculate the corresponding 𝑍𝑍 using ACO for each new feasible bell time 𝐷𝐷𝐷𝐷.

5.2.3 Tabu List

The tabu list 𝑇𝑇𝑇𝑇 is used to avoid re-visiting of recent neighborhoods. It records the

latest moves and is updated dynamically as the search proceeds. If a move is already in

the tabu list, it is not allowed until it reaches a termination point. Specifically, the tabu

list 𝑇𝑇𝑇𝑇 is initialized as an empty list with a fixed length before TS starts. As the search

proceeds, at each iteration, we create 𝑛𝑛 new bell times based on the current bell time.

For each new bell time 𝐷𝐷𝐷𝐷, we calculate its corresponding 𝑍𝑍 using ACO. We then

80

choose the best 𝑍𝑍� among them and compare it with the current best solution 𝑍𝑍∗. If 𝑍𝑍� <

𝑍𝑍∗, the new solution 𝑍𝑍� and its corresponding bell time plan 𝐷𝐷𝐷𝐷� are kept as the best

solution. For the bell time 𝐷𝐷𝐷𝐷� , we know which schools have their bell time changed.

Those schools are added to the list for preventing cycling. As new moves enter the list,

the list’s size might exceed the predetermined length. If that happens, according to the

First-In-First-Out rule, we delete the schools added at the earliest time.

5.2.4 Aspiration Criterion

The aspiration criterion is employed to override the tabu status. The schools in the tabu

list change their bell times until they reach an expiration point. Only if the tabu list

exceeds the predetermined size can the elements added at the earliest be deleted. In this

study, we use the most intuitive aspiration rule to relax the tabu restrictions of some

elements in the tabu list. If the aspiration criterion is met, those elements can be

removed from the tabu list and used to provide better solutions. Specifically, if some

schools in the tabu list happen to contribute to a better solution than the current best-

known solution, we revoke the tabu status of those schools. Therefore, those otherwise-

excluded schools can be used to produce a better solution.

5.2.5 Stopping Rules

The whole search process of the TS method is terminated once the maximum number

of iterations is reached or no significant improvement is achieved after a certain number

of consecutive iterations. Then, the best school bell time plan 𝐷𝐷𝐷𝐷∗ and its

corresponding school bus schedule 𝑍𝑍∗ are returned.

81

5.3 Overall TS-ACO Method

We combined the tabu search method and the proposed ACO algorithm for solving the

MDSBSPTWs. The overall proposed TS-ACO method is shown in Figure 19.

The tabu search method is used to examine different school bell time plans. Under each

bell time plan, the ACO is used to find the best bus schedule that minimizes the total

number of buses and the total deadhead duration. The proposed TS-ACO method can

be used to solve SDSBSPTWs as well. If it is a single-depot problem, we simply skip

the bus assignment procedure in the ACO while keeping other steps unchanged.

82

Figure 19. Flow chart of the proposed TS-ACO method

83

5.4 Summary

This chapter introduced the Tabu Search-based Ant Colony Optimization (TS-ACO)

method for solving the MDSBSPTW (or SDSBSPTW) without dividing the problem

into different phases. The TS method is used to examine different bell time plans. The

ACO is embedded into it to find the best bus schedule that minimizes the total number

of buses and the total deadhead duration under each fixed bell time plan. First, the ACO

was described, including the initialization, solution construction by the ants, three local

search procedures for improving the solution, and the pheromone update procedure.

Then, the TS method was presented, including the initialization, neighborhood

construction, tabu list settings, and aspiration criteria.

84

Chapter 6: Test Problems

In this chapter, five groups of test problems constituting a total of fourteen test

problems with different characteristics are used to examine the performance of the

proposed four methods, namely the mixed-integer programming model, the two-phase

heuristic method, the improved two-phase heuristic method, and the TS-ACO method.

All the test problems consider the school bus scheduling problem in the PM, that is, to

find the best dismissal time plan and the optimal bus schedule to transport students

from school back home. They all are derived from real-world data collected from a

public school system in Maryland. The results of solving these test problems using the

exact and the heuristic approaches are presented and analyzed.

6.1 Data Description

The real-world data was collected from a public school system in Maryland. There are,

in total, 55 schools and 678 trips to serve all schools. Fifty-five schools consist of 31

elementary schools (ESs), 13 middle schools (MSs), and 11 high schools (HSs). The

school district wants to find the optimal bus schedules to transport students from

schools to their designated bus stops and optimize school dismissal time. The current

dismissal times for all schools are provided. And they are 15:30, 15:00, and 14:15 for

all ES, MS, and HS, respectively. For each bus trip, its fixed travel duration and the

locations of its first stop and last stop (i.e., longitudes and latitudes) are given. All the

trips belonging to the same school depart at the same time. All school buses are parked

at 28 different depots, as shown in Figure 20.

85

Figure 20. The layout of the depot locations

We call this a PM problem, and the goal is to find the optimal bus routes (from school

to bus stops) and optimize school dismissal time. While the objective of an AM

problem is to find the optimal bus routes (from bus stops to schools) and optimize

school bell time. If school bell times are provided, we can use one of the proposed

methods to solve the AM problem and get the corresponding bus schedule. As for the

bell time optimization, if we assume that the school duration is fixed, the AM bell time

can be easily obtained by subtracting the school duration from the calculated PM

dismissal time. If the problem is an AM problem and the bell time is optimized, the PM

dismissal time can be obtained by adding the school duration to the AM bell time.

Five test problem groups, including fourteen test problems, were derived from the

collected real-world data. Table 5 shows the detailed configurations of the school, trip,

depot, and school dismissal time window for each test problem. Each test group

contains trips from all types of schools. Inside each test group, three cases are

86

considered: (1) the problem without the dismissal time optimization; (2) the problem

with a small dismissal time window; (3) the problem with a larger dismissal time

window. Take Case #2; for example, for each school, its dismissal time after

optimization should be no earlier than 30 minutes before its original dismissal time and

no later than 30 minutes after its original dismissal time. The school dismissal times

after optimization are allowed to be before the current school dismissal times. If that

happens, the starting time of those schools will be changed accordingly (i.e., starting

earlier than before). Overall, across different test groups, different school dismissal

time windows and number of depots are set to examine the models’ performance. The

last group considers the entire collected real-world data.

87

Table 5. Configurations of test problems

 No. of Schools No. of Trips No. of Depots Depot Capacity* School Dismissal Time Windows**

Group1

Case #1 13 94 1 - -
Case #2 13 94 1 - [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]

Case #3 13 94 1 - [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚]

Group2

Case #4 13 55 3 15 -
Case #5 13 55 3 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]

Case #6 13 55 3 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚]

Group3

Case #7 21 129 7 15 -
Case #8 21 129 7 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]

Case #9 21 129 7 10 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚]

Group4

Case #10 45 306 8 25 -
Case #11 45 306 8 25 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]

Case #12 45 306 8 25 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚]

Group5
Case #13 55 678 28 25 -
Case #14 55 678 28 20 [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]

Note: “*”: “-” in depot capacity: unconstrained depot capacity; “**”: “-” in school dismissal time windows: without dismissal time optimization; ODT: original

dismissal time of School 𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆.

88

All the test problems consider the school bus scheduling problem in the PM, that is, to

find the optimal bus schedules to transport students from schools to their designated

bus stops. Therefore, the school bell time optimization is actually school dismissal time

optimization. For those cases with dismissal time optimization, we try to find the best

dismissal time for each school within the given time window.

Figure 21. Depot used in Case #1 to Case #3

Case #1 to Case #3 can be grouped together. They are the special cases of the MDSBSP

by reducing the total number of depots to one. For these three cases, the input data

comes from the small region in the middle part of the whole area, which includes a total

of 94 trips that belong to 13 different schools (i.e., seven ESs, three MSs, and three

HSs) and a depot highlighted with the red circle as shown in Figure 21. As for the

school dismissal time windows, Case #1 is the single-depot multi-school bus

scheduling problem without school dismissal time optimization. Case #2 and Case #3

89

are the single-depot multi-school bus scheduling problem with school dismissal time

optimization. The time window in Case #2 is smaller than that in Case #3.

Figure 22. Depots used in Case #4 to Case #6

Case #4 to Case #6 can be grouped together as well. The trips are derived from the

region in the northeast part of the whole area, as shown in Figure 22. A total of 55 trips

that belong to 13 different schools (i.e., seven ESs, three MSs, and three HSs) are used

as the input data for these three cases. Three depots, namely, Depot 1, Depot 10, and

Depot 13, are used and are highlighted with the red triangle in Figure 22. As for the

dismissal time optimization, Case #4 is the MDSBSP, but Case #5 and Case #6 are the

MDSBSPTW. The time window in Case #5 is smaller than that in Case #6.

Case #7 to Case #9 is a larger size MDSBSP derived from the region in the southwest

of the whole area, as shown in Figure 23. It has more trips, schools, and depots. To be

specific, a total of 129 trips which belong to 21 different schools (i.e., nine ESs, six

90

MSs, and six HSs) and a total of seven depots (i.e., Depot 3, Depot 6, Depot 7, Depot

12, Depot 14, Depot 17, and Depot 21) are used in this test group. As for the dismissal

time optimization, Case #7 is the MDSBSP, but Case #8 and Case #9 are the

MDSBSPTW. The time window in Case #8 is smaller than that in Case #9.

Figure 23. Depots used in Case #7 to Case #9

Case #10 to Case #12 is also a large size MDSBSP. It is derived from the region in the

northeast of the whole area, as shown in Figure 24. It has a total number of 306 trips

which belongs to 45 different schools (i.e., 25 ESs, 11 MSs, and 9 HSs) and a total of

eight depots (i.e., Depot 1, Depot 2, Depot 10, Depot 13, Depot 20, Depot 23, Depot

24, and Depot 27) are used in this test group. As for the dismissal time optimization,

Case #10 is the MDSBSP, but Case 11 and Case #12 are the MDSBSPTW. The time

window in Case #11 is smaller than that in Case 12.

91

Figure 24. Depots used in Case #10 to Case #12

Case #13 and Case #14 use the entire collected data, including 678 trips from 55 schools

(i.e., 31 ESs, 13 MSs, and 11 HSs) and 28 depots shown in Figure 20. Case #13 is an

MDSBSP, while Case #14 is an MDSBSPTW. After optimization, each school's

dismissal time should be no earlier than 30 minutes before its original dismissal time

and no later than 30 minutes after its original dismissal time.

For each test problem, the MIP model, the two-phase heuristic method, and the second-

assignment phase of the improved heuristic method are solved by the Gurobi solver in

Python. The model running time limit is set to be 10 hours (36,000 seconds) for Case

#1 to Case #12. And it is set to be 50 hours (180,000 seconds) for the largest-size test

problems (i.e., Case #13 and Case #14). We run each model 10~20 times for each test

problem for all proposed heuristic methods. The best solution and the average model

running time are reported for each test problem. The code is written in Python 3.8 on a

computer with Intel® Core™ i5-10600K processor, 4.10GHz with 8GB RAM.

92

6.2 Results of the MIP Model

The results of all the test problems based on the MIP model presented in Chapter 3 are

shown in Table 6. Under the name of each test problem shows the configuration of the

test problem: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. 𝑁𝑁𝑁𝑁𝑁𝑁 means the test problem is

without the bell time optimization. 30 𝑚𝑚𝑚𝑚𝑚𝑚 or 40 𝑚𝑚𝑚𝑚𝑚𝑚 means the test problem

considers the dismissal time optimization, and the dismissal time after optimization for

each school should be no earlier than 30 min (or 40 min) before its original dismissal

time and no later than 30 min (or 40 min) after its original dismissal time.

Cases #1 to # 3 are the special cases of the MDSBSPs, that is, the SDSBSPs. By looking

at the model running time, Case #1 used much less time to reach optimality than Case

#2 and Case #3. Case #4 to #12 are all MDSBSPs belonging to three different test

groups. Generally, all the test problems without dismissal time optimization can be

solved to optimality regarding the size of depots, trips, and schools. However, after

adding the dismissal time window constraints, small problems with a small school

dismissal time window (e.g., Case #4) can still reach optimality. As the problem size

(i.e., number of trips and schools) and dismissal time window get larger, it is harder to

solve the problems to optimality after reaching the model running time limit. Instead,

the MIP model provides unreasonable solutions with huge optimal gaps (e.g., Case #9

and #11) or even fails to find a feasible solution (i.e., Case #12).

93

Table 6. Results of all the test problems based on the MIP model

 RT Optimal Gap TOB TD

Case #1
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝑵𝑵𝑵𝑵𝑵𝑵 0.87 0.00% 60 1,458

Case #2
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 11,069.35 0.01% 31 1,174

Case #3
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 36,000 10.34% 29 1,094

Case #4
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝑵𝑵𝑵𝑵𝑵𝑵 0.46 0.00% 36 778

Case #5
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000 9.15% 19 615

Case #6
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000 42.09% 19 576

Case #7
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝑵𝑵𝑵𝑵𝑵𝑵 21.86 0.00% 81 1,374

Case #8
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000 57.13% 49 1,501

Case #9
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000 98.12% 54 2,269

Case #10
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝑵𝑵𝑵𝑵𝑵𝑵 603.15 0.00% 179 5,495

Case #11
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000 87.026% 156 6,917

Case #12
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 - - - -

Case #13
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 48,704 0.00% 412 6,585

Case #14
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 - - - -

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips

and between trips and depots (min).

Cases #13 and #14 are the largest test problems created based on the entire collected

data, including 678 trips from 55 schools and 28 depots. Case #13, an MDSBSP, can

still be solved optimally. But the model running time (i.e., 48,704 sec) is much longer

than that of all the other smaller MDSBSPs. However, for Case #14, an MDSBSPTW,

Gurobi fails to find a feasible solution after reaching the model running time limit.

94

In summary, all the test problems without the dismissal time optimization (Case #1,

Case #4, Case #7, Case #10, and Case #13) can be solved to optimality based on the

proposed MIP model. The larger the problem is, the more computational time is needed

to reach optimality. Only one test problem (Case #2), an SDSBSPTW, was solved to

optimality when considering the test problems with the dismissal time optimization.

For the others, the optimal gap increases as the problem size (i.e., more trips or more

schools) and the dismissal time window increase. The MIP may end up with some

unreasonable solution with a huge optimal gap (e.g., Case #9 and Case #11) or even

fail to find a feasible solution (i.e., Case #12 and Case #14) after reaching the model

running time limit. Results indicate that Gurobi is not the best option for solving

relatively large size problems with dismissal time window constraints.

6.3 Results of the Two-phase Heuristic Method

We used the two-phase heuristic method for solving all the test problems. The results

for each phase of each test problem are shown in Table 7. Notice that Cases #1 to #3

are the single-depot problems, so their final solutions (i.e., the total number of buses

and the total deadhead duration) can be directly derived from the first-route phase

without going further into the second-assignment phase. For these three cases, the

virtual depot in the first phase is set to be the actual depot. The total deadhead duration,

which consists of the deadhead duration between trips and deadhead duration between

trips and depots, is then calculated. For all other multi-depot test problems, the results

for each phase are listed in detail, including the model running time, the optimal gap

from the Gurobi solver, the total number of buses (from the first-route phase), the total

95

deadhead duration between trips (from the first-route phase), and the total deadhead

duration between trips and depots (from the second-assignment phase).

Table 7. Results of each phase of all the test problems based on the two-phase heuristic method

Case #1

First-route Phase

RT Optimal Gap TOB TD

0.79 0.00% 60 1,458

Case #2

First-route Phase

RT Optimal Gap TOB TD

36,000 2.14% 31 1,174

Case #3

First-route Phase

RT Optimal Gap TOB TD

36,000 25.09% 29 1,090

Case #4

First-route Phase

RT Optimal Gap TOB TDT

0.24 0.00% 36 110

Second-assignment Phase

RT Optimal Gap TDTD

0.01 0.00% 682

Case #5

First-route Phase

RT Optimal Gap TOB TDT

15,740.12 0.01% 19 307

Second-assignment Phase

RT Optimal Gap TDTD

0.02 0.00% 316

Case #6

First-route Phase

RT Optimal Gap TOB TDT

36,000 26.26% 19 261

Second-assignment Phase

RT Optimal Gap TDTD

0.01 0.00% 312

Case #7

First-route Phase

RT Optimal Gap TOB TDT

2.72 0.00% 81 251

Second-assignment Phase

96

RT Optimal Gap TDTD

0.03 0.00% 1226

Case #8

First-route Phase

RT Optimal Gap TOB TDT

36,000 26.81% 41 658

Second-assignment Phase

RT Optimal Gap TDTD

0.03 0.00% 566

Case #9

First-route Phase

RT Optimal Gap TOB TDT

36,000 56.39% 41 785

Second-assignment Phase

RT Optimal Gap TDTD

0.02 0.00% 686

Case #10

First-route Phase

RT Optimal Gap TOB TDT

42.88 0.00% 179 581

Second-assignment Phase

RT Optimal Gap TDTD

0.02 0.00% 5,119

Case #11

First-route Phase

RT Optimal Gap TOB TDT

36,000 51.75% 94 1,269

Second-assignment Phase

RT Optimal Gap TDTD

0.02 0.00% 1,989

Case #12

First-route Phase

RT Optimal Gap TOB TDT

36,000 70.25% 90 1,268

Second-assignment Phase

RT Optimal Gap TDTD

0.02 0.00% 1,871

Case #13

First-route Phase

RT Optimal Gap TOB TDT

709.82 0.00% 412 1,235

Second-assignment Phase

97

RT Optimal Gap TDTD

0.12 0.00% 5,993

Case #14

First-route Phase

RT Optimal Gap TOB TDT

180,000 55.79% 255 2,869

Second-assignment Phase

RT Optimal Gap TDTD

0.07 0.00% 4,292

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips

and between trips and depots (min); TDT: total deadhead time between trips (min); TDTD: total

deadhead time between trips and depots (min).

According to Table 7, the second-assignment phase of all the test problems can always

be solved to optimality in a very short time (less than one second). For the first-route

phase, all the test problems are first converted into a single-depot problem (i.e.,

SDSBSP or SDSBSPTW) when using the two-phase heuristic method. For all

SDSBSPs, the two-phase heuristic method can solve them to optimality just like the

MIP model but use much less computational time. For all SDSBSPTWs, it took Gurobi

a long time to solve them. Gurobi provided solutions with large optimal gaps for some

of them after reaching the model running time limit. But overall, the optimal gap is

much smaller than that of the MIP model. For example, for Case #12 and Case #14 that

are unsolvable using the MIP model, the two-phase heuristic method can still provide

a feasible solution to those problems. However, for Case #3, the optimal gap from the

two-phase heuristic method is larger than that from the MIP model. Gurobi failed to

efficiently solve it because it has a relatively large number of trips and a large school

dismissal time window though it only has one depot.

98

The complete solution for each test problem is presented in Table 8. The model running

time is the total model running time for both phases. The total number of buses is

derived from the first-route phase. And the total deadhead duration is the sum of the

deadhead between trips (results from the first-route phase) and the deadhead between

trips and depots (results from the second-assignment phase).

Table 8. Complete results of all the test problems based on the two-phase heuristic method
 RT TOB TD

Case #1
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 −𝑵𝑵𝑵𝑵𝑵𝑵 0.79 60 1,458

Case #2
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 36,000 31 1,174

Case #3
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 36,000 29 1,090

Case #4
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 −𝑵𝑵𝑵𝑵𝑵𝑵 0.25 36 792

Case #5
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 15,740.14 19 623

Case #6
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000.01 19 573

Case #7
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 −𝑵𝑵𝑵𝑵𝑵𝑵 2.75 81 1,477

Case #8
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000.03 41 1,224

Case #9
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000.02 41 1,471

Case #10
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 −𝑵𝑵𝑵𝑵𝑵𝑵 42.90 179 5,700

Case #11
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 36,000.02 94 3,258

Case #12
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 36,000.02 90 3,139

Case #13
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 709.94 412 7,228

Case #14
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 180,000.07 255 7,161

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips

and between trips and depots (min).

99

Most test problems with the dismissal time optimization have reached the given model

running time limit. But based on the current results, we can still find out that the total

number of buses was significantly reduced after the school dismissal time optimization.

The larger the school dismissal time window is, the more buses can be reduced, but a

longer model running time is needed.

6.4 Results of the Improved Two-phase Heuristic Method

We also list the detailed results for each phase of each test problem based on the

improved two-phase heuristic method in Table 9.

Table 9. Results of each phase of all the test problems based on the improved two-phase heuristic

Case #1

First-route Phase

RT Optimal Gap TOB TD

0.13 - 60 1,479

Case #2

First-route Phase

RT Optimal Gap TOB TD

491 - 32 1,215

Case #3

First-route Phase

RT Optimal Gap TOB TD

535.15 - 29 1,218

Case #4

First-route Phase

RT Optimal Gap TOB TDT

0.05 - 36 115

Second-assignment Phase

RT Optimal Gap TDTD

0.01 0.00% 688

Case #5

First-route Phase

RT Optimal Gap TOB TDT

157.95 - 19 413

Second-assignment Phase

100

RT Optimal Gap TDTD

0.01 0.00% 320

Case #6

First-route Phase

RT Optimal Gap TOB TDT

222.40 - 19 310

Second-assignment Phase

RT Optimal Gap TDTD

0.01 0.00% 319

Case #7

First-route Phase

RT Optimal Gap TOB TDT

0.23 - 83 233

Second-assignment Phase

RT Optimal Gap TDTD

0.02 0.00% 1,249

Case #8

First-route Phase

RT Optimal Gap TOB TDT

1,368 - 41 998

Second-assignment Phase

RT Optimal Gap TDTD

0.02 0.00% 631

Case #9

First-route Phase

RT Optimal Gap TOB TDT

1,610.22 - 38 1,088

Second-assignment Phase

RT Optimal Gap TDTD

0.03 0.00% 720

Case #10

First-route Phase

RT Optimal Gap TOB TDT

1.63 - 179 652

Second-assignment Phase

RT Optimal Gap TDTD

0.03 0.00% 5,114

Case #11

First-route Phase

RT Optimal Gap TOB TDT

3,913.01 - 92 2,282

Second-assignment Phase

101

RT Optimal Gap TDTD

0.02 0.00% 1,964

Case #12

First-route Phase

RT Optimal Gap TOB TDT

6,617.25 - 84 2,328

Second-assignment Phase

RT Optimal Gap TDTD

0.01 0.00% 1,826

Case #13

First-route Phase

RT Optimal Gap TOB TDT

7.42 - 413 1,305

Second-assignment Phase

RT Optimal Gap TDTD

0.11 0.00% 5,922

Case #14

First-route Phase

RT Optimal Gap TOB TDT

23,297.44 - 226 5,366

Second-assignment Phase

RT Optimal Gap TDTD

0.07 0.00% 4,240

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips

and between trips and depots (min); TDT: total deadhead time between trips (min); TDTD: total

deadhead time between trips and depots (min).

For the improved two-phase heuristic method, the first-route phase formulated as a

single-depot problem is solved by the proposed SA-GDA algorithm without using

Gurobi solver, so the optimal gap is not reported. According to Table 9, the proposed

SA-GDA algorithm can optimally solve the test problems without dismissal time

optimization except for Case #7, Case #10, and Case #13. But the optimal gap in terms

of the total number of buses is only 2%, 1%, and 0.24% for those three cases,

respectively. Also, the model running time of those three cases is much less than that

of the previous two methods. Take Case #13, for example; it is the largest MDSBSP

102

created based on the entire collected data. The total number of buses and the total

deadhead duration from the improved two-phase heuristic method are 0.24% and 0.9%

larger than the optimal solution. But the model running time of the improved two-phase

heuristic method is only 7.42 seconds, while that of the other two methods are 48,704

seconds and 709.04 seconds, respectively. Overall, the improved two-phase heuristic

performs better than the other two methods.

As for the test problems with dismissal time optimization, the improved two-phase

heuristic performs much better than the other two in all the test problems. It can even

achieve fewer buses much quicker when the test problem involves more trips, depots,

schools, and larger dismissal time windows (e.g., Case #6, #9, #11, #12, and #14). For

example, Case #14 is the MDSBSPTW based on the entire dataset. The MIP model

failed to solve it within the given running time limit. The two-phase heuristic method

reached a solution with a 55.79% optimal gap after 50 hours. However, the improved

heuristic method only used around 12% of the running time of the two-phase heuristic

method but achieved a much better solution with 29 fewer buses.

When it comes to the second-assignment phase, all problems can be solved optimally

in less than one second. The complete solution for each test problem based on the

improved two-phase heuristic method is presented in Table 10. The model running time

is the total model running time from both phases. The total number of buses is from the

first-route phase. And the total deadhead duration is the sum of the deadhead between

103

trips (from the first-route phase) and the deadhead between trips and depots (results

from the second-assignment phase).

Table 10. Complete results of all the test problems based on improved two-phase heuristic

 RT TOB TD

Case #1
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 −𝑵𝑵𝑵𝑵𝑵𝑵 0.13 60 1,479

Case #2
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 491 32 1,215

Case #3
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 535.15 29 1,218

Case #4
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 −𝑵𝑵𝑵𝑵𝑵𝑵 0.06 36 803

Case #5
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 157.96 19 733

Case #6
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 222.41 19 629

Case #7
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 −𝑵𝑵𝑵𝑵𝑵𝑵 0.25 83 1,482

Case #8
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 1,368.02 41 1,629

Case #9
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 1,610.25 38 1,808

Case #10
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 −𝑵𝑵𝑵𝑵𝑵𝑵 1.66 179 5,766

Case #11
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 3,913.03 92 4,246

Case #12
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 6,617.26 84 4,154

Case #13
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 7.42 413 7,227

Case #14
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 23,297.51 226 9,606

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips

and between trips and depots (min).

According to Table 10, the improved two-phase heuristic method can efficiently

provide better results (i.e., fewer buses) for almost all the test problems than the

104

previous two methods. Besides, like previous findings, having a larger school dismissal

time window could reduce more buses but result in a longer model running time.

6.5 Results of the TS-ACO Method

The results of the proposed TS-ACO method are presented in Table 11.

Table 11. Results of all the test problems based on the TS-ACO method

 RT TOB TD

Case #1
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 −𝑵𝑵𝑵𝑵𝑵𝑵 1.20 60 1,459

Case #2
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎 1,512 32 1,198

Case #3
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝒎𝒎𝒎𝒎𝒎𝒎 1,401 30 1,153

Case #4
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 −𝑵𝑵𝑵𝑵𝑵𝑵 0.65 36 779

Case #5
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 284 20 631

Case #6
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 328 19 594

Case #7
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 −𝑵𝑵𝑵𝑵𝑵𝑵 3.82 81 1,399

Case #8
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 3,395 43 1,453

Case #9
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 6,000 38 1,701

Case #10
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 −𝑵𝑵𝑵𝑵𝑵𝑵 30.15 179 5,677

Case #11
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 21,437.16 94 4,050

Case #12
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 22,966.52 85 4,096

Case #13
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵 326.45 412 6,991

Case #14
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 120,628 235 9,539

Note RT: model running time (sec); TOB: total number of buses; TD: total deadhead time between trips

and between trips and depots (min).

105

For the test problems without dismissal time optimization, the running time of the ACO

model is around the same as the MIP model and the two-phase heuristic method when

the problem size is relatively small (i.e., Case #1 and Case #4). When the problem size

gets larger, the running time of the ACO model is less than the other two methods.

However, the running time of the ACO model is longer than that of the improved two-

phase heuristic method in all cases. As for the solution, the ACO model, like the MIP

model and the two-phase heuristic method, can reach the optimal number of buses for

all test problems without dismissal time, outperforming the improved two-phase

heuristic method. Besides, the ACO model can obtain a shorter deadhead duration than

the two-phase heuristic method and the improved two-phase heuristic method but a

slightly longer deadhead duration than that of the MIP model.

For the test problems with dismissal time optimization, the TS-ACO method

consistently outperforms the MIP model in terms of the model running time and the

solution quality. Though for the SDSBSPTWs (Case #2 and Case #3), the total number

of buses from TS-ACO has one more bus than that from the MIP model, considering

the computational time, the TS-ACO method is still better than the MIP model.

Compared to the two-phase heuristic method, the TS-ACO performs better as the

problem size gets larger or the dismissal time window is larger (e.g., Case #9, #11, #12,

and #14). However, the improved two-phase heuristic method can get even better

results for the large-size MDSBSPTWs than the TS-ACO method in a much shorter

time (e.g., Case #12 and #14). Take Case #14, for example; it is the largest

MDSBSPTW based on the entire collected data. The MIP model failed to find a

106

solution after reaching the running time limit. The TS-ACO used less time than the

two-phase heuristic method and provided a better solution with 20 fewer buses than the

two-phase heuristic method. The improved two-phase heuristic method only used

around 19.3% of the running time of the TS-ACO method but achieved a solution that

has nine fewer buses than the TS-ACO method. Therefore, the improved two-phase

heuristic method is the most powerful among all proposed methods.

6.6 Overall Results and Comparison

Table 12 summarizes the results of all the test problems based on the four methods

proposed in this study regarding the model running time, optimal gap, the total number

of buses, and total deadhead duration. As for the model running time for the two-phase

heuristic method and the improved two-phase heuristic method, first, the total model

running time is listed. Then the running times of both phases are listed in the bracket

in which the first element is the model running time of the first-route phase, and the

second element is the model running time of the second-assignment phase. For the

single-depot problems (Case #1 to Case #3), only the first-route phase is used, so the

model running time column only lists the model running time of the first phase. It works

the same for the total deadhead duration column. The total deadhead duration is first

shown. Then, inside the next bracket, the first element is the deadhead duration between

trips obtained from the first-route phase. The second element is the deadhead duration

between trips and depots from the second-assignment phase.

107

Table 12. Summary of the results of all the test problems based on all the proposed methods

 Method RT OG TOB TD

Case #1
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝑵𝑵𝑵𝑵𝑵𝑵

MIP model 0.87 0.00% 60 1,458

Two-phase 0.79 0.00% 60 1,458

Improved two-phase 0.13 - 60 1,479

TS-ACO 1.20 - 60 1,459

Case #2
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model 11,069.35 0.01% 31 1,174

Two-phase 36,000 2.14% 31 1,174

Improved two-phase 491 - 32 1,215

TS-ACO 1,512 - 32 1,198

Case #3
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

MIP model 36,000 10.34% 29 1,094

Two-phase 36,000 25.09% 29 1,090

Improved two-phase 535.15 - 29 1,218

TS-ACO 1,401 - 30 1,153

Case #4 MIP model 0.46 0.00% 36 778

108

𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝑵𝑵𝑵𝑵𝑵𝑵 Two-phase 0.25
(0.24+0.01) 0.00% 36 792

(110+682)

Improved two-phase 0.06
(0.05+0.01) - 36 803

(115+688)

TS-ACO 0.65 - 36 779

Case #5
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model 36,000 9.15% 19 615

Two-phase 15,740.14
(15,740.12+0.02) 0.01% 19 623

(307+316)

Improved two-phase 157.96
(157.95+0.010) - 19 733

(413+320)

TS-ACO 284 - 20 631

Case #6
𝟏𝟏𝟏𝟏 − 𝟓𝟓𝟓𝟓 − 𝟑𝟑 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

MIP model 36,000 42.09% 19 576

Two-phase 36,000.01
(36,000+0.01) 26.26% 19 573

(261+312)

Improved two-phase 222.41
(222.40+0.01) - 19 629

(310+319)
TS-ACO 328 - 19 594

Case #7
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝑵𝑵𝑵𝑵𝑵𝑵

MIP model 21.86 0.00% 81 1,374

Two-phase 2.75
(2.72+0.03) 0.00% 81 1,477

(251+1,226)

Improved two-phase 0.25
(0.23+0.02) - 83 1,482

(233+1,249)

TS-ACO 3.82 - 81 1,399

109

Case #8
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model 36,000 57.13% 49 1,501

Two-phase 36,000.03
(36,000+0.03) 26.81% 41 1,224

(658+566)

Improved two-phase 1,368.02
(1,368+0.02) - 41 1,629

(998+631)

TS-ACO 3,395 - 43 1,453

Case #9
𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟕𝟕 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

MIP model 36,000 98.12% 54 2,269

Two-phase 36,000.02
(36,000+0.02) 56.39% 41 1,471

(785+686)

Improved two-phase 1,610.25
(1,610.22+0.03) - 38 1,808

(1,088+720)

TS-ACO 6,000 - 38 1,701

Case #10
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝑵𝑵𝑵𝑵𝑵𝑵

MIP model 603.15 0.00% 179 5,495

Two-phase 42.90
(42.88+0.02) 0.00% 179 5,700

(581+5,119)

Improved two-phase 1.66
(1.63+0.03) - 179 5,766

(652+5,114)
TS-ACO 30.15 - 179 5,677

Case #11
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model 36,000 87.026% 156 6,917

Two-phase 36,000.02
(36,000+0.02) 51.75% 94 3,258

(1,269+1,989)

Improved two-phase 3,913.03
(3,913.01+0.02) - 92 4,246

(2,282+1,964)

110

TS-ACO 21,437.16 - 94 4,050

Case #12
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

MIP model - - - -

Two-phase 36,000.02
(36,000+0.02) 70.25% 90 3,139

(1,268+1,871)

Improved two-phase 6,617.26
(6,617.25+0.01) - 84 4,154

(2,328+1,826)
TS-ACO 22,966.52 - 85 4,096

Case #13
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝑵𝑵𝑵𝑵𝑵𝑵

MIP model 48,704 0.00% 412 6,585

Two-phase 709.94
(709.82+0.12) 0.00% 412 7,228

(1,235+5,993)

Improved two-phase 7.42
(7.31+0.11) - 413 7,227

(1,305+5,922)
TS-ACO 326.45 - 412 6,991

Case #14
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model - - - -

Two-phase 180,000.07
(180,000+0.07) 55.79% 255 7,161

(2,869+4,292)

Improved two-phase 23,297.51
(23,297.44+0.07) - 226 9,606

(5,366+4,240)

TS-ACO 120,628 - 235 9,539
Note: RT: model running time (sec); TOB: total number of buses; TD.: total deadhead time between trips and between trips and depots (min)

111

The optimal gap is obtained directly from the Gurobi solver. Table 12 shows the

optimal gap for the MIP model and the first-route phase of the two-phase heuristic

method, which is also a MIP model. The first-route phase of the improved heuristic

method and the TS-ACO is not solved with Gurobi, so the optimal gap is not presented.

Besides, we found that the second-assignment phase of the two-phase heuristic method

and the improved two-phase heuristic method can always reach optimality in a very

short time. So, the optimal gaps of that phase for both methods are omitted.

For the test problems without the dismissal time optimization, the MIP model, the two-

phase heuristic method, and the TS-ACO method can always achieve optimality. The

improved two-phase heuristic method can reach optimality in most cases, but

sometimes it may reach a solution that is only slightly worse than the optimal solution

(i.e., Case #7 and Case #13) using much less time than the other three methods.

For the test problems with the dismissal time optimization, the MIP model performs

well when the problem size (e.g., a smaller depot size, trip size, or school size) and the

dismissal time window are small. When the problem size and the dismissal time

window get larger, a solution with a relatively large optimal gap will be returned after

reaching the running time limit. The same thing happens for the first-route phase of the

two-phase heuristic method, which is an SDSBSPTW. It seems that Gurobi cannot

efficiently solve the large-size test problems with the dismissal time window. But

overall, the two-phase heuristic method performs better than the MIP model in terms

of the model running time and optimal gap.

112

The TS-ACO method works better as the problem size gets larger or has a larger

dismissal time window than the MIP model and the two-phase heuristic method in

terms of the model running time and the solution quality. The improved two-phase

heuristic method performs the best among all the proposed methods in all test problems.

It can even achieve fewer buses much quicker when the problem involves more trips,

depots, schools, and a larger dismissal time window. Generally, for both SDSBSPTW

and MDSBSPTW, no matter what method to use, having a larger school dismissal time

window could reduce more buses but make the problem more complicated and thus

result in a longer model running time.

Figure 25 shows the actual bus savings and the percentage savings in the number of

buses from all the proposed methods for all test problems with dismissal time

optimization. For each test problem, the exact bus saving is calculated as the total

number of buses without dismissal time optimization minus the total number of buses

after the dismissal time optimization. The percentage of saving in the number of buses

is the exact bus saving divided by the total number of buses without dismissal time

optimization. In Figure 25, the (−30,30) or (−40,40) right after the test problem’s

name indicate the size of the dismissal time window for each school 𝑖𝑖 in that test

problem. For example, the dismissal time window for each school 𝑖𝑖 in Case #2 is

[𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]. The problem size is also described in the bottom

as 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Because the MIP

model failed to solve Case #12 and Case #14, we didn’t plot the bus savings from the

MIP model for those two test problems in Figure 25.

113

Figure 25. Savings in the number of buses after the dismissal time optimization

114

According to Figure 25, the average bus saving percentage is around 45%, and the

highest is 54.22% (Case #9 based on the improved two-phase heuristic method). In

comparison, the lowest bus saving percentage is 12.85% (Case #11 based on the MIP

model). Under the same problem size setting, the exact bus saving and the bus saving

percentage are larger when the dismissal time window is larger. It indicates that the

larger dismissal time window results in more bus savings. When the problem size is

small (Case #2 to Case #6), the models’ performances regarding the bus savings are

around the same for all proposed methods. But as the problem size gets larger (Case #8

to Case #14), the MIP model tends to be less powerful and can only reduce a limited

number of buses or even fail to solve the problem. The improved two-phase heuristic

method performs the best, followed by the TS-ACO method.

For both SDSBPTWs and MDSBSPTWs, the dismissal times for most schools are

changed after the school dismissal optimization. And the dismissal times of those

schools after the optimization are more likely to reach (or near) the boundary values of

the dismissal time window no matter which method is used. Figure 26 shows how the

school dismissal time changed after the optimization for one SDSBSPTW (i.e., Case

#2), one MDSBSPTW (i.e., Case #8), and another larger size MDSBSPTW that uses

all the collected data (i.e., Case #14). For those three test problems, the dismissal time

window settings are the same; that is, for each school 𝑖𝑖, the dismissal time window is

[𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚].

115

(a) Case #2

(b) Case #8

(c) Case #14

Figure 26. How dismissal time changed after the optimization

116

We can get each school’s dismissal time after the optimization based on each proposed

method. So for each of those three test problems based on each proposed method, we

calculated the absolute difference between the school dismissal time before and after

the school dismissal optimization for each school 𝑖𝑖, which is 𝑎𝑎𝑎𝑎𝑎𝑎(𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑛𝑛𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷𝑖𝑖),

where 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 and 𝑛𝑛𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷𝑖𝑖 are the original dismissal time and new dismissal time of

school 𝑖𝑖 after the optimization, respectively. The absolute difference is classified into

three categories: [0,10), [10,20), [20,30]. Suppose the absolute difference between

the school dismissal time before and after the optimization for a particular school falls

in the last category [20,30]. In that case, it indicates that that school has experienced a

significant change in its dismissal time, and its new dismissal time is close to the

boundary values of its dismissal time window.

As shown in Figure 26, no matter what method is used, most schools have their

dismissal time changed to reach (or get near) the boundary values of the dismissal time

window (falling in the last category). To better illustrate this, we also present the

differences between the school dismissal times before and after the optimization for

each school (i.e., the original dismissal time minus the dismissal time after the

optimization) for Case #2 based on each proposed method in Figure 27. The figure

shows that only one school’s dismissal time (i.e., Sch-3) was unchanged after the

optimization in Case #2 based on the improved heuristic method. For those schools

whose dismissal times are changed, if we only look at the results from the MIP model,

we can find that seven schools have their dismissal time adjusted to be 𝑂𝑂𝑂𝑂𝑂𝑂 − 30 𝑚𝑚𝑚𝑚𝑚𝑚

or 𝑂𝑂𝑂𝑂𝑂𝑂 + 30 𝑚𝑚𝑚𝑚𝑚𝑚. Two schools (i.e., Sch-9 and Sch-10) have their new dismissal

117

times very close to the boundary values of the dismissal time window. The results from

the other methods show the same pattern.

Figure 27. Differences between the school dismissal times before and after the optimization for

Case #2 based on all proposed methods

Since the original school dismissal times are quite close, changing the dismissal time

to the boundary values of the school dismissal time window after the optimization can

make more trips compatible. Thus, more trips can be linked together on a single bus

route. Figure 28 shows the number of trips services per route with and without the

optimization for one single-depot problem (Case #1 and Case #2), one multi-depot

problem (Case #7 and Case #8), and the largest multi-depot problem based on all the

collected data (Case #13 and Case #14). We can find that almost all the single-trip bus

routes are eliminated, and bus routes tend to become longer after the school dismissal

time optimization, which helps reduce the total number of buses.

118

(a) Case #1 and Case #2

(b) Case #7 and Case #8

(c) Case #13 and Case #14

Figure 28. Number of trips services per route with or without dismissal time optimization

According to Figure 28, the test problems without the school dismissal time

optimization tend to have many single-trip bus routes. This is because the original

119

school dismissal times are quite close, making it impossible for buses to go to different

schools after finishing the trips of the current school. After the dismissal time

optimization, single-trip bus routes can be significantly reduced or even eliminated.

Also, bus routes after the dismissal time optimization tend to become longer. Therefore,

more trips become compatible as each school can have its own dismissal time after the

optimization. As more trips can be served on one bus, the bus route can become longer,

and thus the total number of buses can be reduced.

6.7 Sensitivity Analysis

6.7.1 Coefficients of the Objective Function

The objective function of the proposed MIP model in Chapter 3 and the objective

function of the MIP model of the first-route phase of the two-phase heuristic method

in Chapter 4 can also be a cost function based on the coefficient 𝑓𝑓𝑐𝑐 and 𝑅𝑅𝑐𝑐. Therefore,

we chose a couple of test problems and changed their objective function into the cost

function to see how it impacts the solution. The test problems that we chose include

Case #1 and Case #2, Case #10 and Case #11, and Case #13 and Case #14. Case #1 is

an SDSBSP. Case #10 and Case #13 are the MDSBSPs. Case #2 is an SDSBSPTW.

Case #11 and Case #14 are the MDSBSPTWs. For Case #2, Case #11, and Case #14,

the dismissal time window for each school 𝑖𝑖 is [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚]. The

results from all proposed methods for those test problems are shown in Table 13.

120

Table 13. Results of some test problems using cost function as the objective function

 Method RT OG TOB TD

Case #1
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝑵𝑵𝑵𝑵𝑵𝑵

MIP model 0.93 0.00% 60 1,458

Two-phase 0.75 0.00% 60 1,458

Improved two-phase 0.17 - 60 1,479

TS-ACO 1.77 - 60 1,458.4

Case #2
𝟏𝟏𝟏𝟏 − 𝟗𝟗𝟗𝟗 − 𝟏𝟏 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model 7,907.36 0.007% 31 1,174

Two-phase 23,566.47 0.006% 31 1,174

Improved two-phase 498.69 - 32 1,210.93

TS-ACO 1,068.03 - 32 1,186.93

Case #10
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝑵𝑵𝑵𝑵𝑵𝑵

MIP model 635.76 0.00% 179 5,495

Two-phase 43.37
(43.35+0.02) 0.00% 179 5,699.57

(580+5119.57)

Improved two-phase 1.62
(1.60+0.02) - 179 5,766

(652+5,114)
TS-ACO 82.44 - 179 5,709.73

Case #11
𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟖𝟖 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model 36,000 86.45% 169 7,877

Two-phase 36,000.02
(36,000+0.02) 48.8774% 95 3,251.27

(1,237+2,014.27)

121

Improved two-phase 3,815.01
(3,815+0.01) - 93 4,237

(2,214+2,023)
TS-ACO 22,940.64 - 94 4,016.92

Case #13
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 −𝑵𝑵𝑵𝑵𝑵𝑵

MIP model 53,450 0.0031% 412 6,,591

Two-phase 1,284.12
(1,284+0.12) 0.00% 412 7228

(1,235+5,993)

Improved two-phase 8.66
(8.54+0.12) - 413 7,227

(1,305+5,922)
TS-ACO 958.83 - 412 6,947.933

Case #14
𝟓𝟓𝟓𝟓 − 𝟔𝟔𝟔𝟔𝟔𝟔 − 𝟐𝟐𝟐𝟐 − 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

MIP model - - - -

Two-phase 184,466.07
(184,466+0.07) 50.04% 245 6,,509.92

(2637+3,872.92)

Improved two-phase 22,373.81
(22,373.75+0.06) - 226 9,708

(5,377+4,331)

TS-ACO 124,090 - 236 8,819.367
Note: RT: model running time (sec); TOB: total number of buses; TD.: total deadhead time between trips and between trips and depots (min)

122

For the test problems without the dismissal time optimization, the results in Table 13

are almost the same (or just slightly different in the total deadhead duration) compared

to the results shown in Table 12. But for the test problems with the dismissal time

optimization, we may have different results based on different forms of the objective

function. For Case #2, which is an SDSBSPTW, the MIP model and the two-phase

heuristic method reached the same optimal solution regardless of the form of the

objective function. However, when using the improved heuristic method and the TS-

ACO method, the number of buses is the same, but the deadhead duration is slightly

smaller when the objective function is a cost function.

Case #11 is an MDSBSPTW. When solving it using the MIP model, the two-phase

heuristic method, or the improved two-phase heuristic method, obtained a larger total

number of buses when the objective function is a cost function. But the TS-ACO

reached the same total number of buses. Overall, the total number of buses is larger

when the objective function is a cost function. It is an expected outcome because the

coefficient of the “total number of buses” term is much larger in the previous objective

function (i.e., 𝑀𝑀𝑏𝑏) than that in the cost function form of the objective function (i.e., 𝑓𝑓𝑐𝑐),

hence resulting in more reduction in the total number of buses.

However, the large weight (𝑀𝑀𝑏𝑏) may not always work well, especially when solving

very large-size MDSBSPTWs problems using the MIP model. Take Case #14, for

example; it is the largest MDSBSPTW that uses all the collected data. However, the

total number of buses from the MIP model in which the objective function is the cost

123

function is ten fewer buses than that from the MIP model that prioritizes the “total

number of buses” term. The results from the two-phase heuristic method and the

improved two-phase method are almost the same regardless of the forms of the

objective function for Case #14. When using the TS-ACO method, the model with the

cost function as the objective function has one more bus than the model that prioritizes

the “total number of buses” term for Case #14.

6.7.2 Dismissal Time Window

By comparing the solutions to the test problem with and without dismissal time

optimization, we can find that the total number of buses can be significantly reduced

after incorporating the dismissal time optimization into the school bus scheduling

problem. Besides, the improved two-phase heuristic method performs the best among

all the proposed methods. Therefore, we conduct a sensitivity analysis on the solution

of the improved two-phase heuristic method under different sizes of the dismissal time

window based on the entire collected data (e.g., 55 schools and 678 trips). Four

different sizes of dismissal time windows are proposed. That is, for each school 𝑖𝑖, we

consider [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 10 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 10 𝑚𝑚𝑚𝑚𝑚𝑚] , [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 20 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 20 𝑚𝑚𝑚𝑚𝑚𝑚] ,

[𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚], and [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 40 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 40 𝑚𝑚𝑚𝑚𝑚𝑚]. When the

dismissal time window for each school 𝑖𝑖 is [𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 30 𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 + 30 𝑚𝑚𝑚𝑚𝑚𝑚], it is

Case #14. After running the improved two-phase heuristic method under each dismissal

time window scenario, we calculate the actual bus savings and the percentage of

savings in the number of buses for each scenario. For each test problem, the exact bus

saving is calculated as the total number of buses without dismissal time optimization

minus the total number of buses after the dismissal time optimization. The percentage

124

of saving in the number of buses is the exact bus saving divided by the total number of

buses without dismissal time optimization. The results are shown in Figure 29.

Figure 29. Savings in the number of buses over the different dismissal time windows

According to Figure 29, as the size of the dismissal time window increases, more buses

can be saved. More trips become compatible after the dismissal time optimization so

that more trips can be linked together on a single bus route. Bus routes tend to become

longer, hence helping to reduce the total number of buses.

6.8 Summary

The performance of the proposed MIP model, the two-phase heuristic method, the

improved two-phase heuristic method, and the TS-ACO method were tested on

fourteen test problems in this chapter. All the test problems were derived from the real-

world data collected from a public school district in Maryland. Those problems have

125

different school sizes, trip sizes, depot sizes, and two types of school dismissal time

windows for testing the performance of the proposed methods. First, the collected data

and how those test problems were generated were described in detail. Then, all the

proposed methods were examined on all the test problems. The results from all four

proposed methods were presented, compared, and explained. Finally, we did the

sensitivity analysis on two forms of the objective functions and several different sizes

of the dismissal time window. The results were compared and analyzed.

126

Chapter 7: Conclusions and Future Work

7.1 Summary and Conclusions

The school bus scheduling problem is an important real-world transportation problem

that affects many families daily. The school districts’ main issue is transporting all the

students between homes and schools safely and promptly. In such problems, even a

small improvement in the daily operation could lead to significant potential financial

benefits. Therefore, this study aimed to solve the school bus scheduling problem. We

first added some real-world settings such as multi-depot and multi-school

configurations into the basic school bus scheduling problem for helping the school

district make better decisions. We also incorporated the school bell time optimization

into the school bus scheduling problem. Changing some schools’ bell times can make

the bus schedule more efficient as many buses can be reduced after the school bell time

optimization. As a result, school districts can achieve significant savings.

Therefore, for helping school districts with their decision-making, this study aimed to

solve the multi-depot multi-school bus scheduling problem with bell time optimization

(MDSBSPTW). We proposed four different methods for solving the MDSBSPTWs.

The goal is to provide the optimal bell time for each school and the corresponding best

bus schedule for the school district. The four proposed methods include a Mixed-

Integer Programming (MIP) model, a two-phase heuristic method, an improved two-

phase heuristic method, and a TS-ACO method. The performances of all the proposed

methods were tested on fourteen test problems with different characteristics. All the

127

test problems were derived from the real-world data collected from a public school

district in Maryland. The results were compared and analyzed.

First, the MDSBSPTW was formulated as a MIP model. It is an integrated model that

simultaneously optimizes the school bell times and the school bus schedule,

considering the multi-depot and multi-school settings. It can solve single-depot

problems if we only have one depot. It can also handle school scheduling problems

solely without the school bell time optimization if fixing the bell time of each school

to a specific timestamp. The objective function is to minimize the total number of buses

and the total deadhead time, which is the time without students on board. We have two

forms of the objective function. One adds a very large coefficient for the total number

of buses term for prioritizing minimizing the total number of buses which is the major

contributing factor to costs. Another one is a cost function that minimizes the total

operation cost per day. Therefore, the proposed MIP model is a great tool that gives the

school district flexibility for trying out different plans.

The proposed MIP model is an exact method for solving MDSBSPTWs. However, it

may not be powerful enough for solving relatively large-size problems. To address that,

we proposed our second method, which is the two-phase heuristic method. It solves the

MDSBSPTWs through two phases sequentially. By introducing a virtual depot, we first

ignore all the depot information and convert the MDSBSPTW into a single-depot

multi-school bus scheduling problem with bell time optimization (SDSBSPTW) in the

first-route phase. All buses should start and end at the virtual depot. The first-route

128

phase is formulated as a MIP model, and the purpose is to come up with the best way

for connecting trips to construct bus routes. The objective function minimizes the total

number of buses and the deadhead duration only between trips. If we only have one

depot in the system, the virtual depot is the actual depot, and the objective function is

changed to minimize the total deadhead duration, including the deadhead duration

between trips and the deadhead duration between trips and depots. Like the previous

MIP model, the objective function can be a cost function or prioritize either term using

a large weight. The proposed MIP model for the first-route phase can also solve the

problem without the bell time optimization. Then, the bus routes from the first phase

are the input for the second-assignment phase. The goal is to assign each bus to the best

depot that minimizes the total deadhead duration between trips and depots. It is an

assignment problem formulated as an integer programming model.

The above two methods were fully implemented using the Gurobi solver in Python.

They all perform well and provide optimal solutions for the test problems without the

dismissal time optimization (including both SDSBSPTWs and MDSBSPTWs).

However, for the test problems with the dismissal time optimization, the MIP model

can only solve the ones with a smaller number of depots, trips, or schools or a smaller

dismissal time window. As the problem size and the dismissal time window get larger,

it will return a solution with a relatively large optimal gap or even can’t find a feasible

solution after reaching the running time limit. The same thing happens for the first-

route phase of the two-phase heuristic method. But since the MIP model of the first-

route phase is designed for solving the SDSBSPTW, it has fewer variables and

129

constraints than the previous MIP model for solving the MDSBSPTW. Thus, the two-

phase heuristic method performs better than the MIP model regarding the model

running time and optimal gap. The second-assignment phase can always be solved

optimally in less than one second. Overall, Gurobi cannot efficiently solve the large-

size multi-school bus scheduling problem with the dismissal time optimization

regardless of the number of depots in the system.

We proposed a hybrid heuristic method that uses a local search to speed up the solution

searching process to solve the first-route phase more efficiently. It is a Simulated

Annealing-based Greedy Algorithm (SA-GDA) method and replaces the MIP model in

the first-route phase. Keeping the second-assignment phase unchanged, we have our

third method, the improved two-phase heuristic method. The SA-GDA method is

proposed to solve the SDSBSPTWs (or SDSBSP) in the first-route phase. The

simulated annealing algorithm is used to examine different school bell time plans. The

proposed greedy algorithm is embedded into the framework of the simulated annealing

algorithm to find the best bus schedule under each school bell time plan. Since we are

only interested in the trip connections in the first-route phase, the best bus schedule

under a given bell time plan is the one that minimizes the total number of buses and the

deadhead duration between trips. The SA-GDA method compares different bus

schedules and returns the best and its corresponding school bell time plan. Then, the

buses are assigned to different depots to minimize the deadhead duration between trips

and depots based on the assignment model proposed in the second-assignment phase.

130

The improved two-phase heuristic method can solve the test problems without the bell

time optimization optimally (or near-optimally) using much less time than the above

two methods. For the test problems with the bell time optimization, the improved two-

phase heuristic method performs much better than the previous two methods on all the

test problems in terms of the solution quality and the computational time. It can even

achieve fewer buses much quicker, especially for complicated problems that involve

more trips, depots, schools, and larger dismissal time windows.

Though the improved two-phase heuristic method is powerful, we still want to have an

efficient model to solve the MDSBSPTW without dividing it into different phases. So

here comes our last model, the Tabu Search-based Ant Colony Optimization (TS-ACO)

method. The tabu search, just like the simulated annealing algorithm, is used to find

the best combination of the school bell time plan. It iteratively searches for a better

solution and uses a special data structure called a tabu list to forbid or penalize certain

moves to avoid cycling or revisiting a solution to improve efficiency. Under each fixed

school bell time plan, the ant colony optimization algorithm is used to find the best bus

schedule with the minimum number of buses and total deadhead duration. The ant

colony optimization used in this study includes the solution construction process of the

ants. We also introduced three local search procedures to improve the best solution

found by the ant. The proposed TS-ACO method can solve both SDSBPTWs and

MDSBSPTWs. The proposed ACO is enough for finding the final solution if the

problem is without the bell time optimization.

131

The TS-ACO method also works well on the test problems without the dismissal time

optimization. It always performs better than the MIP model regarding model running

time and the solution quality for the test problems with the bell time optimization. It is

better than the two-phase heuristic method when the problem gets more complicated

(e.g., having more depots, more trips, more schools, or a larger dismissal time window).

However, the improved two-phase heuristic performs even better.

Regarding the performances of all the proposed methods, in summary, results show

that all four methods perform well on the problems without the bell time optimization.

When incorporating the bell time optimization into the bus scheduling problem, the

improved two-phase heuristic method and the TS-ACO method outperform the MIP

model and the two-phase heuristic method that are limited by the Gurobi solver. Among

them, the improved two-phase heuristic method has the best performance in terms of

the model running time and the solution quality. It can help the school district examine

different schedules or bell time plans efficiently and quickly find the best one.

For the test problems with bell time optimization, most schools’ dismissal times will

change after the optimization. The dismissal times after the optimization tend to be

either at the boundary values of the given dismissal time window or near those

boundary values, no matter what method is used. Also, after the school dismissal times

are changed, almost all the single-trip bus routes are eliminated. Most bus routes tend

to become longer by serving more trips, resulting in significant savings regarding the

number of buses. However, the dismissal time optimization makes the integrated

132

problem much more complicated. For all proposed methods, results show that the larger

the dismissal time window is, the more buses can be reduced, but longer model running

time and computational resources are needed.

7.2 Recommendations for Future Work

There are several interesting avenues for future work, and we list some recommended

directions for future research:

1. The proposed tabu search method used the most intuitive aspiration criteria for

overriding the tabu status of some schools corresponding to search steps that lead

to improvements. In the future, we can enhance the aspiration criteria by

simultaneously considering the tabu status of those schools and the change in the

objective function after overriding those schools’ tabu status to see if we can

improve the performance of the proposed TS-ACO method.

2. The trips are fixed for each school in this study (i.e., the visiting sequence of bus

stops on the trips is known and fixed). Since they are the critical inputs for our

school bus scheduling problem, we can first optimize them and even allow mixed

load (i.e., a trip can serve stops from more than one school) by first solving a school

bus routing problem. Combined with the current study, we can have a

comprehensive school bus routing and scheduling system.

3. We assume that the buses are homogeneous (have the same capacity), and all the

students don’t have special needs in this study. However, in reality, the bus fleet

always consists of buses with different capacities for serving different types of

students (e.g., special education students and general education students) in a

133

school district. Therefore, in the future, developing a model that considers the

mixed fleet (buses have varying bus capacities) could make the model able to

simulate situations closer to real-world cases. If we introduce multiple types of

buses into the model, the fixed cost for each type of bus should be different.

4. We can add some level-of-service constraints to the existing model for improving

the equity of the school bus system. For example, we can add the maximum vehicle

time per route or maximum length per route constraints into the model. By doing

so, the vehicle time (or route length) of bus routes can be more balanced.

5. We can consider the uncertainty of the travel time and the pickup and drop-off time.

We assume that all the buses arrive at schools on time, and each trip has its fixed

service time duration in this study. However, buses may not always arrive at schools

or serve trips on time due to bad traffic conditions. Also, the service time of each

trip may vary depending on the traffic condition. Therefore, the developed model

could be further improved by accounting for the stochasticity of the travel time so

that we can take the real-world traffic condition into account.

134

References

Alinaghian, M., and N. Shokouhi, 2018, “Multi-depot multi-compartment vehicle

routing problem, solved by a hybrid adaptive large neighborhood search.” Omega, 76:

85-99.

Arnold, F., K. Sörensen, 2019, “Knowledge-guided local search for the vehicle routing

problem.” Computers and Operations Research, 105: 32-46.

Babaei, M., and M. Rajabi-Bahaabadi, 2019, “School bus routing and scheduling with

stochastic time-dependent travel times considering on-time arrival reliability.”

Computers and Industrial Engineering, 138: 106125.

Baldacci, R., and A. Mingozzi, 2009, “A unified exact method for solving different

classes of vehicle routing problems.” Mathematical Programming, 120(2): 347.

Banerjee, D., and K. Smilowitz, 2019, “Incorporating equity into the school bus

scheduling problem,” Transportation Research Part E: Logistics and Transportation

Review, 131: 228-246.

Barma, P. S., J. Dutta, and A. Mukherjee, 2019, “A 2-opt guided discrete antlion

optimization algorithm for multi-depot vehicle routing problem.” Decision Making:

Applications in Management and Engineering, 2(2): 112-125.

Bezerra, S. N., S. R. de Souza, and M. J. F. Souza, 2018, “A GVNS algorithm for

solving the multi-depot vehicle routing problem.” Electronic Notes in Discrete

Mathematics, 66: 167-174.

Bektaş, T., and S. Elmastaş, 2007, “Solving school bus routing problems through

integer programming.” Journal of the Operational Research Society, 58(12): 1599-

1604.

135

Bertsimas, D., A. Delarue, and M. Sebastien, 2019, “Optimizing schools’ start time and

bus routes.” Proceedings of the National Academy of Sciences, 116(13): 5943-5948.

Bettinelli, A., A. Ceselli, and G. Righini, 2011, “A branch-and-cut-and-price algorithm

for the multi-depot heterogeneous vehicle routing problem with time windows.”

Transportation Research Part C: Emerging Technologies, 19(5): 723-740.

Brandão, J., 2020, “A memory-based iterated local search algorithm for the multi-depot

open vehicle routing problem.” European Journal of Operational Research, 284(2):

559-571.

Caceres, H., R. Batta, and Q. He, 2017, “School bus routing with stochastic demand

and duration constraints.” Transportation Science, 51(4): 1349-1364.

Chen, X., Y. Kong, L. Dang, Y. Hou, and X. Ye, 2015, “Exact and metaheuristic

approaches for a bi-objective school bus scheduling problem.” PloS One, 10(7):

e0132600.

Christiaens, J., G. Vanden Berghe, 2020, “Slack induction by string removals for

vehicle routing problems.” Transportation Sciences, 54(2): 417-433.

Clarke, G. and J. W. Wright, 1964, “Scheduling of vehicles from a central depot to a

number of delivery points.” Operations Research, 12(4): 568-581.

Contardo, C. and R. Martinelli, 2014, “A new exact algorithm for the multi-depot

vehicle routing problem under capacity and route length constraints.” Discrete

Optimization, 12: 129-146.

Cordeau, J. F., G. Laporte, and A. Mercier, 2001, “A unified tabu search heuristic for

vehicle routing problems with time windows.” Journal of Operational Research

Society, 52: 928-936.

136

Cordeau, J. F., G. Laporte, and A. Mercier, 2004, “Improved tabu search algorithm for

the handling of route duration constraints in vehicle routing problems with time

windows.” Journal of Operational Research Society, 55: 542-546.

Cordeadu, J. F., and M. Mercier, 2012, “A parallel iterated tabu search heuristic for

vehicle routing problems.” Computers and Operations Research, 39(9): 2033-2050.

Crevier, B., J. F. Cordeau, and G. Laporte, 2007, “The multi-depot vehicle routing

problem with inter-depot routes.” European Journal of Operational Research, 176(2):

756-773.

Dantzig, G. B., and J. H. Ramser, 1959, “The truck dispatching problem.” Management

Science, 6(1): 80-91.

de Brey, C., T. D. Snyder, A. Zhang, and S. A. Dillow, 2021, “Digest of Education

Statistics 2019. NCES 2021-009.” National Center for Education Statistics, Table

236.90.

Demirel, T., and Ş. Yilmaz, 2012, “A new solution approach to multi-depot vehicle

routing problem with any colony optimization.” Journal of Multiple-Valued Logic and

Soft Computing, 18.

Dorigo, M., and V. Maniezzo, and A. Colorni, 1996, “Ant system: optimization by a

colony of cooperating agents.” IEEE Transaction on Systems, Man, and Cybernetics,

Part B (Cybernetics), 26(1): 29-41.

Ellegood, W. A., S. Solomon, J. North, and J. F. Campbell, 2020 “School bus routing

problem: Contemporary trends and research directions.” Omega, 95: 102056.

137

Escobar, J. W., R. Linfati, P. Toth, and M. G. Baldoquin, 2014, “A hybrid granular tabu

search algorithm for the multi-depot vehicle routing problem.” Journal of Heuristics,

20(5): 483-509.

Fügenschuh, A., 2009, “Solving a school bus scheduling problem with integer

programming.” European Journal of Operational Research, 193(3): 867-884.

Fügenschuh, A., 2011, “A set partitioning reformulation of a school bus scheduling

problem.” Journal of Scheduling, 14(4): 307-38.

Gambardella, L. M., É. Taillard, and G. Agazzi, 1999, “MACS-VRPTW: a multiple ant

colony system for vehicle routing problems with time windows.” New Ideas in

Optimization.

Giosa, I. D., I. L. Tansini, and I. O. Viera, 2002, “New assignment algorithms for the

multi-depot vehicle routing problem.” Journal of the Operational Research Society,

53(9): 977-984.

Glover, F., and E. Taillard, 1993, “A user’s guide to tabu search.” Annals of Operations

Research, 41(1): 1-28.

Haghani, A., and M. Banihashemi, 2002, “Heuristic approaches for solving large-scale

bus transit vehicle scheduling problem with route time constraints.” Transportation

Research Part A: Policy and Practice, 36(4): 309-333.

Ho, W., G. T. Ho, P. Ji, and H. C. Lau, 2008, “A hybrid genetic algorithm for the multi-

depot vehicle routing problem.” Engineering Applications of Artificial Intelligence,

21(4): 548-557.

Jabir, E., V. V. Paincker, and R. Sridharan, 2017, “Design and development of a hybrid

any colony-variable neighborhood search algorithm for a multi-depot green vehicle

138

routing problem.” Transportation Research Part D: Transport and Environment, 57:

422-457.

Karakatič, S., and V. Podgorelec, 2015, “A survey of genetic algorithms for solving

multi depot vehicle routing problem.” Applied Soft Computing, 27: 519-532.

Kim, B. I., S. Kim, and J, Park, 2012, “A school bus scheduling problem.” European

Journal of Operational Research, 218(2): 577-585.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, 1983, “Optimization by simulated

annealing.” Science, 220(4598): 671-680.

Kytöjoki, J., T. Nuortio, O. Bräysy, M. Gendreau, 2007, “An efficient variable

neighborhood search heuristic for very large scale vehicle routing problems.” Computer

and Operations Research, 34(9): 2743-2757.

Laporte, G., Y. Nobert, and D. Arpin, 1984, “Optimal solutions to capacitated

multidepot vehicle routing problems.” Congressus Nemerantium, 4: 283-292.

Laporte, G., Y. Nobert, and S. Taillefer, 1988, “Solving a family of multi-depot vehicle

routing and location-routing problems.” Transportation Science, 22(3): 161-172.

Laporte, G., S. Ropke, and T. Vidal, 2014, “Chapter 4: Heuristics for the vehicle routing

problem.” In Vehicle Routing: Problems, Methods, and Applications, Second Edition.

Society for Industrial and Applied Mathematics, 87-116.

Leachman, M., K. Masterson., and E. Figueroa, 2017, “A punishing decade for school

funding.” Center on Budget and Policy Priorities, 29.

Li, J., Y. Li, and P. M. Pardalos, 2016, “Multi-depot vehicle routing problem with time

windows under shared depot resources.” Journal of Combinatorial Optimization, 31(2):

515-532.

139

Löbel, A., 1998, “Vehicle scheduling in public transit and Lagrangean pricing.”

Management Science, 44(12-part-1), 1637-1649.

Luo, J., and M. R. Chen, 2014, “Multi-phase modified shuffled frog leaping algorithm

with external optimization for the MDVRP and the MDVRPTW.” Computers and

Industrial Engineering, 72: 84-97.

Miranda, D.M., R. S. de Camargo, S. V. Conceição, M. F. Porto, and N. T Nunes, 2021,

“A metaheuristic for the rural school bus routing problem with bell adjustment.” Expert

Systems with Applications, 180: 115086.

Montoya-Torres, J. R., J. L. Franco, S. N. Isaza, H. F. Jiménez, and N. Herazo-Padilla,

2015, “A literature review on the vehicle routing problem with multiple depots.”

Computers and Industrial Engineering, 79: 115-129.

Nagy, G. and S. Salhi, 2005, “Heuristic algorithms for single and multiple depot vehicle

routing problems with pickups and deliveries.” European Journal of Operational

Research, 162(1): 126-141.

Narasimha, K. V., E. Kivelevitch, B. Sharma, and M. Kumar, 2013, “An ant colony

optimization technique for solving min-max multi-depot vehicle routing problem.”

Swarm and Evolutionary Computation, 13: 63-73.

Park, J., and B-I. Kim, 2010, “The school bus routing problem: A review.” European

Journal of Operational Research, 202: 311-319.

Pecin, D., A. Pessoa, M. Poggi, and E. Uchoa, 2017, “Improved branch-cut-and-price

for capacitated vehicle routing.” Mathematical Programming Computation, 9(1): 61-

100.

140

Polacek, M., R. F. Hartl, K. Doerner, and M. Reimann, 2004, “A variable neighborhood

search for the multi depot vehicle routing problem with time windows.” Journal of

Heuristics, 10(6): 613-627.

Polacek, M., S. Benkner, K. F. Doerner, and R. F. Hartl, 2008, “A cooperative and

adaptive variable neighborhood search for the multi depot vehicle routing problem with

time windows.” Business Research, 1(2): 207-218.

Queiroga, E., R. Sadykov, and E. Uchoa, 2021, “A POPMUSIC for the capacitated

vehicle routing problem.” Computers and Operations Research, 136: 105475.

Ramos, T. R. P., M. I. Gomes, and A. P. B. Póvoa, 2020, “Multi-depot vehicle routing

problem: a comparative study of alternative formulations.” International Journal of

Logistics Research and Application, 23(2): 103-120.

Renaud, J., G. Laporte, and F. F. Boctor, 1996, “A tabu search heuristic for the multi-

depot vehicle routing problem.” Computers and Operations Research, 23(3): 229-235.

Sadati, M. E. H., B. Çatay, D. Aksen, 2021 “An efficient variable neighborhood search

with tabu shaking for a class of multi-depot vehicle routing problems.”, Computers and

Operations Research, 133: 105269.

Salhi, S. and M. Sari, 1997, “A multi-level composite heuristic for the multi-depot

vehicle fleet mix problem.” European Journal of Operational Research, 103(1): 95-

112.

Salhi, S., A. Imran, and N. A. Wassan, 2014, “The multi-depot vehicle routing problem

with heterogeneous vehicle fleet: Formulation and a variable neighborhood search

implementation.” Computers and Operations Research, 52: 315-325.

141

Savas, E. S., 1978, “On equity in providing public services.” Management Science,

24(8): 800-808.

Shafahi, A., S. Aliari, and A. Haghani, 2018, “Balanced Scheduling of School Bus

Trips using Perfect Matching Heuristic.” Transportation Research Record, 2672(48):

1-11.

Subramanian, A., E. Uchoa, and L. S. Ochi, 2013, “A hybrid algorithm for a class of

vehicle routing problems.” Computers and Operations Research, 40(10), 2519-2531.

Tillman, F. A., 1969, “The multiple terminal delivery problem with probabilistic

demands.” Transportation Science, 3(3): 192-204.

Toth, P., and D. Vigo, 2002, “The vehicle routing problem.” Society for Industrial and

Applied Mathematics.

Tu, W., Z. Fang, Q. Li, S. L. Shaw, and B. Chen, 2014, “A bi-level Voronol diagram-

based metaheuristic for a large-scale multi-depot vehicle routing problem.”

Transportation Research Part E: Logistics and Transportation Review, 61: 84-97.

Vidal, T., T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei, 2012, “A hybrid genetic

algorithm for multidepot and periodic vehicle routing problems.” Operation Research,

60(3): 611-624.

Vidal, T., T. G. Crainic, M. Gendreau, and C. Prins, 2013, “A hybrid genetic algorithm

with adaptive diversity management for a large class of vehicle routing problems with

time-windows.” Computers and Operations Research, 40(1): 475-489.

Wang, X., B. Golden, E. Wasil, and R. Zhang, 2016, “The min-max split delivery multi-

depot vehicle routing problem with minimum service time requirement.” Computer and

Operations Research, 71: 110-126.

142

Wang, Z., 2019, “Solving the integrated school bell time, and bus routing and

scheduling optimization problem under the deterministic and stochastic conditions.”

UMD Dissertation.

Wang, Z., and A. Haghani, 2020, “Column generation based stochastic school bell time

and bus scheduling optimization.” European Journal of Operational Research, 286(3):

1087-1102.

Wang, Z., A. Shafahi, and A. Haghani, 2017, “SCDA: School compatibility

decomposition algorithm for solving the multi-school bus routing and scheduling

problem.” arXiv preprint arXiv:1711.00532.

Wei, L., Z. Zhang, D. Zhang, and S. C. Leung, 2018, “A simulated annealing algorithm

for the capacitated vehicle routing problem with two-dimensional loading constraints.”

European Journal of Operational Research, 265(3): 843-859.

Yan, S., F. Y. Hsiao, and Y. C. Chen, 2015, “Inter-school bus scheduling under

stochastic travel times.” Networks and Spatial Economics, 15(4): 1049-1074.

Yu, B., Z. Z. Yang, and J. X. Xie, 2011, “A parallel improved ant colony optimization

for multi-depot vehicle routing problem.” Journal of the Operational Research Society,

62(1): 183-188.

Yücenur, G. N., and N. Ç. Demirel, 2011, “A new geometric shape-based genetic

clustering algorithm for the multi-depot vehicle routing problem.” Expert Systems with

Applications, 38(9): 11859-11865.

Zhang, S., W. Zhang, Y. Gajpal, S. S. Appadoo, 2019, “Ant colony algorithm for

routing alternative fuel vehicles in multi-depot vehicle routing problem.” In Decision

science in action: 251-260. Springer, Singapore.

143

Zhou, L., R. Baldacci, D. Vigo, and X. Wang, 2018, “A multi-depot two-echelon

vehicle routing problem with delivery options arising in the last mile distribution.”

European Journal of Operational Research, 265(2): 765-778.

	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1: Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Contributions
	1.4 Report Structure

	Chapter 2: Literature Review
	2.1 Vehicle Routing Problem
	2.2 Multi-depot Vehicle Routing Problem
	2.3 Multi-depot Vehicle Routing Problem with Time Windows
	2.4 School Bus Scheduling Problem
	2.5 School Bell Time Optimization
	2.6 Research Gaps

	Chapter 3: Problem Description and Model Formulation
	3.1 Problem Description
	3.2 Model Assumptions
	3.3 Mathematical Formulation
	3.3.1 Notation
	3.3.2 Model Formulation

	3.4 Summary

	Chapter 4: Two-Phase Heuristic Method
	4.1 Problem Description
	4.2 Two-Phase Heuristic Method
	4.2.1 First-route Phase
	4.2.2 Second-assignment Phase

	4.3 Model Assumptions
	4.4 Mathematical Formulation
	4.4.1 Notation
	4.4.2 Model Formulation for First-route Phase
	4.4.3 Model Formulation for Second-assignment Phase

	4.5 Improved Two-Phase Heuristic Method
	4.5.1 Greedy Algorithm
	4.5.2 Simulated Annealing Algorithm
	4.5.3 Overall SA-GDA method

	4.6 Summary

	Chapter 5: Tabu Search-based Ant Colony Optimization
	5.1 Ant Colony Optimization
	5.1.1 Initialization
	5.1.2 Solution Construction
	5.1.3 Local Search Procedures
	5.1.4 Pheromone Update
	5.1.5 Overall ACO Method

	5.2 Tabu Search Method
	5.2.1 Initial Solution
	5.2.2 Neighborhoods
	5.2.3 Tabu List
	5.2.4 Aspiration Criterion
	5.2.5 Stopping Rules

	5.3 Overall TS-ACO Method
	5.4 Summary

	Chapter 6: Test Problems
	6.1 Data Description
	6.2 Results of the MIP Model
	6.3 Results of the Two-phase Heuristic Method
	6.4 Results of the Improved Two-phase Heuristic Method
	6.5 Results of the TS-ACO Method
	6.6 Overall Results and Comparison
	6.7 Sensitivity Analysis
	6.7.1 Coefficients of the Objective Function
	6.7.2 Dismissal Time Window

	6.8 Summary

	Chapter 7: Conclusions and Future Work
	7.1 Summary and Conclusions
	7.2 Recommendations for Future Work

	References

